Geometry-Induced Superdiffusion in Driven Crowded Systems

Carlos Mejía-Monasterio

Technical University of Madrid

Galileo Galilei Institute, Arcetri Florence May 2014

Active micro-rheology

Active manipulation of small probe particles by external forces, using magnetic fields, electric fields, or micro-mechanical forces.

- Optical tweezers
- Magnetic manipulation
- Atomic force microscopy

Nonequilibrium inhomogeneity

As the force increases ...

 $\frac{1}{2}$ a traffic jammed region in front of the intruder $\frac{1}{2}$ a wake region behind the it

C M-M, G Oshanin Soft Matter (2011), 7 993

Nonequilibrium inhomogeneity

As the force increases ...

 $\frac{1}{2}$ a traffic jammed region in front of the intruder $\frac{1}{2}$ a wake region behind the it

Nonequilibrium inhomogeneity

The medium remembers the passage of the intruder on large temporal and spatial scales

observed in colloidal suspensions, monolayers of vibrated grains and in glass systems.

C M-M, G Oshanin Soft Matter (2011), 7 993

The model

Simple Exclusion Process

The model

Simple Exclusion Process

- We consider a square lattice of L_x × L_y sites, of unit spacing, with P.B.C and populated with hard-core particles.
- Each site can be either empty or occupied by at most one particle.
- The system evolves in discrete time n and particles move randomly.
- One particle, the intruder, is subject to a constant force F

Simple Exclusion Process

• Bath particles move in either direction with equal jump probability 1/4.

• The intruder moves in direction \mathbf{e}_{ν} with probability

$$p_{\nu}=Z^{-1}e^{rac{eta}{2}\mathbf{F}\cdot\mathbf{e}_{
u}}$$
,

where $Z = 2(1 + \cosh(\beta \sigma F/2))$ and β is the inverse temperature.

Force-velocity relation

Stokesian regime

$$V=\frac{F}{\xi} \ ,$$

with friction coefficient

$$\xi = \xi_{\rm mf} + \xi_{\rm coop}$$

where

O Bénichou, et al, PRL (2000) 84, 511; PRB (2001) 63, 235413 C M-M, G Oshanin, Soft Matter (2011) 7, 993

Z) is the FPT conditional probability for a RW starting at it **0** at time *I*, given that it is at site $\mathbf{0} + \mathbf{e}_{\nu}$ at time *I* - 1

 $\Delta_l(\mathbf{k}|\mathbf{e}_{\nu}) = 1 - p_l(\mathbf{k}) \exp\left(i(\mathbf{k} \cdot \mathbf{e}_{\nu})\right)$

We are interested in the limit of very dense lattices or very strong pulling forces.

The limit of high density 2D

- Limit of small vacancy density $ho_0 = M/(L_x imes L_y) \ll 1$
- Idea: trapping of the intruder by diffusive vacancies.

O Bénichou, G Oshanin, PRE (2001) **64**. 020103 MJAM Brummelhuis, HJ Hilhorst, Physica A (1989) **156**, 575

The limit of high density 2D

many vacancies problem as many single vacancy problems.

propagator of the intruder in the presence of a single vacancy is given in terms of First-Passage Time distributions of the vacancy to the site ocupied by the intruder.

results in the long time limit

Let Z_n^j denote the position of the *j*-th vacancy at time *n*, j = 1, 2, ..., M.

• We want to compute the probability of finding the intruder at position \mathbf{r}_n at time *n* conditioned to $\{\mathbf{Z}_n^j\}$

$$P(\mathbf{r}_n|\{\mathbf{Z}_n^j\}) = \sum_{\mathbf{r}_n^1} \cdots \sum_{\mathbf{r}_n^M} \delta(\mathbf{r}_n, \mathbf{r}_n^1 + \cdots + \mathbf{r}_n^M) P(\mathbf{r}_n^1, \dots, \mathbf{r}_n^M|\{\mathbf{Z}_n^j\})$$

■ $P(\mathbf{r}_n^1, ..., \mathbf{r}_n^M | \{\mathbf{Z}_n^j\})$ is the conditional probability that within the time interval *n* the intruder moved to \mathbf{r}_n^1 due to its interaction with vacancy 1, to \mathbf{r}_n^2 due to its interaction with vacancy 2, etc.

