Turbulent liquid crystals unveil universal fluctuation properties of growing interfaces

Acknowledgment

Masaki Sano, Tomohiro Sasamoto, Herbert Spohn, Michael Prähofer, Grégory Schehr

Interface Growth

Wide interest

• Ubiquitous.

(e.g., coffee stain on a shirt, fabricating solid-state devices...)

- Obviously irreversible, thus out of equilibrium.
- Interesting pattern formation. (e.g., snowflakes, bacteria colony...) typically forming scale-invariant structures

Interface Growth

Wide interest

• Ubiquitous.

(e.g., coffee stain on a shirt, fabricating solid-state devices...)

- Obviously irreversible, thus out of equilibrium.
- Interesting pattern formation. (e.g., snowflakes, bacteria colony...) typically forming scale-invariant structures

test-bed for universality out of equilibrium.

Roughening of Interfaces

Typically, local growth processes form rough, self-affine interfaces.

Characterizing Self-Affinity

"Interface width" quantifies the roughness of interfaces

w(l, t) = Standard deviation of h(x, t)over length scale l

$$= \left\langle \sqrt{\langle [h(x,t) - \langle h \rangle_l]^2 \rangle_l} \right\rangle$$

Self-affinity of the interfaces implies: (Family-Vicsek scaling)

 $z = \alpha / \beta$

: dynamic exponent

$$w(l,t) \sim \begin{cases} l^{\alpha} & (l \ll l_*) \\ t^{\beta} & (l \gg l_*) \end{cases} \quad (l_* \sim t^{1/z})$$

lpha : roughness exponent eta : growth exponent

Basic Theory: KPZ Equation

• Kardar-Parisi-Zhang (KPZ) eq.

$$\frac{\partial}{\partial t}h(x,t) = v_0 + v \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \xi(x,t)$$

 $\text{\%by } h \rightarrow h + v_0 t$, one can take $v_0 = 0$.

- In (I+I) dimensions, $\alpha = 1/2$, $\beta = 1/3$, z = 3/2

Situation in Experiments

Rough surfaces are ubiquitous, but KPZ is seen less frequently..

Small, but growing # of experiments showing KPZ exponents

- Colony of mutant bacteria [Wakita et al., 1997]
- Slow combustion of paper [Maunuksela et al., 1997-]
- Turbulent liquid crystal [Takeuchi & Sano, 2010-] 🥧
- Tumor-like & tumor cells [Huergo et al., 2010-]
- Particle deposition on coffee ring [Yunker et al., 2013]

Advantages

- simple growth mechanism
- precise control
- many experimental runs
- ➡ high statistical accuracy

Electroconvection

Nematic liquid crystal (e.g., MBBA)

- Rod-like molecule $CH_3O O CH = N O CH_2CH_2CH_2CH_3$
- Strong anisotropy $\varepsilon_{\parallel} < \varepsilon_{\perp}, \ \sigma_{\parallel} > \sigma_{\perp}$
 - Convection driven by electric field

Dynamic Scattering Mode 2 (DSM2)

 $-100 \,\mu m$

DSM2 nucleation $(V \gg V_c)$

Dynamic Scattering Mode I (DSMI)

Williams domain

Two Turbulent States : DSM1 & DSM2

DSMI

nucleation if $V \gg V_c$

DSM2

DSM2 = topological-defect turbulence (analogy with "quantum turbulence"?)

 $0V \rightarrow 72V \rightarrow 0V ~(V_c \approx 30 \text{ V, speed x3})$

We focus on DSMI-DSM2 interfaces and study their fluctuations

Experimental Setup

- Quasi-2d cell: $16 \text{ mm} \times 16 \text{ mm} \times 12 \mu \text{m}$
- Nematic liquid crystal: MBBA
- Homeotropic alignment (to work with isotropic growth)
- Temperature control: $T = 25 \,^{\circ}\mathrm{C}$
- Nucleation of DSM2 by UV pulse laser

26V, 250Hz Speed x2, $-200\mu m$ Rough interface appears

Scaling Exponents

 $\frac{\text{interface width } W(l, t)}{\text{= standard deviation of } h(x, t)}$ $= \left\langle \sqrt{\langle [h(x, t) - \langle h \rangle_l]^2 \rangle_l} \right\rangle$

Family-Vicsek scaling $w(l, t) \sim t^{\beta} F(lt^{-1/z}) \sim \begin{cases} l^{\alpha} & (l \ll l_{*}) \\ t^{\beta} & (l \gg l_{*}) \end{cases}$ $l_{*} \sim t^{1/z}, z = \alpha/\beta$

Both exponents (α, β) agree with the KPZ class

Deeper Look at Height Fluctuations

Tracy-Widom Distribution

describes the largest-eigenvalue distribution of Gaussian random matrices

Universal Distribution!

