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Outline: In analogy to spin systems we shall see how

frustration

]

multistability

]

rough “energy” landscape with a hierarchy of barriers

]

multitude of inherent time scales

]

aging

here in excitable and oscillatory systems



CONCEPT AND IMPACT OF FRUSTRATION IN DYNAMICAL SYSTEMS

Gauge theories

Field strength

Social systems

General relativity Curvature
Oscillatory systems:

phase oscillators,

excitable systems

Approach to balance Imbalance

Communication

Assigning a meaning

Misunderstanding

Economics

Financial markets

Arbitrage

G. Mack, Commun.Math.Phys.219, 141 (2001).
& Fortschritte der Physik, 81: 135-185 (1981): Physical Principles,
Geometrical Aspects and Locality of Gauge Field Theories.
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THE NOTION OF FRUSTRATION FOR OSCILLATORY AND EXCITABLE SYSTEMS

Criterion for undirected couplings
Consider a loop with undirected interaction bonds and couplings that can be either

attractive or repulsive
ferromagnetic or antiferromagnetic
excitatory or inhibitory

repressive or supportive

Consider a path from A to B along the shortest connection and along the
complementary path in the loop from B to A.

The bond from A to B is not frustrated if A acts upon B in the same way as B upon
A (e.g. attractive), otherwise it is.

A
A in phase with B, B with C = C with A, but if C wants to be
C . antiphase with A, the link CA or CB is frustrated

Result of Daido: three Kuramoto oscillators coupled in a “frustrating way” lead to multistable
behavior (Progr. Theor. Phys. 1987)



CRITERION FOR FRUSTRATION IN CASE OF DIRECTED COUPLINGS IN VIEW OF
EXCITABLE SYSTEMS (Kaluza & HMO, Chaos 20, 043111 (2010))

Consider a loop with directed interaction bonds and couplings that can be either
e repressing or activating
e excitatory or inhibitory

Consider a path from A to B along the shortest connection and along the
complementary path in the loop from B to A.

The bond from A to B is not frustrated if A acts upon B in the opposite way as B
upon A (e.g. A to B activating, B to A via C and D repressing), otherwise it is.

A - B
Different realizations of the frustration )
A
. . D C
e Via the number of couplings -
e Via the type of couplings along with the number C B




Conjecture on multistability confirmed in coupled genetic circuits
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Adjacency matrix of repressing couplings R;

Adjacency matrix of activating couplings Q;

Consider most simple motifs with and without frustration for which the frustration
is implemented either:

e via the topology (even number of repressing couplings) or
e via the type of coupling (replace repressing by activating ones)




MOST SIMPLE MOTIFS
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f: frustrated
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Individual nodes in the oscillatory regime: =80, B; =0.01
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3 patterns of phase-locked motion:

3 different phases out of four or
e 4 different phases or
e 2 different out of four coincide

multistable behavior for B; =0.01, 0.1

Multistability in synthetic genetic circuits
could be explained this way



HERE INSTEAD: CLASSICAL ROTATORS WITH FRUSTRATION

The model: N active rotators

il {3
dt

= Wj — bf‘i]‘.ﬂl,;g' + Hl{.i':ﬂ +

(K —|—1’I-“r.r
1l Z A;;sin(p; — ;).

Fig. 1: Hexagonal lattice with all triangles frustrated for all
couplings being negative (a) and not frustrated (b) for positive
couplings along the horizontal links and negative ones other-
wise.




1. N identical oscillators without noise

The phase diagram as a function of w, b, and k
The versatility of attractors in comparison to spin systems

A particularly rich attractor space for the 4x4 system

2. N identical oscillators with additive or multiplicative noise

Order-by-disorder repeatedly induced for increasing noise strength
Noise-induced migration of oscillator phases
Indications for a rough landscape with hierarchies in the potential barriers

A multitude of escape times from metastable states




1. N IDENTICAL OSCILLATORS WITHOUT NOISE

The phase diagram as a function of w and k for b=1: so far along a few sections, but
ongoing work by M. Zaks et al.

limit-cycle regime without a stable
fixed point AW

w=0.7, k=-2.0, b=1 , : .
unique stable fixed point

J ,

e — _"'.-]_ B IJ‘_;-. :1 - }l lj]__.l__-"'.\h_-"']

coexisting states with different

synchronization patterns minimal eigenvalue of the adjacency matrix,
N = number of neighbors

Kuramoto case with b=0 separately presented



The versatility of attractors in comparison to spin systems

In spin glasses:
fixed points

In these systems:
various “collective” fixed points

a variety of “collective” limit cycles differing by their
correlation between individual phases
frequency
pattern of phase-locked motion
basin of attraction
stability
symmetry

quasiperiodic solutions

chaotic solutions

as a combined effect of frustration, lattice size and lattice symmetry.