 \blacksquare In the lowest order in ρ_0 the vacancies contributions are independent and

$$P(\mathbf{r}_n^1,\ldots,\mathbf{r}_n^M|\{\mathbf{Z}_n^j\})\simeq\prod_{i=1}^M P(\mathbf{r}_n|Z_n^j)$$

The problem reduces to M single vacancies, correct to $\mathcal{O}(\rho_0)$.

• Averaging $P(\mathbf{r}_n | Z_n^j)$ over the initial distribution of vacancies

$$P(\mathbf{r}_n) \simeq \sum_{\mathbf{r}_n^1} \cdots \sum_{\mathbf{r}_n^M} \delta(\mathbf{r}_n, \mathbf{r}_n^1 + \cdots + \mathbf{r}_n^M) \prod_{j=1}^M \langle P(\mathbf{r}_n | Z_n^j) \rangle$$

Defining the Fourier transformed distribution

$$P_n(\mathbf{k}) = \sum_{\mathbf{r}_n} \exp\left(-i\mathbf{k}\cdot\mathbf{r}_n\right) \langle P(\mathbf{r}_n|\{Z_n^j\}) \rangle$$

and summing over \mathbf{r}_n one obtains that it factorizes into

$$P_n(\mathbf{k}) = \left(\sum_{\mathbf{r}_n} exp\left(-i\mathbf{k}\cdot\mathbf{r}_n\right) \langle P(\mathbf{r}_n|Z_n^j) \rangle\right)^M$$

Taking the thermodynamic limit L_x , $L_y \to \infty$ with ρ_0 fixed we obtain for the characteristic function

 $P_n(k) \simeq \exp(-\rho_0 \Omega_n(\mathbf{k}))$

 $\Omega_n(\mathbf{k})$ is implicitly defined by

$$\Omega_n(\mathbf{k}) = \sum_{l=0}^n \sum_{\nu} \Delta_{n-l}(\mathbf{k}|\mathbf{e}_{\nu}) \sum_{\mathbf{Z}\neq 0} F_l^*(\mathbf{0}|\mathbf{e}_{\nu}|\mathbf{Z}),$$

 $F_I^*(\mathbf{0}|\mathbf{e}_{\nu}|\mathbf{Z})$ is the FPT conditional probability for a RW starting at \mathbf{Z} to be at $\mathbf{0}$ at time I, given that it is at site $\mathbf{0} + \mathbf{e}_{\nu}$ at time I - 1 and

$$\Delta_l(\mathbf{k}|\mathbf{e}_{\nu}) = 1 - p_l(\mathbf{k}) \exp\left(i(\mathbf{k} \cdot \mathbf{e}_{\nu})\right)$$

$$P(\mathbf{R}_n) \simeq \frac{1}{4\pi^2} \int_{-\pi}^{\pi} d\mathbf{k} \exp\left(-\mathrm{i}\left(\mathbf{k} \cdot \mathbf{R}_n\right) - \rho_0 \Omega_n(\mathbf{k})\right)$$

 $\Omega_n(\mathbf{k})$ can be solved explicitly in terms of its generating function

$$\Omega_z(\mathbf{k}) = \sum_{n=0}^{\infty} \Omega_n(\mathbf{k}) \, z^n$$

In the large n (and $ho_0 \ll 1$) limit $z
ightarrow 1^-$

$$\Omega_z(\mathbf{k}) \sim rac{1}{(1-z)} rac{\Phi(\mathbf{k})}{1-z+\Phi(\mathbf{k})/\chi_z}$$

with

$$\chi_z \sim -\frac{\pi}{(1-z)\ln(1-z)}$$

the leading asymptotic term of the generating function of the *mean* number of "new" (virgin) sites visited on the *n*-th step

BD Hughes, (2005) Random walks in random environments

Then

$$\Omega_z(\mathbf{k}) \sim \frac{\Phi(\mathbf{k})}{(1-z)^2} \left(1 - \frac{\ln(1-z)}{\pi} \Phi(\mathbf{k})\right)^{-1},$$

with

$$\Phi(\mathbf{k}) = -ia_0k_x + a_1k_x^2/2 + a_2k_y^2/2$$

$$a_0 = rac{\sinh(eta F/2)}{(2\pi - 3)\cosh(eta F/2) + 1} \,,$$

 $a_1 = rac{\cosh(eta F/2)}{(2\pi - 3)\cosh(eta F/2) + 1} \,,$
 $a_2 = rac{1}{\cosh(eta F/2) + 2\pi - 3} \,.$

