I---rr-—--l

Turbulent liquid crystals unveil
universal fluctuation properties of growing interfaces
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Interface Growth

Wide interest

e Ubiquitous.
(e.g., coffee stain on a shirt, fabricating solid-state devices...)

e Obviously irreversible, thus out of equilibrium.

* Interesting pattern formation. (e.g., snowflakes, bacteria colony...)
typically forming scale-invariant structures

Two types of mechanism
Non-local growth Local growth

Burning front

Paper wetting

paper

suspension

Bacterial colony

snowflake




Interface Growth

Wide interest

e Ubiquitous.
(e.g., coffee stain on a shirt, fabricating solid-state devices...)

e Obviously irreversible, thus out of equilibrium.

* Interesting pattern formation. (e.g., snowflakes, bacteria colony...)
typically forming scale-invariant structures

_ test-bed for universality out of equilibrium.

Two types of mechanism

Local growth
¥ 5 | Burning front

Paper wetting

paper

suspension

Bacterial colony




Roughening of Interfaces

Typically, local growth processes form rough, self-affine interfaces.

h(x, 1)
A
v
Eden model
Paper wetting add a particle randomly
(and many other experiments) onto the interface
Self-affine:

fluctuation properties are (statistically) invariant
under x > ax, t —> a‘t, h — a*h

Ballistic deposition model
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Characterizing Self-Affinity

“Interface width” quantifies the roughness of interfaces

w(l, t) = Standard deviation of A(x, 1)
over length scale /

= (VKTh(x, 1) = (P

Self-affinity of the interfaces implies: (Family-Vicsek scaling)
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Basic Theory: KPZ Equation

NEX', 1))y = DS(x — x")o(t — ')

e Kardar-Parisi-Zhang (KPZ) eq.

9
o1

A
h(x, 1) = vy + vV2h + 5(Vh)2 + &(x, 1)

by h — h + vyt ,one can take v = 0.

° |n (I+1) dimensions,

g=1/2 B=1/3 z2=3/2

> Exponents regularly seen in numerical models &) KPZ universality class

o Why o =1/2?

|d EW/KPZ stationary interfaces
= |d Brownian motion P[h] ~ exp

_%de(Vh)zl '\\/\'vf]

$W ~ 12

< —> [




Situation in Experiments

Rough surfaces are ubiquitous, but KPZ is seen less frequently..
'cameru

buffer * growth of plant callus

[Galeano et al.,2003]
a=0.86,8=0.17

SOUrce .

 paper wetting «a = 0.73
[Kobayashi et al, 2005] B = 0.60

 copper deposition
[Kahanda et al., 1992]

a=055 B>1

g ——
(a8

* flow in porous media @ = 0.81 ﬁ #. P
[Horvithetal, 19911 B =0.65 #Zh

B - bacteria colony o = 0.78
[Wakita et al, 1997]

of.|akpz = 1/2, Bxpz =1/3

Small, but growing # of experiments showing KPZ exponents

e Colony of mutant bacteria [Wakita et al., 1997]

* Slow combustion of paper [Maunuksela et al., 1997-]
 Turbulent liquid crystal [Takeuchi & Sano,2010-]

e Tumor-like & tumor cells [Huergo et al,,2010-]

e Particle deposition on coffee ring [Yunker et al, 2013]

Advantages

* simple growth mechanism
* precise control

* many experimental runs
> high statistical accuracy




Electroconvection /

Nematic liquid crystal (e.g., MBBA)
¢ Rod-like molecule cH:0<O)~CH=N —O)- CH:CHCH:CHs
e Strong anisotropy g, < &,, o >0,

&> Convection driven by electric field

phase diagram (MBBA,; planar alignment) DSM2 nucleation
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Two Turbulent States : DSMI| & DSM2

DSMI nucleation if V >V, DSM2

DSM2 = topological-defect turbulence
(analogy with “quantum turbulence’?)

oV — 72V — 0V (V. = 30 V, speed x3)

We focus on DSM|-DSM2 interfaces and study their fluctuations




Experimental Setup

(e}

Quasi-2d cel: 16 mm X 16 mm X 12 um
Nematic liquid crystal: MBBA

(e}

(e}

Homeotropic alignment (to work with isotropic growth)
Temperature control: T = 25 °C
Nucleation of DSM2 by UV pulse laser

