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Spontaneous symmetry breaking

General question: rigorous understanding of the
phenomenon of spontaneous breaking of a
continuous symmetry.

Easier case: abelian continuous symmetry.
Several rigorous results based on:

reflection positivity,

vortex loop representation

cluster and spin-wave expansions,

by Fröhlich-Simon-Spencer, Dyson-Lieb-Simon, Bricmont-Fontaine-

-Lebowitz-Lieb-Spencer, Fröhlich-Spencer, Kennedy-King, ...
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Spontaneous symmetry breaking

Harder case: non-abelian symmetry.
Few rigorous results on:

classical Heisenberg (Fröhlich-Simon-Spencer by RP)

quantum Heisenberg antiferromagnet (Dyson-Lieb-Simon by RP)

classical N-vector models (Balaban by RG)

Notably absent: quantum Heisenberg ferromagnet
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classical Heisenberg (Fröhlich-Simon-Spencer by RP)

quantum Heisenberg antiferromagnet (Dyson-Lieb-Simon by RP)

classical N-vector models (Balaban by RG)

Notably absent: quantum Heisenberg ferromagnet



Spontaneous symmetry breaking

Harder case: non-abelian symmetry.
Few rigorous results on:
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Quantum Heisenberg ferromagnet

The simplest quantum model for the spontaneous
symmetry breaking of a continuous symmetry:

HΛ :=
∑
〈x ,y〉⊂Λ

(S2 − ~Sx · ~Sy)

where:

Λ is a cubic subset of Z3 with (say) periodic b.c.

~Sx = (S1
x ,S

2
x ,S

3
x ) and S i

x are the generators of a (2S + 1)-dim
representation of SU(2), with S = 1

2 , 1,
3
2 , ...:

[S i
x ,S

j
y ] = iεijkS

k
x δx,y

The energy is normalized s.t. inf spec(HΛ) = 0.
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Ground states

One special ground state is

|Ω〉 := ⊗x∈Λ|S3
x = −S〉

All the other ground states have the form

(S+
T )n|Ω〉, n = 1, . . . , 2S |Λ|

where S+
T =

∑
x∈Λ S

+
x and S+

x = S1
x + iS2

x .
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Excited states: spin waves

A special class of excited states (spin waves) is
obtained by raising a spin in a coherent way:

|1k〉 :=
1√

2S |Λ|

∑
x∈Λ

e ikxS+
x |Ω〉 ≡

1√
2S

Ŝ+
k |Ω〉

where k ∈ 2π
L Z

3. They are such that

HΛ|1k〉 = Sε(k)|1k〉

where ε(k) = 2
∑3

i=1(1− cos ki).
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Excited states: spin waves

More excited states?

They can be looked for in the vicinity of

|{nk}〉 =
∏
k

(2S)−nk/2 (Ŝ+
k )nk√
nk!
|Ω〉

If N =
∑

k nk > 1, these are not eigenstates.

They are neither normalized nor orthogonal.

However, HΛ is almost diagonal on |{nk}〉 in the
low-energy (long-wavelengths) sector.
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Spin waves

Expectation:

low temperatures ⇒
⇒ low density of spin waves ⇒
⇒ negligible interactions among spin waves.

The linear theory obtained by neglecting spin wave
interactions is the spin wave approximation,
in very good agreement with experiment.



Spin waves

Expectation:

low temperatures ⇒
⇒ low density of spin waves ⇒
⇒ negligible interactions among spin waves.

The linear theory obtained by neglecting spin wave
interactions is the spin wave approximation,
in very good agreement with experiment.



Spin waves

In 3D, it predicts

f (β) ' 1

β

∫
d3k

(2π)3
log(1− e−βSε(k))

m(β) ' S −
∫

d3k

(2π)3

1

eβSε(k) − 1
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Holstein-Primakoff representation

A convenient representation:

S+
x =
√

2S a+
x

√
1− a+

x ax
2S

, S3
x = a+

x ax − S ,

where [ax , a
+
y ] = δx ,y are bosonic operators.

Hard-core constraint: nx = a+
x ax ≤ 2S .
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Holstein-Primakoff representation

In the bosonic language

HΛ = S
∑
〈x ,y〉

(
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x

√
1− nx
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√
1− ny

2S
ay

−a+
y
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√
1− nx

2S
ax + nx + ny −

1

S
nxny

)

≡ S
∑
〈x ,y〉

(a+
x − a+

y )(ax − ay)− K ≡ T − K

The spin wave approximation consists in neglecting
K and the on-site hard-core constraint.
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Previous results

HΛ = S
∑
〈x ,y〉

(a+
x − a+

y )(ax − ay)− K

For large S , the interaction K is of relative size
O(1/S) as compared to the hopping term.

Easier case: S →∞ with βS constant (CG 2012)

Harder case: fixed S , say S = 1/2. So far, not even
a sharp upper bound on the free energy was known.
Rigorous upper bounds, off by a constant, were
given by Conlon-Solovej and Toth in the early 90s.
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Bosons and random walk

Side remark: the Hamiltonian can be rewritten as

HΛ = S
∑
〈x ,y〉

(
a+
x

√
1− ny

2S
− a+

y

√
1− nx

2S

)
·

·
(
ax

√
1− ny

2S
− ay

√
1− nx

2S

)
i.e., it describes a weighted hopping process of
bosons on the lattice. The hopping on an occupied
site is discouraged (or not allowed).

The spin wave approximation corresponds to the
uniform RW, without hard-core constraint.
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Main theorem

Theorem [Correggi-G-Seiringer 2013]
(free energy at low temperature).

For any S ≥ 1/2,

lim
β→∞

f (S , β)β5/2S3/2 =

∫
log
(

1− e−k
2
) d3k

(2π)3
.



Remarks

The proof is based on upper and lower bounds.
It comes with explicit estimates on the
remainder.

Relative errors: • O((βS)−3/8) (upper bound)

• O((βS)−1/40+ε) (lower bound)

We do not really need S fixed. Our bounds are
uniform in S , provided that βS →∞.

The case S →∞ with βS =const. is easier and
it was solved by Correggi-G (JSP 2012).
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Remarks

An important consequence of our proof is an
instance of quasi long-range order:

〈S2 − ~Sx · ~Sy〉β ≤ 27
8 |x − y |2e(S , β) ,

where e(S , β) = ∂β(βf (S , β)) is the energy:

e(S , β) '
β→∞

3
2S
−3/2β−5/2

∫
dk

(2π)2
log

1

1− e−k2

Therefore, order persists up to length scales of
the order β5/4. Of course, one expects order to
persist at infinite distances, but in absence of a
proof this is the best result to date.
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Ideas of the proof

The proof is based on upper and lower bounds.
In both cases we localize the system in boxes of
side ` = β1/2+ε.

The upper bound is based on a trial density
matrix that is the natural one, i.e., the Gibbs
measure associated with the quadratic part of
the Hamiltonian projected onto the subspace
satisfying the local hard-core constraint.

The lower bound is based on a preliminary rough
bound, off by a log. This uses an estimate on
the excitation spectrum

HB ≥ (const.)`−2(Smax − ST )
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Summary

The preliminary rough bound is used to cutoff
the energies higher than `3β−5/2(log β)5/2. In
the low energy sector we pass to the bosonic
representation.

In order to bound the interaction energy in the
low energy sector, we use a new functional
inequality, which allows us to reduce to a 2-body
problem. The latter is studied by random walk
techniques on a weighted graph.
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Thank you!
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