In the large n (and $ho_0 \ll 1$)

 $\Omega_z(\mathbf{k}) = \sum_{n=0}^{\infty} \Omega_n(\mathbf{k}) \, z^n$

 $\sim rac{1}{(1-z)} rac{\Phi(\mathbf{k})}{1-z+\Phi(\mathbf{k})/\chi_z}$

$$P(\mathbf{R}_n) \simeq \frac{1}{4\pi^2} \int_{-\pi}^{\pi} d\mathbf{k} \exp\left(-\mathrm{i}\left(\mathbf{k} \cdot \mathbf{R}_n\right) - \rho_0 \Omega_n(\mathbf{k})\right)$$

$$\Phi(\mathbf{k}) = -ia_0k_x + a_1k_x^2/2 + a_2k_y^2/2$$

$$a_{0} = \frac{\sinh(\beta F/2)}{(2\pi - 3)\cosh(\beta F/2) + 1},$$

$$a_{1} = \frac{\cosh(\beta F/2)}{(2\pi - 3)\cosh(\beta F/2) + 1},$$

$$a_{2} = \frac{1}{\cosh(\beta F/2) + 2\pi - 3}.$$

$$\chi_z \sim -\frac{\pi}{(1-z)\ln(1-z)}$$

the leading asymptotic term of the generating function of the *mean* number of "new" (virgin) sites visited on the *n*-th step

Velocity and variance

The intruder moves at constant velocity along the field direction and diffuses along the transversal direction

O Bénichou, C M-M, G Oshanin, PRE 87 020103 (2013)

Velocity and variance

$$egin{aligned} &v\simrac{
ho_0\sinh(eta F/2)}{(2\pi-3)\cosh(eta F/2)+1}=\left\{egin{aligned} &rac{eta
ho_0}{4(\pi-1)}\,F\,\,,\qquadeta F\ll 1\ &v_\infty=rac{
ho_0}{2\pi-3}\,\,,\quadeta F\gg 1 \end{aligned}
ight.$$

O Bénichou, et al, PRL (2000) **84**, 511; PRB (2001) **63**, 235413 O Bénichou, C M-M, G Oshanin, PRE **87** 020103 (2013)

Weak superdiffusion

 $\lim_{n\to\infty} H_{n+1} = \ln(n) + \gamma + \mathcal{O}\left(\frac{1}{n}\right) \text{ with } \gamma \approx 0.577$ O Bénichou, C M-M, G Oshanin, PRE **87** 020103 (2013)

Anomalous fluctuations broadening

0.15

0.1

0.05

10

0

-10

-5

0.2

 $(\mathbf{\hat{x}})_{\mathbf{n}}^{\mathbf{n}}$

20

30

x

0

y

40

50

60

10

5

 $P_n(x)$

In the limit
$$\rho_0 \to 0$$

 $P_n(x) = (2\pi\sigma_x^2)^{-1/2} e^{-\frac{(x-vn)^2}{2\sigma_x^2}} (1 + A/n + ...) ,$
 $P_n(y) = (2\pi\sigma_y^2)^{-1/2} e^{-\frac{y^2}{2\sigma_y^2}} (1 + B\ln n/n + ...) ,$
 $v \sim \rho_0 a_0 ,$
 $\sigma_x^2 \sim \rho_0 \left(a_1 + \frac{2a_0^2}{\pi} (\gamma - 1) + \frac{2a_0^2}{\pi} \ln(n) \right) n ,$
 $\sigma_y^2 \sim \rho_0 a_2 n ,$ $a_i \equiv a_i(\beta F)$

The variance of the intruder's displacement can be represented as

$$\sigma_x^2 \sim \rho_0 a_1 n + \rho_0 a_0^2 \frac{n}{\chi_n} \,,$$

 χ_n : mean # of new sites visited on the *n*-th step by any vacancy. In terms of S_n , the mean # of distinct lattice sites visited by any of the vacancies up to time *n*

$$\chi_n = S_n - S_{n-1}$$

 S_n is a fundamental characteristic property of a *lattice* discrete-time RW.

