REACTION-DIFFUSION PROCESSES ON REGULAR AND RANDOM GRAPHS

Angelo Vulpiani

Dep. Physics Università "Sapienza" Roma

Thanks to

Federico Bianco Université Pierre et Marie Curie, Paris Raffaella Burioni Università di Parma Sergio Chibbaro Université Pierre et Marie Curie, Paris Davide Vergni IAC-CNR, Roma

Burioni et al. *Reaction spreading on graphs* Physical Review E 86, 055101(R) (2012)

Bianco et al.

Reaction spreading on percolating clusters Physical Review E 87, 062811 (2013)

angelo.vulpiani@romal.infn.it

Dep. Physics Univ. Sapienza Rome

Progression of an epidemic process Vespignani Nature Phys 2011

Chemical fronts in porous media Atis, Saha, Auradou, Salin, Talon PRL 2013

Dep. Physics Univ. Sapienza Rome

General framework

microscopic point of view, molecules: diffusion (jumps) advection (In presence of stirring) reaction for ex. $(A + B \rightarrow 2A)$

At macro-hydrodynamic level

 $\partial_t \theta = \hat{L}\theta + \frac{1}{\tau}f(\theta)$

 $\hat{L}~$ General advection-diffusion operator

ADR eq.

$$\hat{L} = -\mathbf{u} \cdot \nabla + D\Delta$$

Advection by a fluid flow and Diffusion

f(heta)/ au Non-linear local reaction

 \mathcal{T}

reaction time-rate

$$\hat{L} = \frac{1}{r^{d-1}} \frac{\partial}{\partial r} \left(k(r) r^{d-1} \frac{\partial}{\partial r} \right)$$

Effective diffusion

(Richardson, Procaccia O'Shaughnessy)

angelo.vulpiani@romal.infn.it

Dep. Physics Univ. Sapienza Rome

Probabilistic interpretation

$$\hat{L} = -\mathbf{u} \cdot \nabla + D\Delta \quad \longleftarrow \quad \mathrm{d}\mathbf{x}/\mathrm{d}t = \mathbf{u} + \sqrt{2D}\boldsymbol{\eta}$$

advection-reaction=Fokker-Planck

 $\theta(\mathbf{x},t) = \left\langle \theta(\mathbf{x},0) \exp\left(\frac{1}{\tau} \int_0^t \frac{f(\theta(\mathbf{x}(s;t),s))}{\theta(\mathbf{x}(s;t),s)} ds\right) \right\rangle$

transport + reaction Freidlin formula

Complex geometry

angelo.vulpiani@romal.infn.it

Dep. Physics Univ. Sapienza Rome

Time Discretisation

Limit case
$$\delta$$
 – impulse $f(\theta) = \sum_{n=-\infty}^{\infty} g(\theta)\delta(t - n\Delta t)$
Lagrangian and reaction maps
 $\mathbf{x}(t + \Delta t) = \mathbf{F}_{\Delta t}(\mathbf{x}(t)), \quad \theta(t + \Delta t) = G_{\Delta t}(\theta(t))$
discrete-time ARD
 $\theta(\mathbf{x}, t + \Delta t) = \langle G_{\Delta t}(\theta(\mathbf{F}_{\Delta t}^{-1}(\mathbf{x} - \sqrt{2D\Delta t}\mathbf{w}), t)) \rangle_{\mathbf{w}}$
Even for non-gaussian diffusion
 $\theta(\mathbf{x}, t + \Delta t) = \int d\mathbf{w} \ G_{\Delta t}(\theta(\mathbf{x} - \mathbf{w}, t)) p_{\Delta t}(\mathbf{w})$

Dep. Physics Univ. Sapienza Rome

angelo.vulpiani@romal.infn.it

Space Discretisation

angelo.vulpiani@romal.infn.it

Dep. Physics Univ. Sapienza Rome

Discretisation: master eq.