(e}

(e}

CCD camera PC
355nm, 4-6ns, 6n)
Pulse laser

Thermo controller

26V,250Hz  Speed x2, —200um  Rough interface appears




Scaling Exponents e - )

interface width W([, 1)
= standard deviation of A(x, )
over length /

500 h(x,y‘ \vx = ( V{[h(x, ) — (h)z]2>z>

interfaces at 1 =2,7,12,---,27sec

1000}

w(l.r) (um)

U.
500! _ Family-Vicsek scaling
v (xl)
~1000} , i w(l,t) ~ tPF (I ~ 4
~1000 0 1000 (1m) o (I>1,)
L, ~t'%,z2=0a/B
w(l, 1) vs [ vs time data collapse
102 T 10 10 :
slope
slope _
agpz = 1/2 _ kpy = 1/3 - | slope
: L | aker =172
1 - E! - s | akpz )
10 ey ey o
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o e
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Both exponents (, ) agree with the KPZ class




Deeper Look at Height Fluctuations

Key quantity: nth-order cumulant (#")c
(W) = (Sh?) ~*°  (6h = h(x, t) — (h))
(W) = (k)

h*ye = (Sh*) — 3(6h?*)?
{0 = (OK7) = 3(0h7) skewness (h%)./(h?)>/? .
s cumulant (h"). ~ /3 kurtosis  (h*)c/(h*)? ﬁi%f.sﬁuf.'ii"f?r'”e
,r"‘l‘4/3 0.3 b < GOE

-
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This suggests (1) =~ voot + (I'H)' Py ( X : non-Gaussian random variable)

X obeys the largest-eigenvalue distribution [Tracy-Widom (TW) dist.]
of GUE random matrices!?




Tracy-Widom Distribution

describes the largest-eigenvalue distribution of Gaussian random matrices

e.g.) Gaussian Unitary Ensemble (GUE)

complex Hermite matrix A =

prob. density for all eigenvalues
(Wigner’s semicircle law)

Experiment:
height fluctuations

(A Anp
Ay Axp
. An1 An

Amax = 2N + N1/3XGUE

O

A

Ay )
Asn

AnN

h(t) = veot + (D) Py

Gaussian
mean O variance N/2

Agj = Aji = 4ajj + ibgj
Aji = aj

mean 0 variance N

pdf(xGue) =
GUE Tracy-Widom dist.

apparent
correspondence cuel
teo N GSE 0.4}
X € XGUE o s
\ | \\ GOE
4 ) -




Universal Distribution!

Define the rescaled height | ¢ = (h — Veot) /(T3

=X Difference from
. GUE-TW disgribution
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Interface fluctuations precisely agree with the GUE-TW distribution
up to the 4" order cumulant! Finite-time effect ~ ¢~1/3 for the mean

GUE-TW statistics was first found in solvable models [Johansson 2000; Priahofer & Spohn 2000]
and recently in an exact solution of KPZ eq. [Sasamoto & Spohn, Amir et al.,2010]




Why Tracy-Widom Distribution?

In case of the PNG (= polynuclear growth) model [Prihofer & Spohn, PRL 2000]
A h(x.t)
Time evolution: (1) stochastic nucleations J-

(2) deterministic lateral expansion -] S

For circular interfaces, first nucleation at (x,t) = (0,0)

\ B

0,7) t
h(0, 1) = # of lines to pass when moving from (0,0) to (0,t) 3
= max # of dots passed by directed polymer btwn (0,0) & (0,t) /

= length of longest increasing subsequences
in random permutations of Poisson-distributed length

= ... (Young tableau) ... = asymptotically, GUE-TWV dist.

&> (curved) PNG fluctuations obey the GUE-TW dist.
h(0,1) = V2t + (t/ V2)PxcuE

related to random matrix, combinatorics, disordered systems, etc.

random 12345678
permutation

0,0 \ / steps

Experiment implies universality of the GUE-TW distribution




Geometry-Dependent Universality

Flat interfaces can also be created by shooting line-shaped laser pulses

26V,250Hz Speed x5,

Same KPZ exponents are found.

Same exponents,

but different distributions!!

— 200um

however

wo

e

o

measuring o
el e o '
the distribution. ST
B *
J".
i

circular

flat

10

rescaled height g

circular : A(f) = Voot + T3 ygur
flat : h(f) = veot + (D3 yoE

KPZ class splits into (at least) two universality sub-classes:

Same results in

solvable models

[Prahofer &
Spohn 2000]

“curved KPZ sub-class” & “flat KPZ sub-class”




Why Different Distributions!?

