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Introduction
Active-absorbing state form a very important class of
non-equilibrium phase transitions [Hinrichsen(2000)]

The best studied model in this class is directed percolation.
The Janssen-Grassberger conjecture: all active -absorbing state
transitions with a single order parameter, unique absorbing state,
and no additional conservation laws, belong to DP universality
class.

Many absorbing states, or additional conservation laws make the
critical behavior non-DP.



Models with additional conservation laws:
Simplest is parity-conserving directed percolation (PCDP):
Here the processes are A→ AAA and A→ φ.
A different universality class.

Models with many absorbing states: The number of absorbing
states grows exponentially with volume.
Pair -contact process :AA→ AAA,A→ φ

Many absorbing states, and conserved number of particles:
Fixed -energy sandpiles

( including Conserved Threshold Transfer Process)
Activated random walkers
Assisted hopping models studied here.



Is β ≤ 1?
In equilibrium and non-equilibrium continuous phase transitions,
we usually define the critical exponent β, which describes how the
order parameter m tends to zero, in the ordered phase: m ∼ εβ.

In most cases, one finds that β ≤ 1.
Can on prove such an inequality based on some general ( e.g.
thermodynamics) principles under some restricions?



The general answer to this question has to be No.

Examples with β > 1 :
Conductance of a random mixture of conducting and insulating
balls near the percolation point ∼ |δρ|a, with a > 1.
Also, rigidity percolation, surface tension near gas-liquid critical
point...

Clearly, we need to define order parameter carefully.
In the percolation problem, are conductance and prob. of infinite
cluster equally good order parameters?

An interesting counter example was provided by De Silva and De
Oliveira (2008).
The defined a 1-d model of assisted diffusion of interacting
particles, with short ranged interactions, having an
active-absorbing transition, with β = 2.

We construct a generalization of their model. For these transitions,
the identification of order parameter seems rather clear.



Preview of the main results

• A class of assisted hopping models in one dimension showing
active-absorbing transition

• Finite range interactions

• Exactly determined steady state and critical exponents

• Exponent β can take arbitrarily large positive integer values
β = n for all n ≥ 1.

• Equivalence to a gas of defects makes the analysis very simple



Definition of the models

• We consider a lattice gas of N particles, on a ring of L sites.

• Each site has either 0, or at most one particle.

• A configuration may be specified by a binary string
00101110101....

• the model is defined by a range parameter n, which is a
positive integer.



Definition of the models (continued)

Figure: Particles on a ring.

• Continuous-time Markovian evolution

• Particles diffuse, variable jump size, but cannot cross each
other

• If a particle has no occupied neighbor, and sum of lengths of
empty intervals on its two sides > n, it is immobile

• Rate of jump depends on jump size r , and status of nearly
sites.



Definition of the models (continued)
The detailed rates are as follows:
(a)Break-up of 0-clusters: A particle with one occupied neighbor,
and next to a 0-interval of length `, can take steps of length r ,
r ≤ `. The rate is Γ1(r , `).

(b)Merging of 0-clusters to form 0-clusters of length ≤ n : A
particle with 0-intervals of lengths `1 and `2, with 1 ≤ `1 + `2 ≤ n
can jump `1 steps to left, creating a single 0-interval of length
`1 + `2, with rate Γ2(`1, `1 + `2)

Similarly, rate Γ2(`2, `1 + `2) to jump to end of right 0-interval.



We assume
(i)Γ1(r , `) > 0, for all ` ≥ r , r ≤ n
and the detailed balance condition
(ii)Γ1(r , l) = Γ2(r , l); for all1 ≤ r ≤ ` ≤ n

Figure: Figure shows allowed moves.



Characterizing the steady state
0-clusters of length > ` can break, but cannot form.
1100000001→ 1001000001, but reverse transition is not allowed.

At low densities, the particles spread out, and eventually all of
them are immoblie.
Ex: 001000010001000100001000 (n = 4) all particles are immobile.
Clearly, ρc = 1/(n + 1).

For ρ = ρc , the system eventually falls in the periodic state
10n10n10n...

For ρ > ρc , eventually, there are no 0-clusters of length > n, and

Either the smaller 0-clusters keep breaking, and merging,
Or (For ρc < ρ < ρc2), system reaches an inactive configuration.
e.g. n = 4 : 100010010001001000.... Clearly, ρc2 = 2/(3 + n).



Characterizing steady state
Define Height of a configuration = number of 0-clusters of length
> n.
Then, under evolution, this can only decrease. No detailed balance.

However, in the h = 0 “floor level”, detailed balance holds, and all
accessible configurations in a sector are equally likely.

From h = 1 level, one may fall into an immobile state (for
intermedate densities), or an active state.

Ex.:n = 4, L = 10,N = 4, active configs are 1000011000010000,...

The active sector is unique: the reference state 1r (10n)s can be
reached from any active state, and moves in this sector are
reversible.

All configurations, with at least one mobile particle, and all
0-clusters of length ≤ n are in the same sector.



Calculation of number of configurations in the active sector is
straightforward.
Use generating function techniques

All words made with substrings 1 + 10 + 100 + 1000 + ...10n.

Since all occur with equal probability, mean activity can be also
found.

We get mean activity ∼ (ρ− ρc)n

β = n



Equivalence to defect gas
For density close to ρc , the configurations has large stretches of
10n repeated.

Take this as a standard configuration.
If 1 is followed by n − x zeroes, we say there are x defects.
Then, an active configuration is given by
...1111x11111x11xx111x111.....
Fixed N, fixed number of defects.
The only constraint is that not more that n defects together.
All configurations are equally likely.
The dilute gas of defects is nearly ideal.
Activity if at least n defects at two adjacent sites.

The density of such sites varies as (δρ)n.



More on defect gas
For transient states, we have 0-clusters of length > n.

These correspond to immobile antidefects.

Under dynamics, the defects will diffuse, and annihilate with
antidefects, leaving no antidefects in the steady state.

For ρ < ρc , there are too many antidefects in the beginning. All
defects annihilate, leaving only immobile antidefects

The transient dynamics is the dynamics of mobile defects, static
antidefects:

defect density∼ t−1/4, for 1� t � L4 .



Other results

• Exact expression for mean activity as a function of density

• density-density correlations: ξ ∼ 1/ε, hence ν = 1

• We can add a field that allows 0-clusters of length > ` form
with rate h, keeping detailed balance
Then calculate exact activity as a function of h



Summary

A simple exactly soluble model of active-absorbing state transition

β = n

Equivalence to a gas of defects



Thank You