WHAT CAN WE PROVE ABOUT MULTISTABILITY?

Special case: N Kuramoto oscillators. The system can be reduced to

“r:-'z' — = E .*"lih;l' sin| o Vi)
j

Consider as a special set of solutions plane waves with fronts of constant phases along
parallel lines on the hexagonal lattice. Their spatial distribution is characterized by

2T 2

Pmn = ﬂfﬁ‘ﬁ]f”"_ T ’E‘ﬁEH

m=1,...,.M, n=1..., L coordinates and k1, k2 integers because of p.b.c. Then it can be shown
that for a sufficient large extension M and L and M=L=even, there are always two sets of wave
vectors k1=k2= k and k1=k2=k+1, such that the plane waves correspond to different solutions,
differing by the number f clusters of coinciding phases.




SIMILARLY FOR ACTIVE ROTATORS, IN PARTICULAR PLl\NE WAVES AND SPHERIC7L WAVES:
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Fig. 2: Solutions of eq. (1) with 4 and 6 clusters on a 4 x 4
lattice for w=0.7.b=1, k= —2and o = o4 = .




The number and variety of attractors is extremely rich already for a 4x4-lattice.

The classification according to p -patterns with n denoting the number of clusters of
coalescing phases is not unique, but suited for our notion of order.

» p4-solutions: 4 clusters, originally only 75 such solutions could be identified,
differing by their frequency, in particular plane waves (without counting the

degeneracy due to the lattice symmetries), meanwhile a continuum of these
solutions

» p6-solutions: spherical waves (degeneracy 96 due to 16 sites for the center and 6
rotations about 60 degrees due to the lattice symmetry )

» pleé-solutions of individual limit cycles

» quasiperiodic solutions

using the numerically obtained Poincaré-mapping on the hypersurface ®, = const.




Of particular interest: p4-patterns of 4 clusters with 4 identical phases each (ongoing work by
M. Zaks et al.)

Same color — same phase

Note: each oscillator is coupled by two links to representatives of all other three clusters.

If we do not distinguish the individual members of a cluster, we see a global coupling between
the clusters of identical members with double the strength than on the original fine-grained
lattice
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The set of 16 equations reduces into 4 sets (one for each color) of 4 identical equations .
The representative set of four equations describes a set of globally coupled set of identically
equipped oscillators and with sinusoidal coupling. According to Watanabe and Strogatz we
should expect an infinite number of conserved quantities and a continuum of frequencies
for our limit-cycle solutions === dynamically generated reduction of d.o.f.



2. N IDENTICAL OSCILLATORS WITH ADDITIVE OR MULTIPLICATIVE NOISE
EE;I._TE'

dt

= w; —bsing; +04&(t) +

(k +omni(t)) P
N Zj: A sin(p; — ;).

ORDER-BY-DISORDER, IN WHAT SENSE?

Usually: Order-by-disorder is considered in spin systems.

Generic: The ground state is degenerate due to competitions among the interactions.
The degeneracy is lifted due to disorder.

temperature driven (Villain et al. J. Phys. 1980, Bergman et al., Nature Physics 2007)
The lifting can be I or quantum driven (Chubukov, PRL (1992), Reimers et al. PRB (1993))
or due to dilution (Henley PRL 1989)

The effect is observed in classical spin models, quantum magnetism, and in ultracold atoms
(Turner et al., PRL9S, 2007).
It depends on the degree of degeneracy whether the effect is observed.




Order-by-disorder in classical oscillatory systems:

Disorder: additive noise or multiplicative noise

Order: the “degree” of synchronization:
either a disordered stationary solution with all units oscillating with their own phase
changes towards a solution with partially coinciding phases,

or, the number of phase-synchronized clusters decreases, so that more phases
coincide for an intermediate noise strength

IN NEED FOR A SUITABLE ORDER PARAMETER that can distinguish between

“order” in the sense of how many phases coincide.
Generalized Kuramoto order parameters are not suited

T A 201
pn =1/ N> :,_JJ_] exp ing;

Entries

Use the peak structure of histograms
instead for larger sizes. H




| oa [ panel | ;o | po | pa | pe |
0.00 a 0.001 | 0.102 | 0.060 | 0.149
0.01 b 0.002 | 0.279 | 0.300 | 0.339
0.02 C 0.003 | 0.865 | 0.514 | 0.104
0.03 d 0.005 | 0.489 | 0.803 | 0.414
0.04 e 0.006 | 0.420 | 0.503 | 0.366
0.05 f 0.007 | 0.372 | 0.334 | 0.393
0.06 g 0.009 | 0.8358 | 0.461 | 0.235
0.07 h 0.009 | 0.280 | 0.302 | 0.258
0.08 1 0.011 | 0.767 | 0.303 | 0.227
0.09 A 0.012 | 0.644 | 0.308 | 0.417
0.10 k 0.013 | 0.787 | 0.346 | 0.224
1.00 1 0.122 | 0.256 | 0.223 | 0.222

The table illustrates that p, does not work in all
cases as compared to the number of coalescing
phases on the phase plots.



