

Analytical and numerical study of a realistic model for fish schools

Clément Sire

Laboratoire de Physique Théorique

CNRS & Université Paul Sabatier

Toulouse, France

www.lpt.ups-tlse.fr

Guy Theraulaz, Daniel Calovi, Ugo Lopez, J. Gautrais (CRCA, Toulouse) Hugues Chaté, Sandrine Ngo (CEA, Saclay)

Collective motion in fish schools

Swarming, schooling, milling

Introduction

Several models reproduce qualitatively the collective behaviors in fish schools, wild insect swarms, flocks of birds...

The Vicsek Model (1995)

$$\phi_i(t+1) = \arg \sum_{\langle i,j \rangle_{R_0}}^N \mathbf{e}^{i\phi_j(t)} + \eta \xi_i(t)$$

 $\mathbf{r}_{\mathbf{i}}(t+1) = \mathbf{r}_{\mathbf{i}}(t+1) + v_0 \mathbf{e}_{\phi_i(t+1)}$

 η , R_0 , v_0 are the noise intensity, interaction radius, and velocity Fixing R_0 and v_0 , the control parameters are η or the density ρ

Order parameter
$$\phi = \frac{1}{N} \left| \sum_{i=1}^{N} \mathbf{e}_{\phi_i} \right|$$

Vicsek Model

 $\phi^{*} = \phi(L) L^{\beta/\nu}, \eta^{*} = \frac{|\eta - \eta_{c}|}{\sqrt{1-1}}$

 $\phi(\eta) \sim |\eta - \eta_c|^{\beta}$ (Baglietto *et al.* 2012) $\beta \approx 0.45(3), \quad v \approx 1.6(3), \quad \gamma \approx 2.3(4)$

Second order nature of the transition **challenged by kinetic theory:** mode instability – stripes – destabilizes the long-range order just below the onset of flocking (Grégoire *et al.* 2004, Bertin *et al.* 2006, Chaté *et al.* 2007, Ihle 2010)

Experiments by the CRCA team

- Need for realistic models based on constraining and validating experiments
- These experiments (1, 2, 5... up to 30 fish) permit to identify "individual laws", "elementary interactions", and "microscopic parameters"

Some important aspects

Forces mediated by vision are in general not conservative (no law of action-reaction)

- Are forces really additive (a finite amount of information can be treated)? Instead, forces may be an average over the local environment
- Do fish (or birds) interact through metric or topologic (Voronoï diagram) forces? (not crucial in a tank)

Long-range attractive interactions?

Additive (?) attractive force are mediated by vision and should be a linear function of the (solid) angle spread of the (group of) fish

 $F(r) \sim \Omega \sim \left(\frac{a}{r}\right)^{a}$

Long-range attractive (~gravitation) force... but screened by obstacles

Basic model validated by CRCA experiments on Barred Flagtail (Kuhlia Mugil), and more recently, Hemigrammus

J. Gautrais et al., J. Math. Biol. (2009); Plos Comput. Biology (2012)

- > Constant velocity $v \sim 0.1 0.6$ m/s
- Individual (2D) angular velocity evolving according to an Ornstein-Uhlenbeck process

$$\frac{d^2\phi_i}{dt^2} = \frac{d\omega_i}{dt} = -\frac{1}{\tau}(\omega_i - \omega_i^*) + \sigma\eta(t), \quad \frac{d\mathbf{r}_i}{dt} = v\mathbf{e}_{\phi_i}$$
$$(\tau \sim \xi / v; \sigma \sim \hat{\sigma}v)$$

The target angular velocity includes the effect of alignment and attraction (metric/topological) forces

Basic model validated by CRCA experiments

Topological alignment force ~ v and attraction force ~ r_{ij}
 Phenomenological effect of vision angle

$$\omega_{j \to i}^* = \left[k_{\parallel} v \sin(\phi_j - \phi_i) + k_P r_{ij} \sin(\theta_{ij}) \right] \times \left[1 + \varepsilon \cos(\theta_{ij}) \right]$$

> + repulsive interaction with the wall (k_w)

Averaging

$$\omega_i^* = \frac{1}{N_i} \sum_{\langle j,i \rangle} \omega_{j \to i}^* \quad (N_i \sim 6)$$

Basic model validated by CRCA experiments

Experiments vs model simulations Swarming to schooling transition as the velocity (and hence, alignment) is increased

