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Fitness landscapes

S. Wright, Proc. 6th Int. Congress of Genetics (1932)

“The two dimensions of figure 2 are a very inadequate representation of such a field.”



Sewall Wright

“In a rugged field of this character, selection will easily carry the species to the
nearest peak, but there will be innumerable other peaks that will be higher but
which are separated by “valleys”. The problem of evolution as I see it is that
of a mechanism by which the species may continually find its way from lower
to higher peaks in such a field.”



Ronald A. Fisher

“In one dimension, a curve gives a series of alternate maxima and minima,
but in two dimensions two inequalities must be satisfied for a true maximum,
and I suppose that only about one fourth of the stationary points will satisfy
both. Roughly I would guess that with n factors only 2−n of the stationary
points would be stable for all types of displacement, and any new mutation will
have a half chance of destroying the stability. This suggests that true stability
in the case of many interacting genes may be of rare occurrence, though its
consequence when it does occur is especially interesting and important."

Fisher to Wright, 31.5.1931



Sequence spaces

• Watson & Crick 1953: Genetic information is encoded in DNA-sequences
consisting of Adenine, Cytosine, Guanine and Thymine

..ACTATCCATCTACTACTCCCAGGAATCTCGATCCTACCTAC...

• The sequence space consists of all 4L sequences of length L

• Typical genome lengths:
L ∼ 103 (viruses), L ∼ 106 (bacteria), L ∼ 109 (higher organisms)

• Proteins are sequences of 20 amino acids with L ∼ 102

• Coarse-grained representation of classical genetics: L genes that are
present as different alleles; often it is sufficient to distinguish between wild
type (0) and mutant (1) ⇒ binary sequences

• Genotypic distance: Two sequences are nearest neighbors if they differ in
a single letter (mutation)



Mathematical setting

• Genotypes are binary sequences σ = (σ1,σ2, ...,σL) with σi ∈ {0,1} or
σi ∈ {−1,1} (presence/absence of mutation).

• A fitness landscape is a function f (σ) on the space of 2L genotypes

• Epistasis implies interactions between the effects of different mutations

• Sign epistasis: Mutation at a given locus is beneficial or deleterious
depending on the state of other loci Weinreich, Watson & Chao (2005)

• Reciprocal sign epistasis for L = 2:
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Binary sequence spaces are hypercubes



A survey of empirical fitness landscapes

I.G. Szendro, M.F. Schenk, J. Franke, JK, J.A.G.M. de Visser
J. Stat. Mech. P01005 (2013), special issue on Evolutionary Dynamics

J.A.G.M. de Visser, JK
Nature Reviews Genetics (in press)



Pathways to antibiotic resistance

D.M. Weinreich, N.F. Delaney, M.A. De Pristo, D.L. Hartl, Science 312, 111 (2006)

• 5 mutations in the β -lactamase enzyme confer resistance to cefotaxime

• 5! = 120 different mutational pathways, out of which 18 are monotonically
increasing in resistance; figure shows 10 “most important” paths



Pyrimethamine resistance in the malaria parasite

E.R. Lozovsky et al., Proc. Natl. Acad. Sci. USA 106, 12025 (2009)

• 4! = 24 pathways, 10 (red) are monotonic in resistance

• Dominating pathways consistent with polymorphisms in natural populations



Five mutations from a long-term evolution experiment with E. coli

A.I. Khan et al., Science 332 (2011) 1193

• single fitness peak, 86 out of 5! = 120pathways are monotonic

⇒ landscape is rather smooth



The Aspergillus niger fitness landscape

J.A.G.M. de Visser, S.C. Park, JK, American Naturalist 174, S15 (2009)

• Combinations of 8 individually deleterious marker mutations
(one out of

(8
5

)

= 56 five-dimensional subsets shown)

• Arrows point to increasing fitness, 3 local fitness optima highlighted



Measures of landscape ruggedness

Local fitness optima Haldane 1931, Wright 1932

• A genotype σ is a local optimum if f (σ) > f (σ ′) for all one-mutant
neighbors σ ′

• In the absence of sign epistasis there is a single global optimum

• Reciprocal sign epistasis is a necessary but not sufficient condition for the
existence of multiple fitness peaks Poelwijk et al. 2011, Crona et al. 2013

Selectively accessible paths Weinreich et al. 2005

• A path of single mutations connecting two genotypes σ → σ ′ with
f (σ) < f (σ ′) is selectively accessible if fitness increases monotonically
along the path

• In the absence of sign epistasis all paths to the global optimum are
accessible, and vice versa



Probabilistic models
of fitness landscapes



House-of-cards/random energy model

• In the house-of-cards model fitness is assigned randomly to genotypes
Kingman 1978, Kauffman & Levin 1987

• What is the expected number of fitness maxima?