WE SEE REPEATEDLY ORDER-BY-DISORDER IN THE FOLLOWING SENSE:
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Fig. 3: Order by disorder on a 4 x 4 lattice, for w =0.7b =1, k = —2, oy =0 and monotonically increasing noise intensity o4

between panels (a) to (1). For further explanations see the text.

Here: Fixed identical initial conditions, but increasing the noise intensity.
The snapshots are representative for a certain time interval of some hundred or
thousand time units, afterwards the patterns of synchronization may have changed.

Note: Different from the action of noise in coherence resonance:



Coherence resonance:

For an intermediate strength of noise, oscillatory
response in an excitable system is most coherent
(here no external field)

System size resonance

For an optimal size of the system, the system’s
response is most regular, illustrated in a system
of coupled nonlinear noisy oscillators
(ensemble averages fluctuate with (D/N )¥/2 )

x (6

D the (effective) noise intensity
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Zoom into the noise intensity:

ity (rad)

Increasing monotonically the noise
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intensity from left to right and top to
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order (o) as the sequence:
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How representative are these plots? Similar plots are obtained

>

>

if the noise realization is varied

the additive noise is replaced by multiplicative one
the oscillators are reduced to Kuramoto oscillators
the lattice size is increased

the time windows for snapshots over 200 time units are varied.

What is the explanation for the repeatedly increasing order when the noise
strength is monotonically varied?

The system obeys a gradient dynamics with potential V. The resolution of its

shape depends on the noise intensity.




INTUITIVE EXPLANATION

- o _
V = —w E w; — b E COS P; — 5y E A;;cos(p; — i)
i i =g

Consider the oscillatory part:

Ld

no noise noise of intermediate strength ~ Strong noise

barriers of different
height in the
energy landscape

Due to noise, the "fine-structure” of the “potential” can no longer be resolved, but still the
overall structure, while for even stronger noise the shape of the deterministic potential gets
buried under the noise. From zooming into the noise intervals: The energy landscape seems to
have a similar structure on different scales of resolution.



EXPLANATION OF SLOW DYNAMICS AND AGING IN SPIN GLASSES

Hierarchical structure of the metastable states as a function of temperature
From E. Vincent et al. arXiv: cond-mat/9607224



ANALOGY TO STOCHASTIC RESONANCE Gaussian white noise

de__dU + Asinwt + £(t),"

dt - dff/

Subthreshold periodic perturbatioﬁoes not allow the particle to leave any of the four local
minima without noise but with noise it triggers the switching between the different minima.
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Fig. 9: Stochastic resonance for a potential (a) with two barrier heights: Panels (b) - (f) show the
value of the force (in blue) and the response of the system (in red) as functions of time, for different
noise intensities o = 0.22,0.53,0.84, 1.22, and 2.0. For further explanations see the text.



NOISE-DRIVEN MIGRATION OF OSCILLATOR PHASES

On a longer time scale we see the following “stationary” state
keeping the noise intensity fixed:
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Escape via an unstablelimit cycle (unstable also without noise)

Settling in a p4-solution (that is stable without noise and

metastable with noise)
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So the “stationary state” in the presence of noise is characterized by ongoing
transitions between the different pattern of phase locked motion, characterized

as p4, p6,p16, disordered, or transient p3 states.
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What is a time-independent feature of the stationary state?




THE DISTRIBUTION OF ESCAPE TIMES FROM A 16- TO A 4-CLUSTER SOLUTION

= Consider an initial condition that leads to a 16-cluster solution .

= For a fixed noise intensity, here 0=0.05, solve the differential equation for 1000 noise
realizations.

= For each solution, the first escape to another attractor occurs when V_ >-6.5 (numerically
verified).

= Register this event of crossing the potential threshold if there are at least 50 time units
between two crossings.
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The histogram depends on the selection of metastable states, so far also on the overall time
span: first escape during the first 10000 or the second 10000 time units



What might be called “stationary “ in the sense of being time independent is only the feature of
the multi-peak structure of the histogram of escape times, for a given noise strength.

INTERPRETATION OF THE MULTI-PEAK STRUCTURE AND THE ITERATED ORDER AND
DISORDER

The multi-peak-structure seems to be typical for situations, where unstable limit cycles
separate stable attractors. A multi-peak structure was predicted for a two-variable
system with stochastic transitions through an unstable limit cycle[1].

Moreover, if two stable attractors are separated by an unstable limit cycle, for low
noise the escape rate should be modulated by an oscillatory factor [2]. This may
explain why we see as a function of a monotonically increasing noise strength more or
less escapes to other metastable states. Our system is high-dimensional.