Basic model validated by CRCA experiments

> Mean fish distance r_{12} and magnetization P vs velocity v

Mean square displacement in a tank

Empirical investigation of fish schooling

Comparison between model predictions and experimental data

Dimensionless equations of motion

$$\approx \frac{d^2 \phi_i}{dt^2} + \frac{d \phi_i}{dt} + \sqrt{2} \eta_i = \frac{1}{N_i} \sum_{\langle i,j \rangle} \omega_{j \to i}^*, \quad \frac{d\mathbf{r}_i}{dt} = \mathbf{e}_{\phi_i} = (\cos \phi_i, \sin \phi_i)$$

$$\omega_{j \to i}^* = \left[\beta \sin(\phi_j - \phi_i) + \gamma r_{ij} \sin(\theta_{ij})\right] \times \left[1 + \varepsilon \cos(\theta_{ij})\right]$$

$$\mathbf{r}_i = \text{position of fish } i; \phi_i = \text{ angle of fish } i \text{ velocity with respect to the horizontal}$$

$$\theta_i = \text{ angle view of fish } i \text{ looking at fish } j; r_{ij} = \text{ distance between fish } i \text{ and } j$$
For $v = 0.24 \text{ m/s}, \ \tau = \xi / v = 0.1 \text{ s}, \ 2 / \tau_0 = (\xi \hat{\sigma})^2 \approx 0.48 \text{ s}^{-1}$

$$\alpha = \frac{\tau}{\tau_0} \approx 0.024, \ \beta = \frac{k_{\parallel}\xi}{\alpha} \approx 2.7, \ \gamma = \frac{k_p\xi\tau}{\alpha^2} \approx 1.7$$

$$\Rightarrow \text{ Alignment } \omega_{j \to i}^* = -\frac{\partial V}{\partial \phi_i} (\phi_i - \phi_j), \text{ with } V(\phi) = -\beta \cos \phi$$

(XY model, in-between d = 2 and mean-field)

Inertial effects on the angle dynamics are negligible
 ε = 1 in numerical simulations (no milling phase for ε = 0)

Phase diagram without a tank $(\alpha = 0.024; \varepsilon = 1; \beta - \gamma \text{ plane})$

DC, UL, SN, CS, HC & GT, New J. Phys. (2014)

> Order parameters : Polarization $P = \frac{1}{N} \left| \sum_{i=1}^{N} \mathbf{e}_{\phi_i} \right|$

Milling
$$M = \frac{1}{N} \left| \sum_{i=1}^{N} \mathbf{e}_{\phi_i} \times \mathbf{e}_{\mathbf{r}_i} \right|$$

Existence of a third narrow elongated phase for $\gamma \gg \beta$; observed in some fish schools

School of Atlantic herring (*Clupea harengus*) Photo courtesy of P. Brehmer - IRD

Phase diagram without a tank ($\alpha = 0.024$; $\varepsilon = 1$; $\beta - \gamma$ plane)

- > Experimental parameters $\beta \approx 2.5$, $\gamma \approx 1.7$ lie not far from the **transition line**: real fishes can slightly modify their velocity to go **from swarming to schooling** (notably in the presence of a **predator**)
- Divergence of the polarization susceptibility near the transition line

Swarming transition near the mean-field transition line (see hereafter) $\beta_c = 2$ ($\varepsilon = 0$)

Mean-field theory

> Variables:

Coordinates $\mathbf{r} = (r, \theta)$ vs the center of mass of the school

Velocity angle ϕ

Continuous density distribution of fish $\rho(r, \theta, \phi)$

Local order parameter

 $\mathbf{M}(r,\theta) = (M_x(r,\theta), M_y(r,\theta)) = M_0(\cos\phi_0, \sin\phi_0)$ $M_x(r,\theta) = \langle \cos\phi \rangle, M_y(r,\theta) = \langle \sin\phi \rangle \text{ (averages at fixed } r \text{ and } \theta)$ Uniform schooling phase $(\phi_0 = 0)$: $\mathbf{M}(r,\theta) = (M_0,0)$ Isotropic milling phase $(\phi_0 = \theta + \pi/2)$: $\mathbf{M}(r,\theta) = M_0(-\sin\theta, \cos\theta)$

Mean-field theory (attraction force)

> If the density is smooth enough, the attractive force between fishes acts as an effective attraction force toward the center of mass ($\varepsilon = 0$)

$$\omega_{\rm A}^*(\mathbf{r}) = \gamma \frac{\int_{r' < a} r \sin(\theta' - \phi + \theta) \rho(\mathbf{r} + \mathbf{r}') r' dr' d\theta'}{\int_{r' < a} \rho(\mathbf{r} + \mathbf{r}') r' dr' d\theta'}$$

such that
$$\langle N_i \rangle = \int_{r' < a} \rho(\mathbf{r} + \mathbf{r}') r' dr' d\theta' \approx \pi \rho_0 a^2 = 6$$