• A genotype has L neighbors and is a local maxima if its fitness is the largest
among L+1 i.i.d. random variables, which is true with probability 1

L+1

⇒ E(nmax) =
2L

L+1

• Density of maxima decays algebraically rather than exponentially with L

• Variance of the number of maxima Macken & Perelson 1989

Var(nmax) =
2L(L−1)

2(L+1)2
→

1
2

E(nmax) for L → ∞



Accessible pathways in the house-of-cards model

J. Franke et al., PLoS Comp. Biol. 7 (2011) e1002134

• What is the expected number of shortest, fitness-monotonic paths nacc from
an arbitrary genotype at distance d to the global optimum?

• The total number of paths is d!, and a given path consists of d independent,
identically distributed fitness values f0, ...., fd−1.

• A path is accessible iff f0 < f1.... < fd−1

• Since all d! permutations of the d random variables are equally likely, the
probability for this event is 1/d!

⇒ E(nacc) =
1
d!

×d! = 1

• This holds in particular for the L! paths from the antipodal point of the global
optimum.



Distribution of number of accessible paths from antipodal g enotype
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HoC Model
HoC constrained

• "Condensation of probability" at nacc = 0

• Characterize the distribution PL(n) by E(nacc) and the probability PL(0) that
no path is accessible ⇒ define accessibility as PL ≡ 1−PL(0)



“Accessibility percolation” as a function of initial fitnes s

• When fitnesses are drawn from the uniform distribution and the fitness of
the initial genotype is f0, then Hegarty & Martinsson, arXiv:1210.4798

lim
L→∞

PL =















0 for f0 >
lnL
L

1 for f0 <
lnL
L

,

• This implies in particular that limL→∞ PL = 0 for the HoC model with
unconstrained initial fitness

• If arbitrary paths with backsteps are allowed, the accessibility
threshold becomes independent of L and is conjectured to be
1− 1

2 sinh−1(2) ≈ 0.27818... Berestycki, Brunet, Shi, arXiv:1401.6894

• On a regular tree of height h and branching number b the accessibility
threshold for h,b → ∞ occurs at h/b = e

Nowak & Krug, EPL 2013; Roberts & Zhao, ECP 2013



Landscapes with tunable ruggedness



Kauffman’s NK-model Kauffman & Weinberger 1989

• Each locus interacts randomly with K ≤ L−1 other loci:

f (σ) =
L

∑
i=1

fi(σi|σi1, ...,σiK)

fi: Uncorrelated RV’s assigned to each of the 2K+1 possible arguments

• K = 0: Non-interacting K = L−1: House-of-cards

Rough Mount Fuji model Aita et al. 2000; Neidhart et al., arXiv:1402.3065

• Non-interacting (“Mt. Fuji”) landscape perturbed by a random component:

f (σ) = −cd(σ ,σ ∗)+η(σ) c > 0

η : i.i.d. random variables d(σ ,σ ′): Hamming distance

• Equivalent to a random energy model in a magnetic field



“Genetic architecture” in Kauffman’s NK-model

• Different schemes for choosing the interaction partners:

1 Li j random 

adjacent

block/modular

• Which properties of the fitness landscape are sensitive to this choice?



“Genetic architecture” in Kauffman’s NK-model

• Fitness correlation function is manifestly independent of the neighborhood
scheme P.R.A. Campos, C. Adami, C.O. Wilke (2002)

• This implies independence also for the Fourier spectrum of the landscape,
which is given by F̃p = 2−(K+1)

(K+1
p

)

J. Neidhart, I.G. Szendro, JK 2013

• In the block model, the mean number of local maxima is given exactly by

E(nblock
max ) =

(

2K+1

(K +1)+1

)B

=
2L

(K +2)L/(K+1)
Perelson & Macken 1995

where B = L
K+1 is the number of blocks of size K +1 each

• Mean number of accessible paths in the block model:

E(nblock
acc ) =

L!
[(K +1)!]L/(K+1)

B. Schmiegelt, JK 2014



Path decomposition for the block model

Originalpfad

projezierter Pfad

Teilpfad

0 0 0 0 0 0

0 0 01 0 0 0 0 0

0 0 0

1 0 0

1 0 0

1 0 0 0 1 0

1 0 0

1 1 0

1 1 0 0 1 0

1 1 01 1 0 1 1 0

1 1 0

1 1 1

1 1 0 1 1 1

1 1 01 1 1 1 1 1

1 1 1



Evolutionary accessibility in the block model

B. Schmiegelt, JK, J. Stat. Phys. 154, 334 (2014)

• A given pathway spanning the whole landscape is accessible iff all
subpaths within the B = L/(K +1) blocks are accessible

