Dynamics of a tagged monomer: Effects of elastic pinning and harmonic absorption

Shamik Gupta

Laboratoire de Physique Théorique et Modèles Statistiques, Université Paris-Sud, France

Joint work with

Alberto Rosso
Christophe Texier

Bounds on human demeanour.
Upper bound: To bring in happiness wherever you go.
Upper bound: To bring in happiness *wherever* you go.
Lower bound: To bring in happiness *whenever* you go.
• Upper bound: To bring in happiness *wherever* you go.
• Lower bound: To bring in happiness *whenever* you go.
Upper bound: To bring in happiness *wherever* you go.
Lower bound: To bring in happiness *whenever* you go.

\[2433 \ldots \]
Upper bound: To bring in happiness wherever you go.
Lower bound: To bring in happiness whenever you go.

2433 email exchanges and chats since 2009 (and still counting)!!

Shamik Gupta
Dynamics of a tagged monomer
The model

1. Rouse polymer of L monomers immersed in a solvent:
The model

1. Rouse polymer of L monomers immersed in a solvent:

2. h_i: displacement of the i-th monomer from equilibrium.
The model

1. Rouse polymer of L monomers immersed in a solvent:

2. h_i: displacement of the i-th monomer from equilibrium.

3. Elastic energy $E_{el} = (1/2) \sum_i (h_{i+1} - h_i)^2$.
The model

1. Rouse polymer of L monomers immersed in a solvent:

2. h_i: displacement of the i-th monomer from equilibrium.

3. Elastic energy $E_{el} = \frac{1}{2} \sum_i (h_{i+1} - h_i)^2$.

4. Langevin Dynamics: $\frac{\partial h_i(t)}{\partial t} = -\frac{\partial E_{el}}{\partial h_i} + \eta_i(t) = \sum_j \Delta_{ij} h_j(t) + \eta_i(t)$.
The model

1. Rouse polymer of L monomers immersed in a solvent:

2. h_i: displacement of the i-th monomer from equilibrium.

3. Elastic energy $E_{el} = \frac{1}{2} \sum_i (h_{i+1} - h_i)^2$.

4. Langevin Dynamics: \[
\frac{\partial h_i(t)}{\partial t} = -\frac{\partial E_{el}}{\partial h_i} + \eta_i(t) = \sum_j \Delta_{ij} h_j(t) + \eta_i(t).
\]

5. Δ: discrete Laplacian, \[
\{\eta_i(t)\} \rightarrow \text{independent Gaussian white noise:}
\]
\[
\langle \eta_i(t) \rangle = 0, \quad \langle \eta_i(t) \eta_j(t') \rangle = 2T \delta_{i,j} \delta(t - t').
\]
The model

1. Rouse polymer of L monomers immersed in a solvent $≡ L$-dim. discrete Edwards-Wilkinson interface

2. h_i: displacement of the i-th monomer from equilibrium.

3. Elastic energy $E_{el} = \frac{1}{2} \sum_i (h_{i+1} - h_i)^2$.

4. Langevin Dynamics: $\frac{\partial h_i(t)}{\partial t} = -\frac{\partial E_{el}}{\partial h_i} + \eta_i(t) = \sum_j \Delta_{ij} h_j(t) + \eta_i(t)$.

5. Δ: discrete Laplacian,

 $\{\eta_i(t)\} \rightarrow$ independent Gaussian white noise:

 $\langle \eta_i(t) \rangle = 0$, $\langle \eta_i(t) \eta_j(t') \rangle = 2T \delta_{i,j} \delta(t - t')$.

Shamik Gupta
Dynamics of a tagged monomer
The model

1. Rouse polymer of L monomers immersed in a solvent $\equiv L$-dim. discrete Edwards-Wilkinson interface

2. h_i: displacement of the i-th monomer from equilibrium.