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{if } (i,j) \notin E \end{cases}$$
$$\frac{d\theta_i}{dt} = \mathsf{W} \sum_j \Delta_{ij} \theta_j + \frac{1}{\tau} f(\theta_i)$$
$$\theta_n(t + \Delta t) = \sum_j P_{j \to n}^{(\Delta t)} \theta_j(t) \qquad P_{i \to j}^{(\Delta t)} = WA^{ij} \Delta t \text{ if } i \neq j$$
$$P_{i \to i}^{(\Delta t)} = 1 - k_i W \Delta t \text{ if } i \neq j$$
$$\theta_n(t + \Delta t) = G_{\Delta t} \left(\sum_j P_{j \to n}^{(\Delta t)} \theta_j(t) \right) \qquad G(\theta) = \theta + \frac{\Delta t}{\tau} \theta(1 - \theta)$$

FKPP

Some relevant quantities

Topology and geometry of the graphs

Connectivity dimension d_l $\#(l) \sim l^{d_l}$ Spectral dimension $d_s = \lim_{t \to \infty} -2 \frac{\ln P_{ii}(t)}{\ln t}$

fractal dimension $d_f \qquad \#(r) \sim r^{d_f}$

total quantity of the reaction product M(t)

$$) = \frac{1}{N} \sum_{i \in V} \theta_i(t)$$

Results: fractals

Spreading on a T-fractal where the front is in red. The percentage of quantity of product $M(t)\tau$ vs t. Numerical results for Equation with w = 0.5 are compared to prediction t^{d_l} . For this graph $d_l = \ln 3 / \ln 2 \simeq 1.585$, $d_{ls} = 2 \ln 3 / \ln 5 \simeq 1.365$.

angelo.vulpiani@romal.infn.it

Dep. Physics Univ. Sapienza Rome

Results: fractals

Main result

 $M(t) \sim t^{d_l}$

Results: fractals

reaction spreading <=> short-time n random walkers

angelo.vulpiani@romal.infn.it

Dep. Physics Univ. Sapienza Rome

Dep. Physics Univ. Sapienza Rome

angelo.vulpiani@romal.infn.it

Percolation

SAPIENZA Università di Roma

PERCOLATION IN A SQUARE LATTICE

critical point $p \approx 0.595$

$$d_f \simeq 1.896$$

 $d_l \simeq 1.67$
 $d_s \simeq 1.36$

angelo.vulpiani@romal.infn.it

Dep. Physics Univ. Sapienza Rome

 $p = p_c$

$$M(t) \simeq \alpha t^{d_t}$$

Dep. Physics Univ. Sapienza Rome

Atis, Saha, Auradou, Salin, Talon PRL 2013

Percolation: travelling front

Dep. Physics Univ. Sapienza Rome

λ7Δ

- Advection-Reaction-Diffusion fundamental framework
 - Complex heterogeneous geometry
 - Finite-size effects
 - Prevalence of fluctuations
 - Flow-chemistry interaction
 - Analysis of experiments in porous media
 - Realistic simulations for epidemics networks
 - Chemistry Role

angelo.vulpiani@romal.infn.it

Dep. Physics Univ. Sapienza Rome

$$m(t) \sim t^{d_l}$$
. $m(t) \sim r(t)^{d_f}$. Therefore $r(t) \sim t^{d_l/d_f}$, and $v = \frac{dr}{dt} \sim t^{d_l/d_f-1} \sim r^{1-d_m in}$, where $d_m in = \frac{d_f}{d_l}$. Furthermore, if the linear size of the region is $r < \xi$, where ξ is the correlation length the cluster is self-similar and then $v \sim \xi^{1-d_m in}$. Moreover, analysis of the percolation phase transition gives $\xi \sim |p - p_c|^{-\nu}$, with $\nu = 4/3$ for $d = 2$ [?], which gives the final scaling $v \sim (p - p_c)^{\gamma}$, where $\gamma = -\nu(1 - d_m in)$. For the average velocity, the scaling is:

$$u(p) = P(p)\frac{v_f(p)}{v_f(1)} \sim P(p)\left(\frac{p-p_c}{1-p_c}\right)^{\gamma} d_f$$

$$\tag{1}$$

Dep. Physics Univ. Sapienza Rome

angelo.vulpiani@romal.infn.it