Interface fluctuations precisely agree with the GUE-TW distribution up to the 4th order cumulant! Finite-time effect ~ $t^{-1/3}$ for the mean

GUE-TW statistics was first found in solvable models [Johansson 2000; Prähofer & Spohn 2000] and recently in an exact solution of KPZ eq. [Sasamoto & Spohn, Amir et al., 2010]

Why Tracy-Widom Distribution?

Geometry-Dependent Universality

Flat interfaces can also be created by shooting line-shaped laser pulses

"curved KPZ sub-class" & "flat KPZ sub-class"

Why Different Distributions?

Quick answer: Because of different space-time symmetry

For the PNG model

- Circular \Rightarrow Consider a square connecting (0,0) and (0,t) \Rightarrow GUE
- Flat \Rightarrow Consider a triangle connecting t = 0 and $(0,t) \Rightarrow \text{GOE}$

Different initial conditions (curved or not) lead to different symmetries and to different universal sub-classes! [GUE-TW (curved) & GOE-TW (flat)]

Extreme-Value Statistics (circular)

Max heights of circular interfaces obey the GOE-TW dist.!

Why GOE-TW for the Max Heights?

For the PNG model

- Circular \Rightarrow Consider a square connecting (0,0) and (0,t) \Rightarrow GUE
- Flat \Rightarrow Consider a triangle connecting t = 0 and $(0,t) \Rightarrow$ GOE
- Max height of droplet \Rightarrow triangle connecting (0,0) and $t = t \Rightarrow GOE!$

Spatial Correlation Function

Predictions for solvable models:

$$\begin{split} C_{\rm s}(l,t) &\equiv \langle h(x+l,t)h(x,t)\rangle - \langle h\rangle^2 \\ &\simeq (\Gamma t)^{2/3}g_i(\zeta) \end{split}$$

with i = 1 (flat), i = 2 (circular), $\zeta \equiv l \sqrt{\Gamma/2v_{\infty}} (\Gamma t)^{-2/3} \quad g_i(\zeta) \equiv \langle \mathcal{A}_i(t + \zeta) \mathcal{A}_i(t) \rangle - \langle \mathcal{A}_i(t) \rangle^2$ $\mathcal{A}_i(t)$: Airy_i process (cf. Airy₂ = largest-eigenvalue dynamics in Dyson's Brownian motion of GUE matrices)

Correlation of flat / circular interfaces is governed by the Airy₁ / Airy₂ process

> Qualitatively different decay $g_2(u) \sim u^{-2}$ (circular) $g_1(u)$: faster than exponential (flat)

Spatial Persistence

Temporal Correlation Function

Temporal Persistence (Flat Case)

Persistence probability $P_{\pm}(t, t_0)$

= joint probability that $\delta h \equiv h(x, t) - \langle h \rangle$ at a fixed position x is positive (negative) at time t_0 and keeps the same sign until time t

typically decay with a power law $P_{\pm}(t, t_0) \sim t^{-\theta_{\pm}}$

Temporal Persistence (Circular Case)

Persistence probability $P_{\pm}(t, t_0)$

= joint probability that $\delta h \equiv h(x, t) - \langle h \rangle$ at a fixed position x is positive (negative) at time t_0 and keeps the same sign until time t

typically decay with a power law $P_{\pm}(t, t_0) \sim t^{-\theta_{\pm}}$

3 Important Sub-classes [I. Corwin, Random Matrices: Theor. Appl. 1, 1130001]

Circular (curved) interfaces

- Init. cond. : point or curved line — /
- Asymptotics : GUE Tracy-Widom dist., Airy₂ process
- Proved for : TASEP [Johansson CMP 2000], PNG, PASEP, KPZ eq. [Sasamoto-Spohn 2010, Amir et al. 2011]

Flat interfaces

- Init. cond. : straight line ——
- Asymptotics : GOE Tracy-Widom dist., Airy, process
- Proved for : PNG [Prähofer-Spohn PRL 2000], TASEP [Sasamoto JPA 2005], KPZ eq.