3. Elastic energy $E_{el} = (1/2) \sum_i (h_{i+1} - h_i)^2$.

4. **Langevin Dynamics:**
 \[
 \frac{\partial h_i(t)}{\partial t} = -\frac{\partial E_{el}}{\partial h_i} + \eta_i(t) = \sum_j \Delta_{ij} h_j(t) + \eta_i(t).
 \]

5. Δ: discrete Laplacian,
 \[
 \{\eta_i(t)\} \rightarrow \text{independent Gaussian white noise:}
 \]
 \[
 \langle \eta_i(t) \rangle = 0, \quad \langle \eta_i(t)\eta_j(t') \rangle = 2T \delta_{i,j} \delta(t - t').
 \]

Shamik Gupta
Dynamics of a tagged monomer
L-dim. discrete Edwards-Wilkinson interface:
1. L-dim. discrete Edwards-Wilkinson interface:

2. Centre of mass $(1/L) \sum_{i=1}^{L} h_i(t) \rightarrow$ Markovian dynamics, normal diffusion:

$$\text{Mean-squared displacement } \sim 2(1/L)t.$$
1. L-dim. discrete Edwards-Wilkinson interface:

2. Tagged monomer \rightarrow Non-Markovian dynamics, anomalous diffusion:
 Mean-squared displacement $\sim \sqrt{\frac{2}{\pi}} b_0 \sqrt{t}$.

Shamik Gupta
Dynamics of a tagged monomer
Tagged monomer Mean-squared displacement $\sim \sqrt{\frac{2}{\pi}} b_0 \sqrt{t}$.
Tagged monomer Mean-squared displacement $\sim \sqrt{\frac{2}{\pi}} b_0 \sqrt{t}$.

- b_0 encodes memory of polymer configuration at $t = 0$.
- Equilibrium at $t = 0$
 - Tagged monomer exhibits fractional Brownian motion (correlated increments), $b_0 = \sqrt{2}$.
- Out of equilibrium flat configuration at $t = 0$
 - Correlated increments drawn from a Gaussian distribution with a time-dependent variance, $b_0 = 1$ (Krug et al. (1997)).
What we are after....

- Two specific situations of practical relevance:
What we are after....

- Two specific situations of practical relevance:
 1. Elastic pinning of the tagged monomer (cf. optical tweezers).

![Diagram](image.png)
Two specific situations of practical relevance:

1. Elastic pinning of the tagged monomer (cf. optical tweezers).

2. Absorption of the tagged monomer on an interval. Example: Reactant attached to a monomer encounters an external reactive site fixed in space.
What we are after....

- Two specific situations of practical relevance:
 1. Elastic pinning of the the tagged monomer.
 2. Absorption of the tagged monomer in an interval.
What we are after....

Two specific situations of practical relevance:
1. Elastic pinning of the tagged monomer.
2. Absorption of the tagged monomer in an interval.

Questions:
- Dynamics of the tagged monomer,
- Steady state,
- Approach to the steady state,
- Memory of the initial condition.

Shamik Gupta
Dynamics of a tagged monomer
What we are after....

- Two specific situations of practical relevance:
 1. Elastic pinning of the tagged monomer.
 2. Absorption of the tagged monomer in an interval.

- Questions:
 Dynamics of the tagged monomer,
 Steady state,
 Approach to the steady state,
 Memory of the initial condition.

- Our work:
 Exact analytical results for elastic pinning and harmonic absorption.
 In particular, strong memory effects in the relaxation to the steady state.
Elastic pinning

\[\partial \mathcal{W}_t[h|h^0] = \left[\sum_i \frac{\partial^2}{\partial h_i^2} + \sum_{i,j} \frac{\partial}{\partial h_i} \Lambda_{ij} h_j \right] \mathcal{W}_t[h|h^0]; \]

\[-\Lambda_{ij} = \Delta_{ij} - \kappa \delta_{i,j} \delta_{i,0}. \]

Langevin approach (Viñales and Despósito (2006,2009), Grebenkov (2011))
Elastic pinning

\[
\frac{\partial \mathcal{W}_t[h|h^0]}{\partial t} = \left[\sum_i \frac{\partial^2}{\partial h_i^2} + \sum_{i,j} \frac{\partial}{\partial h_i} \Lambda_{ij} h_j \right] \mathcal{W}_t[h|h^0];
\]

\[-\Lambda_{ij} = \Delta_{ij} - \kappa \delta_{i,j} \delta_{i,0}.\]