Expanding the top integral and assuming $|\nabla \rho| / \rho \sim \frac{r}{r_0^2}$,

$$\omega_{\rm A}^*(\mathbf{r}) = \frac{3}{2\pi\rho_0 r_0^2} \gamma r \sin(\phi - \theta)$$

which tends to align the velocity to the direction $\theta + \pi$

Mean-field theory equations of motion (ε =0)

$$\alpha \frac{d^2 \phi}{dt^2} + \frac{d \phi}{dt} + \sqrt{2}\eta = \omega^* = \beta M_0 \sin(\phi_0 - \phi) + \gamma(r) \sin(\phi - \theta)$$

$$d\mathbf{r}$$

$$\frac{d\mathbf{r}}{dt} = \mathbf{e}_{\phi} - M_0 \mathbf{e}_{\phi_0}, \text{ with } M_0 \mathbf{e}_{\phi_0} = \langle \mathbf{e}_{\phi} \rangle_{r,\theta}$$

$$\frac{dr}{dt} = \cos(\phi - \theta) - M_0 \cos(\phi_0 - \theta), \ r \frac{d\theta}{dt} = \sin(\phi - \theta) - M_0 \sin(\phi_0 - \theta)$$

$$\alpha_{Exp.} \approx 0.024, \ \beta_{Exp.} \approx 2.7, \ \gamma(r) / r \sim \gamma_{Exp.} \approx 1.7 \quad (+\text{wall of the tank})$$

Fokker - Planck equation ($\alpha = 0$)

$$\frac{\partial \rho}{\partial t} = \frac{\partial^2 \rho}{\partial \phi^2} - \frac{\partial}{\partial \phi} \Big[\omega^* \rho \Big] - \frac{1}{r} \frac{\partial}{\partial \theta} \Big[\left(\sin(\phi - \theta) - M_0 \sin(\phi_0 - \theta) \right) \rho \Big] \\ - \frac{\partial}{\partial r} \Big[\left(\cos(\phi - \theta) - M_0 \cos(\phi_0 - \theta) \right) \rho \Big]$$

Diffusion coefficient of a single fish

$$\alpha \frac{d^2 \phi}{dt^2} + \frac{d \phi}{dt} + \sqrt{2}\eta = 0, \quad \frac{d\mathbf{r}}{dt} = \mathbf{e}_{\phi}$$

$$C(t) = \frac{1}{2} \langle [\phi(t) - \phi(0)]^2 \rangle = t - \alpha \left[1 - \exp(-t/\alpha) \right]$$

$$D(\alpha) = \lim_{t \to \infty} \langle [\mathbf{r}(t) - \mathbf{r}(0)]^2 \rangle / t = 2 \int_0^\infty \exp[-C(t)] dt$$

$$\sim_{\alpha \to 0} 2$$

$$\sim_{\alpha \to \infty} \sqrt{2\pi\alpha}$$

Expressing length and time in the original units with $\alpha = \frac{\tau}{\tau_0} = \frac{\tau(\xi\hat{\sigma})^2}{2}$

$$D_{0} = v^{2} \tau_{0} D(\alpha) = v \xi \frac{D(\alpha)}{\alpha}$$
$$\sim_{\alpha \to 0} 2v \xi \times \alpha^{-1} \to_{\hat{\sigma} \to 0} + \infty$$
$$\sim_{\alpha \to \infty} \sqrt{2\pi} v \xi \times \alpha^{-1/2} \to_{\hat{\sigma} \to \infty} 0$$

Weak phase noise \Rightarrow large D_0 Strong phase noise \Rightarrow small D_0

 $(\hat{\sigma} \sim \text{phase noise})$

Mean-field theory

> Exact solution for $M_0 = 0$ (swarming)

$$\rho(r,\theta,\phi) = \frac{1}{Z}r\exp\left[-\int_0^r\gamma(r')dr'\right]$$

Exact solution for $\gamma(r) = 0$ (space irrelevant; schooling / swarming)

$$\rho(\phi) = \frac{1}{Z} \exp[\beta M_0 \cos\phi], \ M_0 = \langle \cos\phi \rangle$$

Complete analogy with the **HMF model** (Antoni & Ruffo 1995) *i.e.* the XY model with all spins interacting with each other $M_0 \sim \sqrt{(\beta - \beta_c)}$, with $\beta_c = 2$

Conclusion

- Realistic model for fish schools validated by experiments
- ➤ The general issue of topologic/metric force: relevance of long-range interactions? (~self-gravitating Brownian particles → school cohesion at low noise; Chavanis & CS)
- The milling phase is present when vision effects are taken into account, along with a narrow elongated phase
- Biologically relevant parameters are close to the swarming/schooling transition line, where fish can quickly adjust to their environment
- Introduction of a mean-field theory
 - Including the effect of vision (non conservative attractive force) to reproduce the milling phase
 - > Allowing for non uniform/non isotropic order parameter
 - Time evolution (instability modes, dynamical transitions...)