Quick answer: Because of different space-time symmetry

For the PNG model
o Circular &> Consider a square connecting (0,0) and (0,t) &> GUE
e Flat £ Consider a triangle connecting t = 0 and (0,t) &> GOE

but with time-reversal symmetry.

Different initial conditions (curved or not) lead to different symmetries
and to different universal sub-classes! [GUE-TW (curved) & GOE-TW (flat)]




Extreme-Value Statistics (circular)

max height

radius R |: GUE-TW [max(R sin 9)] : GOE-TW distribution!!
0
10

|
max radius
max R | :Gumbel dist.
cdf(x) = exp(—ea(x—”))
10 °}
5
a
10} ._
"o @
L 0 2 4

rescaled radius/height

Max heights of circular interfaces obey the GOE-TW dist.!




Why GOE-TW for the Max Heights!?

For the PNG model

o Circular &) Consider a square connecting (0,0) and (0,t) &> GUE

e Flat

> Consider a triangle connecting t = 0 and (0,t) > GOE

» Max height of droplet I triangle connecting (0,0) and t = t &> GOE!

One-point dist.
of circ. interfaces

(0.9) t I_

One-point dist.
of flat interfaces

N -
N -

Max-height dist.
of circ. interfaces

(0.0)

Max-height dist. for circular interfaces has the same symmetry

as the one-point dist. for flat interfaces & GOE-TW dist.!

[proof: Johansson 2003]




Spatial Correlation Function

Predictions for solvable models:

0.8

0.6

GO =am/(ry”

0.4t

0.2}

Ci(L, 1) = (h(x + L, Hh(x, 1)) — (h)?

~ (1) gi(Q)

with i =1 (flat), i = 2 (circular)

(= INT2ve T2 gi(0) = (At + DAD)) — (A(D))

A;i(t) :Airy, process (cf. Airy, = largest-eigenvalue dynamics

Two-point correlation function

n Dyson’s Brownian motion of GUE matrices)

¢ flat 60.0 s
s cirele30.05s

- gl(u)
flat = Airy, &)

circular = Airy,

{

0 1 2

rescaled length

Correlation of flat / circular interfaces
is governed by the Airy, / Airy, process

Qualitatively different decay

go(u) ~ u™* (circular)
’ g1(u) : faster than exponential (flat)




Spatial Persistence

Spatial Persistence probability PP(1; 1)

= joint probability that 6/ = h(x, t) — (h) keeps the same sign
over length [ in space at fixed time t

.

circular interfaces

flat interfaces

()

o aof

.60 ¢ y
-E' q 1 |¢ ]

0 2 4 f ) 10

rescaled length u

rescaled length 1

» Exponential decay PE_LS) ~ eXp(—K(S)u) with symmetric coefficients K(f) =«

+
. KE_,S) expected to be universal KS) ~ 2.0 (flat) KE_LS) ~ (.9 (circular) [cf. Ferrari&Frings 2013]

 Extension of the Newell-Rosenblatt theorem for Airy, process ?
NR theorem: for stat. Gaussian processes, P©® ~ exp(—«t) if (ADAQ0)) ~ 17 (u > 1)




Temporal Correlation Function

C(t,19) = (h(x, )h(x, t9)) — (h(x, 1)){(h(x, 1)) | analytically unsolved yet

flat circular
1000 — 1200 — 5w
so0l | 1000 | = n,  slope-1/3 |7
4 ‘E s} °© =% e "R
2 600} . e K S | ™
< 400 2 ' 2 O o iss 02,59 o
- - 10— I - .-
— 10° 10" ~ 400 tito .
] fo=10s tlty . j\‘-ll—n fp =8s
200 F - 200 3 4
fo = 45 Iy = 4s
D | |
0 5 10 15 20 0 5 10
t/tg 1/t

e Natural scaling ansatz works

Ci(t, to) =~ (T?tyH) P F(t/ty) * The natural scaling
does not seem to work as well.

* |n particular,

Ci(t,19) >0 (r > 00) | ()

* |n particular,

F(t/to) ~ (/o)™ with 1 = 1

=

cf. Kallabis-Krug conjecture 1 =8 +d/z = 1




Temporal Persistence (Flat Case)

Persistence probability P..(t, t)

L

= joint probability that 64 = h(x, t) — (h) at a fixed position x

is positive (negative) at time t, and keeps the same sign until time t

typically decay with a power law | P_ (¢, ty) ~ %

flat, positive

10 ——
~ 10
Y
107F o 45
r o 8s Hﬁ‘\,ﬁ
1 j g: slope -1.35(5) .
107 —
flat 0 ey
0. = 1.35(5) 0, < 0_ (flat)
0_ = 1.85(10)

P(t,1,)

F o 45 “
- o 8s -
r ¢ 15s ~

2 25s  slope-1.85(10) ~.

