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 THE NOTION OF FRUSTRATION FOR OSCILLATORY AND EXCITABLE SYSTEMS 
 
Criterion for undirected couplings 
   Consider a loop with undirected interaction bonds and couplings that can be either 
  
       attractive or repulsive 
      ferromagnetic or  antiferromagnetic 
      excitatory  or inhibitory  
      repressive or supportive 

 
   Consider a path from A to B along the shortest connection and along the   
   complementary path in the loop from B to A.  
 
   The bond from A to B is not  frustrated if A acts upon B in the same way  as B upon  
    A  (e.g. attractive), otherwise it is. 

A in phase with B, B with C  C with A, but if C wants to be 
 antiphase with A, the link CA or CB is frustrated 

B 

A 

C 

Result of Daido:  three Kuramoto oscillators coupled in a “frustrating way”  lead to multistable   
                               behavior (Progr. Theor. Phys. 1987) 



  Consider a loop with directed interaction bonds and couplings that can be either  
•     repressing or activating 
•     excitatory  or inhibitory  

 
   Consider a path from A to B along the shortest connection and  along the    
   complementary path in the loop from B to A.  
 
The bond from A to B is  not  frustrated if A acts upon B in the opposite way as B  
upon A (e.g. A to B activating,   B to A via C and D repressing), otherwise it is.  
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- 
- - Different realizations of the frustration 

 
• Via the number of couplings 

 
• Via the type of couplings along with the number C B 

A 

CRITERION FOR FRUSTRATION IN CASE OF DIRECTED COUPLINGS IN VIEW OF 
EXCITABLE SYSTEMS (Kaluza & HMO, Chaos 20, 043111 (2010)) 

- 



 Conjecture on multistability confirmed in coupled genetic circuits 

Adjacency matrix of repressing couplings  Rij 
 
Adjacency matrix of activating couplings   Qij  

Consider most simple motifs with and without frustration for which the frustration  
 is implemented either:  
 
• via the topology (even number of repressing couplings) or  
• via the type of coupling (replace  repressing by  activating ones) 



f:   frustrated 
u:  not frustrated 

For the frustrated plaquette we obtain: 

Frustration on two levels 

MOST SIMPLE MOTIFS 



Individual nodes in the oscillatory regime:  α=80, βR =0.01 

3 patterns of phase-locked motion: 
 
• 3 different phases out of four or 
• 4 different phases or 
• 2 different out of four coincide 

 
multistable behavior for βR =0.01, 0.1 
 

Multistability in synthetic genetic circuits  
could be explained this way 



HERE INSTEAD: CLASSICAL ROTATORS WITH FRUSTRATION 
 
The model:  N active rotators 



1.  N identical oscillators without noise 
 
        The phase diagram as a function of ω, b, and κ 
 
        The versatility of attractors in comparison to spin systems 
 
        A particularly rich attractor space for the 4x4 system 
 
2. N identical oscillators with additive or multiplicative noise 
 
         Order-by-disorder repeatedly induced for increasing noise strength 
 
         Noise-induced migration of oscillator phases 
 
         Indications for a rough landscape with hierarchies in the potential barriers 
 
         A multitude of escape times from metastable states 



The phase diagram as a function of ω  and κ  for b=1: so far along a few sections, but 
ongoing work by M. Zaks et al. 

1. N IDENTICAL OSCILLATORS WITHOUT NOISE 
  

ω 

κ
  

1 

κc 

ω=0.7, κ=-2.0, b=1   
unique stable fixed point 

limit-cycle regime without a stable 
 fixed point 

coexisting states with different  
synchronization patterns minimal  eigenvalue of the adjacency matrix, 

N = number of neighbors 

Kuramoto case with b=0 separately presented 



 The versatility of attractors in comparison to spin systems 

In spin glasses:       
                                  fixed points 
 
 
In these systems:   
                                  various “collective” fixed points 
 
                                  a variety of  “collective” limit cycles  differing by their 
                                                          correlation between individual phases 
                                                          frequency 
                                                          pattern of phase-locked motion 
                                                          basin of attraction  
                                                          stability 
                                                          symmetry 
                                   quasiperiodic solutions      
                          
                                   chaotic solutions 
 
as a combined effect  of frustration, lattice size and lattice symmetry. 



 WHAT CAN WE PROVE ABOUT MULTISTABILITY? 
 

Special case:  N Kuramoto oscillators.  The system can be reduced to 

Consider as a special set of solutions plane waves with fronts of constant phases along 
parallel  lines on the hexagonal lattice. Their spatial distribution is characterized by 
 
 
 
 
 
m=1,…,M,   n=1…, L coordinates and  k1, k2 integers because of p.b.c. Then it can be shown 
that for a sufficient large extension M and L and M=L=even, there are always two sets of wave 
 vectors k1=k2= k and k1=k2=k+1, such that the plane waves correspond to different solutions,  
differing by the number f clusters of coinciding phases. 



