
Turbulent liquid crystals unveil 
universal fluctuation properties of growing interfaces

Kazumasa  A. Takeuchi (Univ. of Tokyo)

Acknowledgment
Masaki Sano, Tomohiro Sasamoto, 
Herbert Spohn, Michael Prähofer, Grégory Schehr



Interface Growth

Wide interest
 Ubiquitous.

(e.g.,  coffee stain on a shirt,  fabricating solid-state devices…)

 Obviously irreversible, thus out of equilibrium.

 Interesting pattern formation. (e.g.,  snowflakes,  bacteria colony…)
typically forming scale-invariant structures

Non-local growth

Paper wetting

Local growth
Burning frontMetal dendrite

snowflake

Two types of mechanism

Bacterial colony
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Roughening of Interfaces

Typically, local growth processes form rough, self-affine interfaces.

Eden model
add a particle randomly

onto the interface

Ballistic deposition model
Paper wetting

(and many other experiments)

Self-affine:
fluctuation properties are (statistically) invariant
under



Characterizing Self-Affinity

“Interface width” quantifies the roughness of interfaces

Self-affinity of the interfaces implies:  (Family-Vicsek scaling)

Eden model

Standard deviation of    
over length scale  

: roughness exponent
: growth exponent : dynamic exponent



Basic Theory:  KPZ Equation

 Linear theory: Edwards-Wilkinson eq.

 Kardar-Parisi-Zhang (KPZ) eq.

◦ In (1+1) dimensions, 

◦ Exponents regularly seen in numerical models

◦ Why ?
1d EW/KPZ stationary interfaces
= 1d Brownian motion

※by , one can take .

KPZ universality class



Situation in Experiments

Rough surfaces are ubiquitous, but KPZ is seen less frequently..

Small, but growing # of experiments showing KPZ exponents

• flow in porous media
[Horváth et al., 1991]

• paper wetting
[Kobayashi et al., 2005]

• bacteria colony
[Wakita et al., 1997]

• growth of plant callus
[Galeano et al., 2003]

• copper deposition
[Kahanda et al., 1992]

• Colony of mutant bacteria  [Wakita et al., 1997]

• Slow combustion of paper  [Maunuksela et al., 1997-]

• Turbulent liquid crystal [Takeuchi & Sano, 2010-]

• Tumor-like & tumor cells  [Huergo et al., 2010-]

• Particle deposition on coffee ring  [Yunker et al., 2013]

cf.

Advantages
• simple growth mechanism
• precise control
• many experimental runs

high statistical accuracy



Electroconvection

Nematic liquid crystal (e.g., MBBA)
 Rod-like molecule
 Strong anisotropy

Williams domain

grid pattern

Dynamic Scattering 
Mode 1 (DSM1)

Dynamic Scattering 
Mode 2 (DSM2)

DSM2 nucleation

c

phase diagram (MBBA; planar alignment)
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Two Turbulent States : DSM1 & DSM2

DSM2 = topological-defect turbulence
(analogy with “quantum turbulence”?)

DSM1 DSM2nucleation if

0V → 72V → 0V  ( , speed x3)

We focus on DSM1-DSM2 interfaces and study their fluctuations



Experimental Setup

◦ Quasi-2d cell:
◦ Nematic liquid crystal: MBBA
◦ Homeotropic alignment (to work with isotropic growth)

◦ Temperature control:
◦ Nucleation of DSM2 by UV pulse laser

355nm, 4-6ns, 6nJ

(schematic)

Rough interface appearsSpeed x2,



Scaling Exponents
interfaces at

Family-Vicsek scaling

slope slope

data collapse

slope

vs vs time

(µm)

interface width
= standard deviation of

over length

Both exponents ( ) agree with the KPZ class



Deeper Look at Height Fluctuations

Key quantity: nth-order cumulant

This suggests (    : non-Gaussian random variable)

obeys the largest-eigenvalue distribution [Tracy-Widom (TW) dist.]
of GUE random matrices!?

