

Effects of breaking vibrational energy equipartition on measurements of temperature in macroscopic oscillators

L. Rondoni, Politecnico Torino R. Belousov, M. Bonaldi, L. Conti, P. De Gregorio, C. Giberti

Firenze – 29 May 2014

PRL 2009; J. Stat. Mech. 2009 and 2013; Class. Quant. Grav. 2010; PRB 2011; PRE 2011 and 2012

http://www.rarenoise.lnl.infn.it/

Outline

1 Detection of gravitational waves

- Langevin equation
- Fluctuations

2 On "Effective Temperatures"

- 1-dimensional models: comparison with experiment
- Simulations and "theory"
- Results

3 N

Thermal fluctuations unobservable in macroscopic objects?

- General Relativity predicts gravitational waves (GW): e.g. accelerating binary systems of neutron stars or black holes; vibrations of black holes or neutron stars.
- Hulse-Taylor measurement of orbits of two neutron stars, spiralling as if losing energy by GW emission; in excellent agreement with predictions, were awarded Nobel prize in 1993.
- GW: kind of space-time ripples, in two fundamental states of polarization, *cross* and *plus*. Effect of GW on matter:

squeezing and stretching, depending on phase.

The idea which was behind the RareNoise project

Ground-based Detectors

- Can detect thermal fluctuations intrinsic to the test mass.
- Expected to approach the quantum limit in the future.

Nonequilibrium stationary states and noise

• Past studies had assumed the noise be Gaussian. However the experimentalists' interest is in the tails of the distributions. There, they may be not.

Then the question

• We detect a rare burst. Is it of an external source? Or false positive due to rare nonequilibrium (and non-Gaussian) fluctuations? Knowing correct statistics is mandatory.

Detection of gravitational waves On "Effective Temperatures"

Gravitational Wave detector

Motivation: GWs will provide new and unique information about astrophysical processes

sensitivity of $h \sim 10^{-22}$ over timescales as short as 1msec

small signal noise \Rightarrow noise sources must be reduced to very low levels

Langevin equatior Fluctuations

GW detectors (interferometers)

L. Rondoni, Politecnico Torino

breaking energy equipartition in macroscopic oscillators

angevin equatior Iuctuations

GW detector noise budget

Dominant Sources of Noise:

- seismic noise
- thermal noise
- · photon shot noise

angevin equatior luctuations

Thermal compensation

to correct mismatch of the mirror fabrication Radius Of Curvature (ROC) due to: thermal lensing

fabrication thermal lensing thermo-elastic deformation due to absorbed power (up to ~0.5W)

Applied thermal gradient deforms the mirror and corrects the ROC

What is the 'thermal noise' of such a non-equilibrium body?

200

L. Rondoni, Politecnico Torino

breaking energy equipartition in macroscopic oscillators

Langevin equatior Fluctuations

Resonant-bar GW detectors: feedback cooling down to mK: viscous force reduces thermal noise on length of resonant-bar detector AURIGA (PRL top ten stories, 2008).

Steady state modelled by 3 electro-mechanical oscillators with stochastic driving.

L. Rondoni, Politecnico Torino breaking energy equipartition in macroscopic oscillators

Langevin equation Fluctuations

$$L\frac{dI_{s}(t)}{dt} + I_{s}(t)\left[R + R_{d}\right] + \frac{q_{s}(t)}{C} = \sqrt{2k_{B}T_{0}R}\Gamma(t)$$

$$I_{d}(t) = GI_{s}(t - t_{d})$$

$$I_{d}(t) = GI_{s}(t - t_{d})$$

$$t_d = \frac{\pi}{2\omega_r}$$

 $G \ll 1$

 $R_d = G\omega_r L_{in}$ expresses viscous damping due to feedback;

No time reversal invariance $(q'_s = q_s, l'_s = -l_s, t' = -t)$, violates Einstein relation, but *formally* identical to equilibrium oscillator at fictitious temperature $T_{\text{eff}} = T_0/(1+g)$

with feedback efficiency $g = R_d/R$, so that: $\langle I_s^2 \rangle = 2k_B T_{\text{eff}}/L$

Hence, usually treated as equilibrium system!

ヘロト ヘ戸ト ヘヨト ヘヨト

PDF and fluctuation relation of injected power P_{τ} : Farago, '02

$$\rho(\tilde{\epsilon}_{\tau}) = \lim_{\tau \to \infty} \frac{1}{\tau} \ln \frac{\mathsf{PDF}(\tilde{\epsilon}_{\tau})}{\mathsf{PDF}(-\tilde{\epsilon}_{\tau})} = \begin{cases} 4\gamma \tilde{\epsilon}_{\tau}, & \tilde{\epsilon}_{\tau} < \frac{1}{3}; \\ \gamma \tilde{\epsilon}_{\tau} \left(\frac{7}{4} + \frac{3}{2\tilde{\epsilon}_{\tau}} - \frac{1}{4\tilde{\epsilon}_{\tau}^{2}}\right), & \tilde{\epsilon}_{\tau} \ge \frac{1}{3}. \end{cases}$$