SIMILARLY FOR ACTIVE ROTATORS, IN PARTICULAR PLANE WAVES AND SPHERICAL WAVES: 



The number and variety of attractors is extremely rich already for a 4x4-lattice. 
 
The classification according to pn-patterns with n denoting the number of clusters of  
coalescing phases is not unique, but suited for our notion of order. 
 
 
   p4-solutions:  4 clusters, originally only 75 such solutions could be identified,    
       differing by their frequency,  in particular plane waves (without  counting the    
       degeneracy due to the lattice symmetries), meanwhile a continuum of these   
       solutions 
 
   p6-solutions: spherical waves (degeneracy 96 due to 16 sites for the center and 6  
                               rotations about 60 degrees due to the lattice symmetry ) 
 
   p16-solutions of individual limit cycles 
 
   quasiperiodic solutions 
 
using the numerically obtained Poincaré-mapping on the hypersurface Ф1 = const. 



Of particular interest: p4-patterns of 4 clusters with 4 identical phases each (ongoing work by  
 M. Zaks et al.) 

Same color – same phase 
Note: each oscillator is coupled  by two links to  representatives of all other three clusters. 
If we do not distinguish the individual members of a cluster, we see a global coupling between  
the clusters of identical members  with double the strength than on the original fine-grained  
lattice 

The set of 16 equations reduces into 4 sets  (one for each color) of 4 identical equations . 
The representative set of four equations describes a set of  globally coupled set of identically 
 equipped oscillators and  with sinusoidal coupling. According to Watanabe and Strogatz we 
 should expect an infinite number of conserved quantities and a continuum of frequencies  
 for our limit-cycle solutions                 dynamically  generated  reduction of d.o.f. 



2. N IDENTICAL OSCILLATORS WITH ADDITIVE OR MULTIPLICATIVE NOISE 

   ORDER-BY-DISORDER, IN WHAT SENSE? 

Usually:  Order-by-disorder is considered in spin systems. 
 
Generic:  The ground state is degenerate due to competitions among the interactions. 
                The degeneracy is lifted due to disorder. 
 
                                    temperature driven (Villain et al. J. Phys. 1980, Bergman et al., Nature Physics 2007) 
 The lifting can be     or quantum driven (Chubukov, PRL (1992), Reimers et al. PRB (1993)) 
                                    or due to dilution (Henley PRL 1989) 
                                    
 
The effect is observed in classical spin models, quantum magnetism, and in ultracold atoms 
                                                                                                                     (Turner et al., PRL98, 2007). 
 It depends on the degree of degeneracy whether the effect is observed.  



Order-by-disorder in classical oscillatory systems: 
 
Disorder:  additive noise or multiplicative noise 
 
Order:       the “degree” of synchronization:  
                   either a disordered stationary solution with all units oscillating with their own phase  
                   changes towards a solution with partially coinciding phases,            
                   or, the number of phase-synchronized clusters decreases , so that more  phases  
                   coincide  for an intermediate noise strength 

IN NEED FOR A SUITABLE ORDER PARAMETER that can distinguish between 
 “order” in the sense of how many phases coincide. 
  Generalized Kuramoto order parameters  are not suited 

Use  the peak structure of histograms 
 instead for larger sizes. 



The table illustrates that ρn  does not  work in all  
cases as compared to the number of  coalescing  
phases on the phase plots. 



WE SEE REPEATEDLY ORDER-BY-DISORDER IN THE FOLLOWING SENSE: 

Here:  Fixed identical initial conditions, but increasing the noise intensity. 
            The snapshots are representative for a certain time interval of some hundred or  
            thousand time units, afterwards the patterns of synchronization may have changed. 
 
 
Note:  Different from the action of noise in coherence resonance: 



Coherence resonance: 
For an intermediate strength of noise, oscillatory  
response in an excitable system is most coherent 
(here no external field) 

System size resonance 
For an optimal size of the system, the system’s 
response is most regular, illustrated in a system  
of coupled nonlinear noisy oscillators  
(ensemble averages fluctuate with (D/N )1/2  ) 

D the (effective) noise intensity 



lattice of 10x10 active rotators 
clusters 100—10--100 

Low noise Intermediate noise 

Strong noise 

zoom
 

Varying the noise intensity between 
0.0001-0.1 



Zoom into the noise intensity: 
 
Increasing monotonically the noise  
intensity  from left to right and top to  
bottom one observes disorder  (d) and 
order (o) as the  sequence:   
 
d   o  d  o  d  o  d 

lattice of 10x10 active rotators 
clusters 100—10—100—10—100—10---100 

The system is very sensitive to the  
initial condition. 