skewness
kurtosis

GUE

GUE

GOE

GOE

Gaussian

largest-eigenvalue 
distribution for...cumulant



Tracy-Widom Distribution

describes the largest-eigenvalue distribution of Gaussian random matrices

e.g.) Gaussian Unitary Ensemble (GUE)

complex Hermite matrix

Gaussian
mean 0 variance

mean 0 variance

prob.  density  for all eigenvalues
(Wigner’s semicircle law)

-2N -N 0 N 2N

GUE  Tracy-Widom dist.

GOE

GUE
GSE

Experiment:
height fluctuations

apparent
correspondence



rescaled height

Universal Distribution!

Define the rescaled height

Histogram

1st order

2nd-4th order

Difference from
GUE-TW distribution

Interface fluctuations precisely agree with the GUE-TW distribution
up to the 4th order cumulant! Finite-time effect              for the mean

GUE-TW statistics was first found in solvable models [Johansson 2000; Prähofer & Spohn 2000]

and recently in an exact solution of KPZ eq. [Sasamoto & Spohn, Amir et al., 2010]

slope -1/3
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Why Tracy-Widom Distribution?

In case of the PNG (= polynuclear growth) model [Prähofer & Spohn, PRL 2000]

Time evolution: (1) stochastic nucleations
(2) deterministic lateral expansion

For circular interfaces,  first nucleation at (x,t) = (0,0)

= # of lines to pass when moving from (0,0) to (0,t)

= max # of dots passed by directed polymer btwn (0,0) & (0,t)

= length of longest increasing subsequences
in random permutations of Poisson-distributed length

= … (Young tableau) … = asymptotically, GUE-TW dist.

nucleation

steps

Experiment implies universality of the GUE-TW distribution

(curved) PNG fluctuations obey the GUE-TW dist.
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Geometry-Dependent Universality

Flat interfaces can also be created by shooting line-shaped laser pulses

Same exponents, 
but different distributions!!

circular : 
flat :

KPZ class splits into (at least) two universality sub-classes:
“curved KPZ sub-class” & “flat KPZ sub-class”

Speed x5,
Same KPZ exponents are found.

however

measuring
the distribution..

Same results in 
solvable models
[Prähofer & 

Spohn 2000]

circular flat

h

h



Why Different Distributions?

Quick answer:  Because of different space-time symmetry

For the PNG model
 Circular Consider a square connecting (0,0) and (0,t) GUE

 Flat Consider a triangle connecting t = 0 and (0,t) GOE

Circular interfaces Flat interfaces

Mirror image gets back a square, 
but with time-reversal symmetry.

Different initial conditions (curved or not) lead to different symmetries
and to different universal sub-classes! [GUE-TW (curved) & GOE-TW (flat)]



Extreme-Value Statistics (circular)

Max heights of circular interfaces obey the GOE-TW dist.!

: GUE-TWradius

: Gumbel dist.
max radius

: GOE-TW distribution!!
max height



Why GOE-TW for the Max Heights?

For the PNG model

 Circular Consider a square connecting (0,0) and (0,t) GUE

 Flat Consider a triangle connecting t = 0 and (0,t) GOE

 Max height of droplet triangle connecting (0,0) and t = t GOE!

[proof: Johansson 2003]

One-point dist.
of circ. interfaces

One-point dist.
of flat interfaces

Max-height dist.
of circ. interfaces

Max-height dist. for circular interfaces has the same symmetry 
as the one-point dist. for flat interfaces GOE-TW dist.!



