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Motivation

The accumulating priority queue (APQ, Kleinrock 1964)
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Abstract We are interested in queues in which customers of different classes arrive
to a service facility, and where performance targets are specified for each class. The
manager of such a queue has the task of implementing a queueing discipline that results
in the performance targets for all classes being met simultaneously. For the case where
the performance targets are specified in terms of ratios of mean waiting times, as long
ago as the 1960s, Kleinrock suggested a queueing discipline to ensure that the targets
are achieved. He proposed that customers accumulate priority as a linear function of
their time in the queue: the higher the urgency of the customer’s class, the greater the
rate at which that customer accumulates priority. When the server becomes free, the
customer (if any) with the highest accumulated priority at that time point is the one
that is selected for service. Kleinrock called such a queue a time-dependent priority
queue, but we shall refer to it as the accumulating priority queue. Recognising that
the performance of many queues, particularly in the healthcare and human services
sectors, is specified in terms of tails of waiting time distributions for customers of
different classes, we revisit the accumulating priority queue to derive its waiting time
distributions, rather than just the mean waiting times. We believe that some elements
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APQ

The accumulating priority queue (APQ):

M/M/1 queue (arrival and service rate) with two classes of customers

High and low priority customers (triage in emergency)

Customers deterministically acquire priority

High priority do so at a faster rate

Customers are ordered according to their priority

Hence they overtake deterministically

Change accumulation rates to achieve service waiting times performance levels
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Waiting time performance levels

Queueing Syst (2014) 77:297–330 299

Table 1 CTAS key
performance indicators

Category Classification Access Performance level (%)

1 Resuscitation Immediate 98
2 Emergency 15 min 95
3 Urgent 30 min 90
4 Less urgent 60 min 85
5 Not urgent 120 min 80

of patients whose waiting times before accessing treatment should not exceed the
stipulated standard. For example, as is depicted in Table 1, the Canadian Triage and
Acuity Scale (CTAS) [4] formulates five priority classifications for assessment in an
emergency department, each with its own time standard and compliance target for the
proportion of that class’s patients that need to meet that standard. The Australasian
Triage Scale [3], on which CTAS is based, likewise, has five priority classes, but with
different compliance targets. Elective patients awaiting surgery or treatment are also
categorized into priorities with compliance targets; we cite as particular examples
hip and knee replacement priority scoring in Canada [2] and New Zealand [7], and
coronary artery bypass graft surgery in New Zealand [15]. Curtis et al. [6] gave an
overview of prioritisation in Australia, as well as a discussion of the Clinical Priority
Assessment Criteria (CPAC) tools used in New Zealand and the Western Canada
Waiting List Project (WCWL) in Canada.

A variant of the accumulating priority mechanism has been considered previously
by healthcare modellers in a simulation of emergency care. Hay et al. [9] proposed
a mechanism which they term “operating priority” whereby all tasks have an initial
priority score which then increases as a function of time. Both the initial score and the
rate of increase are functions of the patient class. The authors went on to observe that
their mechanism tracks the actual behaviour of an emergency care facility better than
the classical priority mechanism.

In this paper, we extend Kleinrock’s analysis to derive the stationary waiting time
distribution for each class in a single-server accumulating priority queue with Poisson
arrivals and generally distributed service time distributions. Our analysis involves the
introduction and study of a stochastic process, the maximum priority process, that we
believe is of interest in its own right.

The remaining sections proceed as follows. Following a description of our model
and preliminary definitions in Sect. 2, we discuss the maximum priority process for
the two-class queue in Sect. 3, and define the concept of an accreditation interval in
Sect. 4. We then recall some useful results concerning the waiting time and busy period
distributions in a standard first-come-first-served M/G/1 queue in Sect. 5 and derive
expressions for the Laplace transforms of the accumulated priority of customers enter-
ing service in a two-class accumulating priority queue in Sect. 6. Section 7 contains
preliminary results for a multiclass system and Sect. 8 the derivation of the waiting time
distribution of customers of all classes. Section 9 contains some comments concerning
an alternative derivation of the waiting time distribution for the lowest priority class
in the general multiclass case. Section 10 shows how to utilise our results to design
an efficient method for simulating an accumulating priority queue, while Sects. 11
and 12 present a numerical example and some comments and suggestions for further
research, respectively.
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Goals

APQ has fluctuating length

Stochastic scheduling mechanism?

Mapping to exclusion process

Goals:

Stat-phys: Find a “solvable” particle hopping model with fluctuating length

Queueing: What can we say using physics methods
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Prioritising exclusion

The prioritising exclusion process (PEP)

p
λ1

λ2

n ... 3 2 1

μ

Low and high arrivals with rate λ1 and λ2

High overtakes low with rate p
Service rate µ
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M/M/1 queue

The PEP is related to the simple M/M/1 queue.

The total arrival rate of customers to the PEP is λ = λ1 + λ2, and the service rate
is µ.

Both these rates are independent of the internal arrangement of the queue, and
the prioritising parameter p.