1 Replace matrix Λ by number λ: 1d Ornstein-Uhlenbeck process.
Elastic pinning

\[\frac{\partial \mathcal{W}_t[h|h^0]}{\partial t} = \left[\sum_i \frac{\partial^2}{\partial h_i^2} + \sum_{i,j} \frac{\partial}{\partial h_i} \Lambda_{ij} h_j \right] \mathcal{W}_t[h|h^0]; \]

\[-\Lambda_{ij} = \Delta_{ij} - \kappa \delta_{i,j} \delta_{i,0}. \]

1. Replace matrix \(\Lambda \) by number \(\lambda \): 1d Ornstein-Uhlenbeck process.

2. \(\mathcal{W}_t[h|h^0] = \sqrt{\det \left(\frac{\Lambda}{2\pi(1-e^{-2\Lambda t})} \right)} \exp \left[-\frac{1}{2} (h - e^{-\Lambda t} h^0)^T \frac{\Lambda}{1-e^{-2\Lambda t}} (h - e^{-\Lambda t} h^0) \right]. \)
Flat initial condition

$t = 0$:

\[\text{---} \quad \text{---} \]

$t > 0 : T = 1 \quad + \quad \text{elastic pinning with spring constant } \kappa.$
Equilibrated initial condition

\[t = 0 : \text{Equilibrated at temp. } T_0 \]

\[t > 0 : T = 1 \quad + \quad \text{elastic pinning with spring constant } \kappa. \]
Elastic pinning: Exact results

\[\langle h_0^2(t) \rangle \approx \frac{1}{\kappa} \left[1 + \frac{T_0 - 1}{\kappa} \sqrt{\frac{2}{\pi t}} - \frac{T_0 c_1}{\kappa^2 t} + \cdots \right]. \]

Shamik Gupta
Dynamics of a tagged monomer
Absorption in an interval

\[t > 0 : \]

\[\frac{\partial \mathcal{W}_t[h|h^0]}{\partial t} = \left[\sum_i \frac{\partial^2}{\partial h_i^2} - \sum_{i,j} \left(\frac{\partial}{\partial h_i} \Delta_{ij} h_j \right) \right] \mathcal{W}_t[h|h^0]. \]
Absorption in an interval

\[t > 0 : \]

\[\frac{\partial \mathcal{W}_t[h|h^0]}{\partial t} = \left[\sum_i \frac{\partial^2}{\partial h_i^2} - \sum_{i,j} \left(\frac{\partial}{\partial h_i} \Delta_{ij} h_j \right) \right] \mathcal{W}_t[h|h^0]. \]

- Absorbing boundary conds. for the tagged monomer.
Harmonic absorption

\[t > 0 : \]

Absorption probability \(\propto \mu h_0^2(t). \)

\[
\frac{\partial \mathcal{W}_t[h|h^0]}{\partial t} = \left[\sum_i \frac{\partial^2}{\partial h_i^2} - \sum_{i,j} \left(\frac{\partial}{\partial h_i} \Delta_{ij} h_j + h_i A_{ij} h_j \right) \right] \mathcal{W}_t[h|h^0];
\]

\[A_{ij} = \mu \delta_{i,j} \delta_{i,0}. \]
Harmonic absorption: Exact results

\[\langle h_0^2(t) \rangle \]

- \(T_0 = 0 \)
- \(T_0 = 1 \)
- \(T_0 = 4 \)

\(L = 200 \)
\(4\mu = 0.0025 \)

Shamik Gupta
Dynamics of a tagged monomer
Survival probability

$S(t)$: survival probability of an initial configuration h^0.
Survival probability

1. $S(t)$: survival probability of an initial configuration h^0.