Zoom in 

Varying the noise intensity between  
0.001-0.1 in steps of 0.01 



Zoom further into the noise  
intensity: 
 
Increasing monotonically the  
noise intensity  from left to  
right and top to bottom, one  
observes disorder  (d) and 
order (o) as the  sequence:   
 
d   o  d  o  d   

lattice of 10x10 active rotators 
clusters 100—10—100—10—100 

Varying the noise intensity between  
0.06-0.07 in steps of 0.001 



 Low noise Intermediate noise 

Strong noise 

Lattice of 4x4  
Kuramoto oscillators 
clusters 16—2—16 



How representative are these plots?  Similar plots are obtained  
 
   if the noise realization is varied 

 
   the additive noise is replaced by multiplicative one  

 
   the oscillators are reduced to Kuramoto oscillators 

 
   the lattice size is increased 

 
   the time windows for snapshots over 200 time units are varied. 

What is the explanation for the repeatedly increasing order when the noise  
strength is monotonically varied?   
 
The system obeys a gradient dynamics with potential V.  The resolution of its  
shape depends on the noise intensity. 



Due to noise, the ”fine-structure” of the “potential” can no longer be resolved, but still the  
overall structure, while for even stronger noise the shape of the deterministic  potential gets  
buried under the noise.  From zooming into the noise intervals: The energy landscape seems to  
have a similar  structure on different scales of resolution. 

no noise noise of intermediate strength strong noise 

barriers of different  
height in the  
energy landscape 

INTUITIVE EXPLANATION 

Consider the oscillatory part: 



Hierarchical structure of the metastable states  as  a function of temperature 
From E. Vincent et al. arXiv: cond-mat/9607224 

EXPLANATION OF SLOW DYNAMICS AND AGING IN SPIN GLASSES 



                 ANALOGY TO STOCHASTIC RESONANCE Gaussian white noise 

Subthreshold periodic perturbation, does not allow the particle to leave any of the four local  
minima without noise but with noise it triggers the switching between the different minima. 



 NOISE-DRIVEN MIGRATION OF OSCILLATOR PHASES 
 On a longer time scale we see the following “stationary” state 
 keeping the noise intensity fixed: 

0-200 time units 

Vosc 

Фi(t) 



200-400 



400-600 



600-800 



800-1000 



1200-1400 



1400-1600 



1600-1800 



4200-4400 



6600-6800 



7000-7200 



7200-7400 

Escape via an unstable limit cycle (unstable also without noise) 

Settling in a p4-solution (that is stable without noise and 
 metastable with noise) 



9600-9800 and so on for ever 

So the ”stationary state” in the presence of noise  is characterized by ongoing  
transitions between the different pattern of phase locked motion, characterized  
as p4, p6,p16, disordered, or transient p3 states. 

What is a time-independent feature of the stationary state? 



THE DISTRIBUTION OF ESCAPE TIMES FROM A 16- TO A 4-CLUSTER SOLUTION 
    Consider an initial condition that leads to a 16-cluster solution . 
    For a fixed noise intensity, here σ=0.05, solve the differential equation for 1000 noise  
      realizations. 
   For each solution, the first escape to another attractor occurs when Vosc>-6.5 (numerically  
     verified). 
   Register this event of crossing the potential threshold if there are at least 50 time units 
     between two crossings. 

The  histogram depends on the selection of metastable states, so far also on the overall time  
span: first escape during the first 10000 or the second 10000 time units 



INTERPRETATION OF THE MULTI-PEAK STRUCTURE AND THE ITERATED ORDER AND  
DISORDER  
 
The multi-peak-structure seems to be typical for situations, where unstable limit cycles  
separate stable attractors. A multi-peak structure was predicted for a two-variable 
system with stochastic transitions through an unstable limit cycle[1]. 
 
Moreover, if two stable attractors are separated by an unstable limit cycle, for low 
noise the escape rate should be modulated by an oscillatory factor [2]. This may 
explain why  we see as a function of a monotonically increasing noise strength more or 
less escapes to  other metastable states. Our system is high-dimensional. 

What might be called  “stationary “ in the sense of being time independent is only the feature of 
 the multi-peak structure of the histogram of escape times , for a given noise strength.  

[1]   A.L.Kawczynski et al., Phys.Chem.Chem.Phys. 10,289 (2008) 
 
[2]   R.S.Maier etal., Phys.Rev.Lett.77 4860 (1996) 



SUMMARY SO FAR 
 
Active rotators and Kuramoto oscillators on a hexagonal lattice with frustrated bonds 
 
 
   show a large number and a variety of coexisting attractors. 

 
   Under noise we see the ongoing migration of phases through the potential    
       landscape. 

 
   The escape times between the metastable states define a multitude of time  
      scales. 
 