※ Scaling exponents are the same.※ Other sub-classes are also argued.

Stationary interfaces

- Init. cond. : stationary interface (= trajectory of Id-Brownian motion)
- Asymptotics : Baik-Rains F_0 distribution, Airy_{stat} process
- Proved for : PNG [Baik-Rains JSP 2000], TASEP, KPZ eq. [Imamura-Sasamoto PRL 2012]

Toward the Stationary Subclass

Truly stationary state is never attained unless it is taken as an initial condition, but, approach, or crossover to the stationary subclass can be studied.

• Scaling functions $\langle \Delta q^n \rangle_c \simeq G_n(\Delta t/t_0)$ describing flat-stationary crossover is found.

Experiment seems to indicate the same scaling functions, so universal!

Evidence for KPZ geometry-dependent universal fluctuations in growing interfaces of liquid-crystal turbulence (DSM2)

	Flat interfaces	Circular interfaces
scaling exponents	$\alpha = 1/2, \beta = 1/3, z = 3/2$	
distribution	GOE-TW distribution (GOE largest eigenvalue dist.)	GUE-TW distribution (GUE largest eigenvalue dist.)
maximal height dist.		GOE-TW distribution
spatial correlation	correlation of Airy ₁ process	correlation of Airy ₂ process
temporal correlation	$\sim (t/t_0)^{-1}$ in rescaled units	remains strictly positive
temporal persistence	$\theta_+ = 1.35(5) < \theta = 1.85(10)$	$\theta_{+} = 0.81(2) \approx \theta_{-} = 0.80(2)$

deep & direct link between quantitative experiment and exactly solvable problems

Our experiment: Takeuchi et al., Sci. Rep. (Nature) 1, 34; J. Stat. Phys. 147, 853 **Reviews**:

Kriecherbauer&Krug, J. Phys. A 43, 403001 (th); Takeuchi, arXiv:1310.0220 (exp)

YITP workshop August 20-23, 2014, Kyoto, Japan Interface fluctuations and KPZ universality class – unifying mathematical, theoretical, and experimental approaches

🗸 Top page 👘

🖌 About 🚽 Program

🚽 For participants 🚽 Useful info

What are interfaces telling to ns?

http://www.kpz2014.com Deadline for contributed talks: June 13th

Updates

Apr. 21 st

List of invitees updated. Apr. 15th Registration open! Changed abstract instruction (check here before submission). Apr. 2nd Web site open!

About this workshop

List of invited speakers is announced here.

Check out important dates

Registration deadline is June 13th for those who wish to contribute a talk, apply for financial support, or need a visa document.

Evidence for KPZ geometry-dependent universal fluctuations in growing interfaces of liquid-crystal turbulence (DSM2)

	Flat interfaces	Circular interfaces
scaling exponents	$\alpha = 1/2, \beta = 1/3, z = 3/2$	
distribution	GOE-TW distribution (GOE largest eigenvalue dist.)	GUE-TW distribution (GUE largest eigenvalue dist.)
maximal height dist.		GOE-TW distribution
spatial correlation	correlation of Airy ₁ process	correlation of Airy ₂ process
temporal correlation	$\sim (t/t_0)^{-1}$ in rescaled units	remains strictly positive
temporal persistence	$\theta_+ = 1.35(5) < \theta = 1.85(10)$	$\theta_{+} = 0.81(2) \approx \theta_{-} = 0.80(2)$

deep & direct link between quantitative experiment and exactly solvable problems

Our experiment: Takeuchi et al., Sci. Rep. (Nature) 1, 34; J. Stat. Phys. 147, 853 **Reviews**:

Kriecherbauer&Krug, J. Phys. A 43, 403001 (th); Takeuchi, arXiv:1310.0220 (exp)