 $ilde{\epsilon}_{ au}=P_{ au}L/(k_BT_0R)=;~\gamma=(R+R_d)/L,~T_{
m eff}=(22\pm1)~
m mK$

Weakest assumptions approach News from RareNoise

RN aluminum exp. - longitudinal and flexural oscillations

For macroscopic systems in local thermodynamic equilibrium (LTE)

"the properties of a 'long' metal bar should not depend on whether its ends are in contact with water or with wine 'heat reservoirs' at temperature T_1 and T_2 " (Rieder, Lebowitz, Lieb, JMP 1967)

But modelling by 1-dimensional systems incurs in violations of conditions of LTE, hence strong dependence on details of microscopic dynamics: care must be taken in tuning parameters to obtain

"proper thermo-mechanical" behaviour.

Wanted "realistic" equilibrium properties:

thermal expansion, and temperature dependent elasticity, resonance frequencies and quality factor. and non-equilibrium: linear "temperature" profile.

ト ・ 同 ト ・ ヨ ト ・ ヨ ト

1-dimensional models: comparison with experiment Simulations and "theory" Results

$$V(r_i, r_{i\pm\ell}) = \epsilon \left[\left(\frac{\ell r_0}{|r_i - r_{i\pm\ell}|} \right)^{12} - 2 \left(\frac{\ell r_0}{|r_i - r_{i\pm\ell}|} \right)^6 \right] ; \quad \ell = 1, 2$$

L. Rondoni, Politecnico Torino

 $m\ddot{r}_i = F_i^{\text{int}}(r_i, r_{i\pm 1}, r_{i\pm 2}) - \chi_i \dot{r}_i$

$$\dot{\chi}_i = \frac{m}{\tau^2} \left(\frac{K}{k_B T_i} - 1 \right); \quad K_i = m\dot{r}_i^2$$

for $i = 1, 2$ and $N - 1, N$

 $\chi_i = 0$ for $i \neq 1, 2, N - 1, N$ Looks more like 3D

breaking energy equipartition in macroscopic oscillators

1-dimensional models: comparison with experiment Simulations and "theory" Results

Canonical and local canonical appear consistent with observed results from simulations (elasticity etc.)

Kinetic temperature profile straight apart from 0.11 m thermostatted 0.105 borders. 0.1i = 1, 2, N - 1, N0.095 $\epsilon_B T [\epsilon]$ 0.09 0.0850.080.0750.070.20.4 0.6 0.80 r/L

Maybe better mixing?

1-dimensional models: comparison with experiment Simulations and "theory" Results

Spectral density - Experiment and Simulations

For given z = z(t) real,

$$\begin{split} S_z(\omega) &= \int_{-\infty}^{+\infty} e^{i\omega t} \langle z(t) z(0) \rangle dt \\ \text{e.g. } z &\to x(t) = L(t) - \langle L \rangle, \\ \text{or} \quad z \to v(t) = \dot{x}(t); \quad z \to V(t) \end{split}$$

1-dimensional models: comparison with experiment Simulations and "theory" Results

Equilibrium & Nonequilibrium thermo-elasticity - Exp+Sim

< 🗇 > < 🖃 >

э

1-dimensional models: comparison with experiment Simulations and "theory" Results

Equilibrium & Nonequilibrium thermo-elasticity

1) 1D model reproduces thermo-elastic properties at equilibrium, e.g. linearity of elastic modulus E or of ω_{res} with T;

2) It works out of equilibrium as well: e.g. $\omega_r = \omega_r(\overline{T})$, with average temperature $\overline{T} = (T_1 + T_2)/2$, and $\omega_r(T)$ the equilibrium resonance frequency.

3) Non trivial: for larger ΔT , theory does not apply. Explanation in terms of local canonical,

$$\psi_i = \exp\left(-E_i/k_B T_i\right)$$

i.e. under local equilibrium.

(4月) (1日) (日)

1-dimensional models: comparison with experiment Simulations and "theory" Results

Experiment: low-loss (high quality factor) bar.

 \Rightarrow dynamics: independent damped oscillators forced by thermal noise (PSD sum of Lorentzian curves). Equilibrium is canonical and independent of damping.

 \Rightarrow normal modes of reduced mass μ_i , resonating at ω_i :

$$H(\mathbf{x},\mathbf{v}) = \frac{1}{2} \sum_{i} \mu_i (\omega_i^2 x_i^2 + v_i^2) ; \quad P(\mathbf{x},\mathbf{v}) = e^{-H(\mathbf{x},\mathbf{v})/k_B T}/Z$$

Experiment: one end fixed and nearly all mass at other end. Hence numerical simulations with $\mu_1 \approx M$. At equilibrium, averaging over *P*:

$$\langle x_1^2 \rangle = \frac{k_B T}{M\omega_1^2}$$

i.e. x_1 yields a measurement of temperature.

On previous grounds, could one just use \overline{T} in place of T, in general, if moderately out of equilibrium?