We expect to see aging of these oscillators. 



     DEFINING CRITERIA FOR PHYSICAL AGING  (IN CONTRAST TO BIOLOGICAL AGING): 
 
     Do relaxation processes towards the stationary state show 
 
•  slow dynamics (slow in the sense of non-exponential relaxation).  The slow dynamics   
       would be  visible after a quench into the regime of multistable states in appropriate  
       correlation functions. 
 
•  breaking of time-translation invariance. If we distinguish between the waiting   
        time tw after a  quench when a measurement of an observable  starts, and the observation  
        time t, when the  observable is measured  again, at t > tw, an observable such as the  
        (auto)correlation function  depends on both times. 
 
•  dynamical scaling. Dynamical scaling is observed if the individual curves for the  
        correlation  functions can be superimposed onto a single master curve by an appropriate  
        rescaling of the  argument,  depending on t and tw. If we observe dynamical scaling for a  
        given excitable or  oscillatory system, the question arises of how universal  this scaling  
        behavior is between  different realizations of such systems,  differing by their individual  
        dynamics. 



  MEASURE AGING OF ACTIVE  ROTATORS AND KURAMOTO OSCILLATORS 
      via the autocorrelation functions: 
 
 
    Prepare the system in the vicinity of the unique fixed point at κ > 0. 
    Quench the system towards κ < 0 in the regime of coexisting synchronized  
        oscillations to push it out-of-equilibrium. 
    Wait and let it evolve  under the action of additive noise. 
      Perform a first measurement  of the autocorrelation function at time tw. 
    Perform a second measurement at time t >  tw 
 
for two lattice sizes (32x32  and  4x4)  and three noise intensities  σ  =  0.01,  0.1,  0.5 
with and without frustration. 
 
 
Note that temperature in spin systems plays a twofold role: driving the transition to a phase  
with multistable behavior and providing fluctuations. In our case the coupling provides the  
bifurcation parameter from one phase into the other and the noise creates  the fluctuations. 



The state of the system at time t is specified by the vector of all phases 
 
          = ( Ф1(t), Ф2(t), …..,ФN(t)  ). 
 
We compute the two-time autocorrelation function defined as 

where the averages are calculated over  a sufficient number of  noise 
realizations. 



AGING OF ACTIVE ROTATORS: 4X4 AND 32X32 WITH NOISE 

Regime (i) 
Quasiequi- 
librium  

Regime (ii) 
Drop off 

Regime (iii) 
Slow saturation 



DYNAMICAL SCALING OF ACTIVE ROTATORS FOR 4X4 AND 32X32 



AGING FOR KURAMOTO OSCILLATORS ON 4X4 AND 32X32 LATTICES 

Regime (i) 
Quasiequi- 
librium  

Regime (ii) 
Drop off 

Regime (iii) 
Slow saturation 



ACTIVE ROTATORS ON A 32X32 LATTICE WITHOUT FRUSTRATION BUT WITH NOISE 

So no dependence on the waiting time tW, neither for the 4x4 case. 



Summary of the results on aging: 
 
We do see physical aging  
 
  even for a very small system size of 4x4 oscillators with a short transient time, but a  
      very rough and structured attractor landscape 
 
  also for larger systems 
 
  for classical rotators and Kuramoto oscillators 

 
  for a different choice of autocorrelation functions 

 
  No signatures of aging for a system with disorder in the coupling signs, but no  
      frustration. 

 
  The mechanism seems to be the same as for spin glasses, but the attractor     
      landscape is much more versatile in which the phases continue to move from one    
      metastable state to another. 



      OUTLOOK TO NEXT STEPS 
 
  Other manifestations of aging in the response to external forces 

 
  Aging in other oscillatory systems like genetic circuits 

 
  Predictions of aging and scaling behavior in simpler models 

 
  Questions about universality w.r.t. the exponents 

 
  Memory and rejuvenation effects 

 
  Determination of “critical ages” 

 
  in view of the following more interesting questions: 



 
What are different aging mechanisms? 
Here we have found no new mechanism, but a very different realization of the same  
mechanism that is acting in spin glasses. 
 
What is the role of noise in aging? (Montemurro et al. PRE67,031106 (2003)) 
There Hamiltonian of oscillators like ours, no noise, no frustration, no disorder, but for a particular family of 
initial conditions in the limit of infinite range couplings and               before               . 

 
What is the relation  between physical aging and biological aging? 
      physical aging in the sense of age dependent response to perturbations 
      biological aging e.g. in the sense of deterioration of pacemaker cells. 
 
Can physical aging of “soft matter” contribute to biological aging of cells and whole 
organisms? 
 
What are independent sources and independent aging mechanisms on different  
biological scales, are the mechanisms the same? 
 
Our excitable and oscillatory systems have applications to biological systems. 
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