Spatial Correlation Function

Predictions for solvable models:

: Airyi process  (cf.  Airy2 = largest-eigenvalue dynamics
in Dyson’s Brownian motion of GUE matrices)

with  i = 1 (flat),  i = 2 (circular),

Correlation of flat / circular interfaces
is governed by the Airy1 / Airy2 process

(circular)

: faster than exponential  (flat)

Qualitatively different decay

rescaled length

Two-point correlation function

circular = Airy2

flat = Airy1



Spatial Persistence

Spatial Persistence probability
= joint probability that keeps the same sign

over length in space at fixed time t

• Exponential decay with symmetric coefficients

• expected to be universal (flat) (circular) [cf. Ferrari&Frings 2013]

• Extension of the Newell-Rosenblatt theorem for Airy2 process ?
NR theorem:  for stat. Gaussian processes, if

flat interfaces circular interfaces

rescaled length rescaled length



Temporal Correlation Function

• Natural scaling ansatz works

• In particular,

• The natural scaling
does not seem to work as well.

• In particular,  

(!)with

analytically unsolved yet

circularflat

cf. Kallabis-Krug conjecture



Temporal Persistence (Flat Case)

Persistence probability
= joint probability that at a fixed position x

is positive (negative) at time t0 and keeps the same sign until time t

typically decay with a power law

flat, positive flat, negative

(flat)
because of the KPZ nonlinearity

flat



Temporal Persistence (Circular Case)

Persistence probability
= joint probability that at a fixed position x

is positive (negative) at time t0 and keeps the same sign until time t

typically decay with a power law

circular,  positive & negative negative / positive ratio

Asymmetry in persistence exponents
is cancelled for the circular interfaces!

circular



3 Important Sub-classes

• Init. cond. :  point or curved line
• Asymptotics :  GUE Tracy-Widom dist.,  Airy2 process
• Proved for :  TASEP [Johansson CMP 2000],  PNG,  PASEP,  

KPZ eq. [Sasamoto-Spohn 2010,  Amir et al. 2011]

Circular (curved) interfaces

• Init. cond. :  straight line
• Asymptotics :  GOE Tracy-Widom dist.,  Airy1 process
• Proved for :  PNG [Prähofer-Spohn PRL 2000],  

TASEP [Sasamoto JPA 2005],  KPZ eq.

Flat interfaces

• Init. cond. :  stationary interface (= trajectory of 1d-Brownian motion)
• Asymptotics :  Baik-Rains distribution,  Airystat process
• Proved for :  PNG [Baik-Rains JSP 2000],  TASEP,  KPZ eq. [Imamura-Sasamoto PRL 2012]

Stationary interfaces

[I. Corwin, Random Matrices: Theor. Appl. 1, 1130001]

flat

h

h

circular
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(rescaled) interface height

GOE
-TW

GUE-TW

※ Scaling exponents are the same.
※ Other sub-classes are also argued.

Liquid-crystal 
experiment



Toward the Stationary Subclass

Truly stationary state is never attained unless it is taken as an initial condition,
but, approach, or crossover to the stationary subclass can be studied.

rescaled height difference

PNG model (simulation)

F0

GOE-TW

t0

F0 dist. (stationary)

GOE-TW dist. (flat)
F0

GOE-TW

experiment

• Scaling functions describing flat-stationary crossover is found.
• Experiment seems to indicate the same scaling functions, so universal!



Summary

Evidence for KPZ geometry-dependent universal fluctuations
in growing interfaces of liquid-crystal turbulence (DSM2)

Flat interfaces Circular interfaces

scaling exponents

distribution GOE-TW distribution
(GOE largest eigenvalue dist.)

GUE-TW distribution
(GUE largest eigenvalue dist.)

maximal height dist. -- GOE-TW distribution

spatial correlation correlation of Airy1 process correlation of Airy2 process

temporal correlation in rescaled units remains strictly positive

temporal persistence

Our experiment: Takeuchi et al., Sci. Rep. (Nature) 1, 34;  J. Stat. Phys. 147, 853
Reviews: Kriecherbauer&Krug, J. Phys. A 43, 403001 (th);  Takeuchi, arXiv:1310.0220 (exp)

deep & direct link between quantitative experiment and exactly solvable problems 
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