=y

10°

II
10!
1ty

’\ﬁ/\\/{r\/

because of the KPZ nonlinearity % = vW2h + %(Vh)2 + &




Temporal Persistence (Circular Case)

Persistence probability P..(t, t)

L = joint probability that 6/ = h(x, 1)

— (h) at a fixed position x
is positive (negative) at time t, and keeps the same sign until time t

typically decay with a power law | P_ (¢, ty) ~ %

P (1, 1,)

circular

circular, posmve & negatlve

negative / positive ratio

107

-{'}5_

-Dslm DSD{"} =

= 0.81(2)
0- = 0.80(2)

tlt,

0, < 6_
9+=9_

(flat)
(circular)

i/t

1.15
K 08 00 o oo
- 37”" qhﬁ; .-_ﬂﬁ;re,
— o o
! <}f EFEFEC' qh
— Llfgfe ””Ewﬂlaa&.%ng _
"’; GAcA
= n
[ TR o d4s
N O ? o 8s
! ¢ 15%
- 1.05 A
10! 10° 10!

Asymmetry in persistence exponents
is cancelled for the circular interfaces!




3 |mPO rtant SU b-ClaSSGS [I. Corwin, Random Matrices: Theor.Appl. 1, 1130001]

Liquid-crystal
experiment

circular flat

* Init.cond. : point or curved line ¢ /™ /\

* Asymptotics : GUE Tracy-Widom dist., Airy, process

* Proved for : TASEP [johansson CMP 2000], PNG, PASEP,
KPZ eq. [Sasamoto-Spohn 2010, Amir et al. 201 1]

m Flat interfaces

* Init.cond. : straight line
* Asymptotics : GOE Tracy-Widom dist., Airy, process

* Proved for : PNG [Prihofer-Spohn PRL 2000],
TASEP [Sasamoto JPA 2005], KPZ eq.

._.
o|
D

Prob. dens.

—
=
=
T
-

(rescaled) interface height

2<¢ Scaling exponents are the same.

2¢ Other sub-classes are also argued.
g Stationary interfaces

* Init.cond. : stationary interface (= trajectory of |d-Brownian motion) M
 Asymptotics : Baik-Rains /o distribution, Airy,... process
* Proved for : PNG [Baik-Rains JSP 2000], TASEP, KPZ eq. [Imamura-Sasamoto PRL 2012]




Toward the Stationary Subclass

Truly stationary state is never attained unless it is taken as an initial condition,
but, approach, or crossover to the stationary subclass can be studied.

h(x, ty + At)

Ah = v, At + (TAD Py

h(x, to)

rescaled height difference

o A v
1= " TAn

=X

(Ag).

(A,

A,

02 F
04
-0.6 -

PNG model (simulation)

experiment

0 .-

10! 10° 10
At/

107!

e Scaling functions (Ag"). ~G,(At/t) describing flat-stationary crossover is found.

» Experiment seems to indicate the same scaling functions, so universal!

104
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Summary

Evidence for KPZ geometry-dependent universal fluctuations
in growing interfaces of liquid-crystal turbulence (DSM2)

_ Flat interfaces Circular interfaces

scaling exponents a=1/2, p=1/3, z=3/2
distribution GOE-TW distribution GUE-TW distribution
(GOE largest eigenvalue dist.) (GUE largest eigenvalue dist.)
maximal height dist. - GOE-TW distribution
spatial correlation correlation of Airy, process  correlation of Airy, process

temporal correlation ~ (¢/ fo)”! in rescaled units  remains strictly positive
temporal persistence 6, = 1.35(5) < 6_ = 1.85(10) 6, =0.81(2) ~ 6- = 0.80(2)

[deep & direct link between quantitative experiment and exactly solvable problems ]

Our experiment: Takeuchi et al,, Sci. Rep. (Nature) 1, 34; |. Stat. Phys. 147,853
Reviews: Kriecherbauer&Krug, |. Phys. A 43,403001 (th); Takeuchi, arXiv:1310.0220 (exp)
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Interface fluctuations and KPZ universality class
— unifying mathematical, theoretical, and experimental approaches
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