[1] A.L.Kawczynski et al., Phys.Chem.Chem.Phys. 10,289 (2008)

[2] R.S.Maier etal., Phys.Rev.Lett.77 4860 (1996)



SUMMARY SO FAR

Active rotators and Kuramoto oscillators on a hexagonal lattice with frustrated bonds

» show a large number and a variety of coexisting attractors.

» Under noise we see the ongoing migration of phases through the potential
landscape.

» The escape times between the metastable states define a multitude of time
scales.

———> We expect to see aging of these oscillators.




DEFINING CRITERIA FOR PHYSICAL AGING (IN CONTRAST TO BIOLOGICAL AGING):

Do relaxation processes towards the stationary state show

e slow dynamics (slow in the sense of non-exponential relaxation). The slow dynamics

would be visible after a quench into the regime of multistable states in appropriate
correlation functions.

e breaking of time-translation invariance. if we distinguish between the waiting
time t,, after a quench when a measurement of an observable starts, and the observation
time t, when the observable is measured again, att >t,, an observable such as the
(auto)correlation function depends on both times.

S dynamical scaling. Dynamical scaling is observed if the individual curves for the
correlation functions can be superimposed onto a single master curve by an appropriate
rescaling of the argument, depending ontandt,. If we observe dynamical scaling for a
given excitable or oscillatory system, the question arises of how universal this scaling
behavior is between different realizations of such systems, differing by their individual
dynamics.




MEASURE AGING OF ACTIVE ROTATORS AND KURAMOTO OSCILLATORS

via the autocorrelation functions:

» Prepare the system in the vicinity of the unique fixed point at k > 0.

» Quench the system towards k < 0 in the regime of coexisting synchronized
oscillations to push it out-of-equilibrium.

» Wait and let it evolve under the action of additive noise.

» Perform a first measurement of the autocorrelation function at time t,,

»> Perform a second measurement at timet> t,

for two lattice sizes (32x32 and 4x4) and three noise intensities o = 0.01, 0.1, 0.5
with and without frustration.

Note that temperature in spin systems plays a twofold role: driving the transition to a phase
with multistable behavior and providing fluctuations. In our case the coupling provides the
bifurcation parameter from one phase into the other and the noise creates the fluctuations.




The state of the system at time t is specified by the vector of all phases

B = (Ot) D,t), o d(t) ).

We compute the two-time autocorrelation function defined as

with standard deviations o7 = (o(t)o(t)) — (6(t)) (1)),

where the averages are calculated over a sufficient number of noise
realizations.



AGING OF ACTIVE ROTATORS: 4x4 AND 32X32 WITH NOISE

Regime (i)
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DYNAMICAL SCALING OF ACTIVE ROTATORS FOR 4X4 AND 32x32
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AGING FOR KURAMOTO OSCILLATORS ON 4X4 AND 32X32 LATTICES

Regime (i)
Quasiequi-
librium

Regime (ii)
Drop off

Regime (iii)
Slow saturation
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ACTIVE ROTATORS ON A 32X32 LATTICE WITHOUT FRUSTRATION BUT WITH NOISE

No frustration, adj. matrix type =2, o, = 0.01
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So no dependence on the waiting time t,,, neither for the 4x4 case.



Summary of the results on aging:
We do see physical aging

» even for a very small system size of 4x4 oscillators with a short transient time, but a
very rough and structured attractor landscape

» also for larger systems
> for classical rotators and Kuramoto oscillators
> for a different choice of autocorrelation functions

» No signatures of aging for a system with disorder in the coupling signs, but no
frustration.

» The mechanism seems to be the same as for spin glasses, but the attractor
landscape is much more versatile in which the phases continue to move from one
metastable state to another.




OUTLOOK TO NEXT STEPS
» Other manifestations of aging in the response to external forces
» Aging in other oscillatory systems like genetic circuits
» Predictions of aging and scaling behavior in simpler models
» Questions about universality w.r.t. the exponents
» Memory and rejuvenation effects
» Determination of “critical ages”

in view of the following more interesting questions:




What are different aging mechanisms?
Here we have found no new mechanism, but a very different realization of the same
mechanism that is acting in spin glasses.

What is the role of noise in aging? (Montemurro et al. PRE67,031106 (2003))

There Hamiltonian of oscillators like ours, no noise, no frustration, no disorder, but for a particular family of
initial conditions in the limit of infinite range couplings andN — o before  — 0.

What is the relation between physical aging and biological aging?
physical aging in the sense of age dependent response to perturbations
biological aging e.g. in the sense of deterioration of pacemaker cells.

Can physical aging of “soft matter” contribute to biological aging of cells and whole
organisms?

What are independent sources and independent aging mechanisms on different
biological scales, are the mechanisms the same?

Our excitable and oscillatory systems have applications to biological systems.
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