• Each combination of accessible subpaths can be combined into L!
[(K+1)!]B

global paths

⇒ nblock
acc =

L!
[(K +1)!]B

B

∏
i=1

n(i)
acc

• Since the blocks are HoC-landscapes of size K +1, the expected
number of accessible paths is E(nblock

acc ) = L!
[(K+1)!]B and the accessibility is

P
block
L = [P

HoC
K+1]

L
K+1 which approaches zero exponentially fast in L for any K

• This implies that most landscape have no path to the maximum
(low accessibility) but those that do have many (low predictability)



Mean number of paths is insensitive to genetic architecture
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...but accessibility appears to be very sensitive
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Distribution of the number of accessible paths in the block m odel

• Path number distribution in terms of HoC model:

PL(n) =















∑
DB(z)

B

∏
i=1

PHoC(K+1)
L (ni) if z =

[(K +1)!]B

L!
·N ∈ N0

0 else,

where DB(z) = {(n1, . . . ,nB) ∈ N
B
0 | ∏B

i=1ni = z}

• HoC distribution is exactly known for sequence lengths 2 and 3

• In particular for K = 1 the HoC paths numbers are 0, 1 or 2 and

PL(n 6= 0) = 3−B

(

B
k

)

δn,nk, k = 0,1, ...,B =
L

K +1

with nk = L!2k−B, and PL(0) = 1−
(

2
3

)L/2
.



Exact path number distributions for L = 12,18 and K = 1,2
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Exact path number distributions for L = 12,18 and K = 1,2
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Asymptotics of the number of maxima



Number of maxima in the NK-model

• Rigorous work on the NK-model with adjacent neighborhoods shows that
for fixed K

M ≡ E(nmax) ∼ λ L
K for L → ∞

with constants λK ∈ (1,2) Evans & Steinsaltz 2002, Durrett & Limic 2003

• The exact result for the block model is of this form with λK = (K +2)−
1

K+1

• Known explicit values for λK are remarkably close but not identical to the
block model result, e.g. for K = 1:

0.55463... ≤ λ1 ≤ 0.5769536... < 3−1/2 = 0.57735...

• When the limits L → ∞ and K → ∞ are taken simultaneously with α = L/K
fixed, rigorous analysis shows that M ∼ 2L

Lα , which is also true for the block
model. Limic & Pemantle 2004



Mean number of maxima for different genetic architectures

B. Schmiegelt, JK, J. Stat. Phys. 154, 334 (2014)
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Number of maxima in the Rough Mount Fuji model

J. Neidhart, I.G. Szendro, JK, in preparation

• A genotype at distance d from the reference sequence σ ∗ has d neighbors
in the ‘uphill’ direction and L−d neighbors in the ‘downhill’ direction

• The fitness distribution of uphill/downhill neighbors is shifted by ±c with
respect to the fitness distribution of the focal genotype

• Denoting by P(x) = P(η < x) the probability distribution of the random
fitness component and by p(x) = dP

dx the corresponding density, the
probability that a genotype at distance d is a local maximum is therefore

pmax(d) =
∫

dx p(x)P(x− c)dP(x+ c)L−d

and the expected total number of maxima is

M =
L

∑
d=0

(

L
d

)

pmax(d) =

∫

dx p(x)[P(x− c)+P(x+ c)]L



Classification in terms of tail behavior of P(x)

• For distributions with tail heavier than exponential (power law or stretched
exponential) M → 2L

L for L → ∞, which implies that the fitness gradient (c)
is asymptotically irrelevant

• For distributions with an exponential tail M → 2L

cosh(c)L for large L

• For distributions with tails lighter than exponential such as 1− P(x) ∼
exp[−xβ ] with β > 1 the number of maxima behaves to leading order as

M ∼
2L

L
exp[−βc(lnL)

1− 1
β ]

• For distributions with bounded support on [0,1] and boundary singularity
1−P(x) ∼ (1− x)ν the asymptotic behavior is of the form

M ∼
(2− cν)L

Lν

for c < 1 and M = 1 for c > 1.



Summary

• The fitness landscape over the space of genotypes is a key concept in
evolutionary biology that has only recently become accessible to empirical
exploration

• Mathematical analysis of probabilistic models can help to extrapolate from
the low dimensionality of existing empirical data sets to genome-wide
scales

• Notion of pathway accessibility defines a new class of percolation-type
problems on hypercubes and other graphs

• Comparison between fitness landscape models with tunable ruggedness
shows that similar asymptotics for the number of maxima can arise through
different mathematical mechanisms