1-dimensional models: comparison with experiment Simulations and "theory" Results

Experiment says NO

For growing gradients \overline{T} separates from T_{eff} given by spectrum!

1-dimensional models: comparison with experiment Simulations and "theory" Results

Simulations

э

1-dimensional models: comparison with experiment Simulations and "theory" Results

Effects of growing gradients:

 $\overline{\nabla T} \uparrow$ at same \overline{T}

1-dimensional models: comparison with experiment Simulations and "theory" Results

Effects of growing gradients:

 $\nabla T \uparrow$ at same T

1-dimensional models: comparison with experiment Simulations and "theory" Results

Effects of growing gradients:

 $\overline{\nabla}T\uparrow$ at same \overline{T}

1-dimensional models: comparison with experiment Simulations and "theory" Results

Effects of growing gradients:

 $\nabla T \uparrow$ at same T

1-dimensional models: comparison with experiment Simulations and "theory" Results

Effects of growing gradients:

 $\nabla T \uparrow$ at same T

L. Rondoni, Politecnico Torino breaking energy equipartition in macroscopic oscillators

Mode-mode correlations

In 1D models, a current J
eq 0 means $\langle x_i v_j
angle
eq 0$ for some i,j

<u>Hyp.</u>: For steady state, in canonical ensemble (under harmonic approximation), Jou et al. $\beta H \Rightarrow \beta H + \gamma J$ with

$$e^{-\beta H(\mathbf{x},\mathbf{v})} \Rightarrow e^{-\beta H(\mathbf{x},\mathbf{v})-\gamma J(\mathbf{x},\mathbf{v})}; \text{ with } J = -\frac{1}{N} \sum_{i\neq k}^{1,N} j_{ik} x_i v_k$$

 $\gamma = \text{Lagrange multiplier of heat flux. } J \propto \nabla T \text{ for small } \nabla T.$

Guess β and make even simpler, more general, assumption on $x_i v_k$: if w is one velocity correlated with x_1 , consider:

 $P_{NEQ}(x_1, w) = \exp\left(-M\omega_1^2 x_1^2/2k_B\overline{T} - \mu w^2/2k_B\overline{T} + \lambda M\omega_1^2 x_1w\right)/\kappa$ where

$$\kappa = \frac{2\pi}{\sqrt{M\omega_1^2 \left[\mu/(k_B\overline{T})^2 - \lambda^2 M\omega_1^2\right]}}; \quad \text{and} \quad \overline{T} = (T_1 + T_2)/2$$

1-dimensional models: comparison with experiment Simulations and "theory" Results

$$\langle x_1 w \rangle = \frac{\lambda}{\mu/(k_B \overline{T})^2 - \lambda^2 M \omega_1^2}; \qquad \langle x_1^2 \rangle = \frac{\mu \langle x_1 w \rangle}{\lambda M \omega_1^2 k_B \overline{T}}$$

Introduce

$$\phi = -M\omega_1^2 \langle x_1 w \rangle ; \quad \eta = \frac{\mu}{M\omega_1^2 (k_B \overline{T})^2} ; \quad \lambda(\phi) = \frac{1 - \sqrt{1 + 4\eta\phi^2}}{2\phi}$$

then
$$\langle x_1^2 \rangle = \frac{\eta}{\eta - \lambda(\phi)^2} \langle x_1^2 \rangle^{(eq)} (\overline{T})$$

with limit cases

$$\begin{split} \left\langle x_{1}^{2} \right\rangle &\simeq \left(1 + \eta \phi^{2}\right) \left\langle x_{1}^{2} \right\rangle^{(eq)} \left(\overline{T}\right) \,, \quad |\phi| \ll 1/\sqrt{\eta} \\ \left\langle x_{1}^{2} \right\rangle &\simeq \sqrt{\eta} |\phi| \left\langle x_{1}^{2} \right\rangle^{(eq)} \left(\overline{T}\right) \,, \quad |\phi| \gg 1/\sqrt{\eta} \end{split}$$

$$\frac{\langle x_1^2 \rangle}{\langle x_1^2 \rangle_{eq}} - 1 \propto (\Delta T)^2 , \quad \Delta T \ll \overline{T}$$

- **→** → **→**

э

э

1-dimensional models: comparison with experiment Simulations and "theory" Results

Simulations and experiment

L. Rondoni, Politecnico Torino breaking energy equipartition in macroscopic oscillators

Discussion and open questions

- In experiment, normal-mode analysis justified by high Q;
 Fourier law by small gradients;
- experimental data agree with numerical results for such simple model, for thermo-mechanical properties and as well as for vibrational energy of solids, as functions of T
 , at small ∇T;
- temperature immediately ceases to be the sole parameter characterizing fluctuations of long-wavelength modes: indeed strong dependence of "T_{eff}", i.e. of ⟨x²⟩, on ∇T;
- Experiment constitutes protocol to measure value of Lagrange multiplier λ, the "heatability" of the mode;
- dependence on initial conditions?
- theory and range of applicability?

くほし くほし くほし