2. \[
\frac{\partial \mathcal{W}_t[h|h^0]}{\partial t} = \left[\sum_i \frac{\partial^2}{\partial h_i^2} - \sum_{i,j} \left(\frac{\partial}{\partial h_i} \Delta_{ij} h_j + h_i A_{ij} h_j \right) \right] \mathcal{W}_t[h|h^0].
\]
Survival probability

1. $S(t)$: survival probability of an initial configuration h^0.

2. \[
\frac{\partial \mathcal{W}_t[h|h^0]}{\partial t} = \left[\sum_i \frac{\partial^2}{\partial h_i^2} - \sum_{i,j} \left(\frac{\partial}{\partial h_i} \Delta_{ij} h_j + h_i A_{ij} h_j \right) \right] \mathcal{W}_t[h|h^0].
\]

3. \[
\partial_t S(t) = -\mu \langle h_0^2(t) \rangle S(t).
\]
Survival probability

1. $S(t)$: survival probability of an initial configuration h^0.
2. \[
\frac{\partial \mathcal{W}_t[h|h^0]}{\partial t} = \left[\sum_i \frac{\partial^2}{\partial h_i^2} - \sum_{i,j} \left(\frac{\partial}{\partial h_i} \Delta_{ij} h_j + h_i A_{ij} h_j \right) \right] \mathcal{W}_t[h|h^0].
\]
3. $\partial_t S(t) = -\mu \langle h_0^2(t) \rangle S(t)$.
4. $S(t) = \exp \left(-\mu \int_0^t d\tau \langle h_0^2(\tau) \rangle \right)$.

Consistent with simulations (Kantor and Kardar (2004)).
Conclusions

1. Tagged monomer dynamics under elastic pinning and harmonic absorption: Exact results.
Conclusions

1. Tagged monomer dynamics under elastic pinning and harmonic absorption: Exact results.
2. Strong memory effects:
Conclusions

1. Tagged monomer dynamics under elastic pinning and harmonic absorption: Exact results.

2. Strong memory effects:
 - Pinning case:
 Relaxation as $1/\sqrt{t}$, unless evolution at the same temp. as that of the initial eqibm. when relaxation as $1/t$.
 Non-monotonic relaxation depending on the initial eqibm. temp.
Conclusions

1. Tagged monomer dynamics under elastic pinning and harmonic absorption: Exact results.

2. Strong memory effects:
 - Pinning case:
 Relaxation as $1/\sqrt{t}$, unless evolution at the same temp. as that of the initial eqibm. when relaxation as $1/t$.
 Non-monotonic relaxation depending on the initial eqibm. temp.
 - Absorption case: Relaxation always as $1/t$.
 Non-monotonic relaxation, except for $T_0 = 0$.

Shamik Gupta
Dynamics of a tagged monomer
Conclusions

1. Tagged monomer dynamics under elastic pinning and harmonic absorption: Exact results.

2. Strong memory effects:
 - Pinning case:
 Relaxation as $1/\sqrt{t}$, unless evolution at the same temp. as that of the initial eqibm. when relaxation as $1/t$.
 Non-monotonic relaxation depending on the initial eqibm. temp.
 - Absorption case: Relaxation always as $1/t$.
 Non-monotonic relaxation, except for $T_0 = 0$.

3. Analysis may be generalized to a Rouse chain in d dimensions or a d-dimensional EW interface, by using the corresponding Laplacian matrix in place of Δ.
Conclusions

1. Tagged monomer dynamics under elastic pinning and harmonic absorption: Exact results.

2. Strong memory effects:
 - Pinning case:
 Relaxation as $1/\sqrt{t}$, unless evolution at the same temp. as that of the initial eqlbm. when relaxation as $1/t$.
 Non-monotonic relaxation depending on the initial eqlbm. temp.
 - Absorption case: Relaxation always as $1/t$.
 Non-monotonic relaxation, except for $T_0 = 0$.

3. Analysis may be generalized to a Rouse chain in d dimensions or a d-dimensional EW interface, by using the corresponding Laplacian matrix in place of Δ.

4. Hydrodynamic effects for the chain or long-range elastic interactions for the interface may be included by replacing Δ with the corresponding fractional Laplacian $-(−\Delta)^{z/2}$.