O Bénichou, P Illien, C M-M, G Oshanin (2013)

In general, for infinite systems (at least in one direction)

$$S_n \sim n^{lpha}$$

 α is and indicator of the *mixing* of the lattice gas and depends on the *effective* dimensionality of the lattice.

- for larger α , a vacancy mostly moves to new sites
- for smaller α, a vacancy predominantly revisits already visited sites

In general $\alpha < 1$ for systems in which the RW is *recurrent*, while $\alpha = 1$ for non-recurrent RW's.

We have

$$\chi_n \sim n^{\alpha - 1} \qquad \Rightarrow \quad \sigma_x^2 \sim \rho_0 a_1 n + \rho_0 a_0^2 n^{2 - \alpha}$$

- ► For non-recurrent random walk (α = 1), the behaviour is diffusive
- For recurrent random walks ($\alpha < 1$)

$$\sigma_x^2 \sim \rho_0 a_0^2 n^{2-\alpha}$$

The less efficient the mixing of the lattice gas is the faster the variance of the intruder's displacement grows

Stripes and Capillaries

Single-File dynamics

Is superdiffusion transient?

We need to determine the *long time limit* of the variance at fixed vacancy density

For confined geometries

$$\lim_{t\to\infty}\lim_{\rho_0\to 0}\sigma_x^2\neq \lim_{\rho_0\to 0}\lim_{t\to\infty}\sigma_x^2$$

between two consecutive visits to the intruder, a given vacancy experiences an effective bias due to the motion of the intruder resulting from its interaction with the rest of the vacancies

O Bénichou, et al, PRL 111, 260601 (2013)

Is superdiffusion transient?

The long time behaviour is always diffusive

$$\lim_{t \to \infty} \frac{\sigma_x^2}{t} \sim \begin{cases} B & \text{quasi-1D,} \\ 4a_0^2 \pi^{-1} \rho_0 \ln(\rho_0^{-1}) & \text{2D lattice,} \\ 2a_0^2 [A + \coth(f/2)/(2a_0)] \rho_0 & \text{3D lattice,} \end{cases}$$

In quasi-1D the longitudinal diffusivity is enhanced

$$rac{D_{\parallel}}{D_{\perp}}\simrac{1}{
ho_{0}}$$

In 2D
$$\frac{D_{\parallel}}{D_{\perp}} \sim \ln(\rho_0^{-1})$$

No enhancement is observed in 3D

O Bénichou, et al, PRL 111, 260601 (2013)

Is superdiffusion transient?

In the intermediate regime we find

$$\sigma_x^2 \sim \begin{cases} tg(\rho_0^2 t) & \text{quasi-1D,} \\ -\frac{2a_0^2}{\pi}\rho_0 t \ln((\rho_0 a_0)^2 + 1/t) & \text{2D lattice,} \\ 2a_0^2 [A + \coth(f/2)/(2a_0)]\rho_0 t & \text{3D lattice,} \end{cases}$$

O Bénichou, et al, PRL 111, 260601 (2013)

Active nonlinear microrheology

Glass-forming Yukawa fluid Winter, et al., PRL **108**, 028303 (2012)

Binary mixture of Lennard-Jones particles Schroer, Heuer, PRL **110**, 067801 (2013)

Off-lattice continuous systems

Mean volume of the Wiener saussage

The same power-law behaviour:

compact exploration $\alpha = 1$

non-compact exploration $\alpha < 1$

Off-lattice systems

O Bénichou, et al, PRL 111, 260601 (2013)

New phenomena field-induced broadening of fluctuations in overcrowded environments

Molecular overcrowding

McGuffee and Elcock, PLoS Computational Biology (2010)

In confined geometries, transport is passively subdiffusive but actively superdiffusive

Perspectives

- Glass and jamming transitions.
- Dynamical arrest and the broadening of the fluctuations.
- Extensions to non-Brownian dynamics.
- Stochastic entropy.
- Transitions between steady-states.

erc

European Research Council Established by the European Commission

<u>State University Moscow</u> Anna Bodrova

<u>MPI-IS Sttutgart</u> Adam Law Dipanjan Chakraborty

<u>LPTMC - Paris</u> Olivier Bénichou Gleb Oshanin Raphaël Voituriez Pierre Illien