If we are interested only in the total length of the queue, we can treat the system
as a M/M/1 queue with arrival rate λ and service rate µ.
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M/M/1 queue

The state of a M/M/1 queue is characterised by the probability distribution Pn of a
queue of lenght n:

d P0

d t
= µP1 − λP0

d Pn

d t
= λPn−1 + µPn+1 − (µ+ λ)Pn, n > 0.

The stationary length distribution of the M/M/1 queue (and hence for the PEP) is

Pn =

(
1− λ

µ

)(
λ

µ

)n

,

when λ < µ (arrival rate less than service rate)

The expected queue length is finite, given by

〈n〉 = λ

µ− λ .

We will call this the bounded phase of the PEP.
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M/M/1 queue

At p = 0, the PEP reduces exactly to a M/M/1 queue. Customers are high priority
with probability λ1/λ or low priority with probability λ2/λ.

But as there is no overtaking, the probability of high or low at any site is the same
as at arrival.

For p = 0, in the bounded phase,

P(τn . . . τ1) = Pn

(
λ1

λ

)h (
λ2

λ

)l

.

where

h =
n∑

i=1

τi , l = n − h.
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Unbounded phase

When λ > µ, the system is unstable and the expected queue length grows as

〈n〉 ∼ (λ− µ)t .

In the late time limit, we can treat the queue as infinite in length. We call this the
unbounded phase of the PEP.
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Notation

Specify both the site, i , and the lattice length, n:

〈τi〉n = P(queue length is n, and site i is occupied).

Correlation functions, number from right to left:

〈τinτi2 . . . τi1〉n, n ≥ in > . . . i2 > i1 ≥ 1.

Examples of stationary rate equations are

0 = λ1P0 + µ〈τ2〉2 − (λ+ µ)〈τ1〉1,

0 = λ〈τ1〉n−1 + µ〈τ2〉n+1 + p〈τ2(1− τ1)〉n − (λ+ µ)〈τ1〉n, n > 1.

These couple between different lenghts.
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Unbounded queue; Reference frames

For any fixed configuration τn . . . τ1,

lim
t→∞

P(τn . . . τ1) = 0,

The service frame is fixed at the right hand end of the lattice:

Pserv(τm . . . τ1; n) =
∑

τn,...,τm+1=0,1

P(τn . . . τm+1τm . . . τ1).

The arrival frame probability is defined by

Parr(τ1 . . . τm; n) =
∑

τm+1,...,τn=0,1

P(τ1 . . . τmτm+1 . . . τn).

In the t →∞ limit, the expected lattice length is infinite, and thus we are interested in
the n→∞ limits

Pserv(τm . . . τ1) = lim
n→∞

Pserv(τm . . . τ1; n),

Parr(τ1 . . . τm) = lim
n→∞

Parr(τ1 . . . τm; n).
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Domain wall ansatz

Consider a general but finite section of length m, with a length k jam:

τm . . . τk+201k = τ01k .

Assume that the conditional probability for a high at site i given a jam of length k is

P(τi = 1|k) =


1 1 ≤ i ≤ k
0 i = k + 1
α i ≥ k + 2,

1

α

kk+1n

P(τi=1|n,k)
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Domain wall ansatz

The probability of the finite segment τ = τm . . . τ1 is

Pserv(τ01k ) =
∑

τ∞,...,τm+1=0,1

P(. . . τm+1τm . . . τk+201k )

= αh(1− α)lPjam(k).

where

h =
m∑

i=k+2

τi , l = m − h − k − 1,

and Pjam(k) is the probability of a length k jam. The jam probabilities are normalised
such that

∞∑
k=0

Pjam(k) = 1.
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Service frame

The stationary rate equation for the k -jam configuration with k ≥ 1 is

0 = µPserv

(
τ01k+1

)
+ µPserv

(
τ01k 0

)
+ pτmPserv

(
0τ01k |(m+1,m)

)
+

m∑
i=k+2

p(1− τi)τi−1Pserv

(
τ01k |(i,i−1)

)
+ pPserv

(
τ101k−1

)
− µPserv(τ01k )−

m∑
i=k+2

pτi(1− τi−1)Pserv(τ01k )− p(1− τm)Pserv(1τ01k ).
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Service frame

Substituting the domain wall ansatz, the terms representing hopping combine and
telescope to

p

(
m∑

i=k+2

(1− τi)τi−1 −
m∑

i=k+2

τi(1− τi−1)

)
αh(1− α)lPjam(k)

= −pτmα
h(1− α)lPjam(k).

The factor αh(1− α)l is common to all terms in the rate equation. Cancelling, and
simplifying leaves

0 = pαPjam(k − 1) + µPjam(k + 1) + µ(1− α)αk Pjam(0)− (µ+ pα)Pjam(k).

No approximation has been made.
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Service frame

With boundary condition this implies the recursion

Pjam(k) =
pα
µ

Pjam(k − 1) + αk Pjam(0), k ≥ 1.

with solution

Pjam(k) =
p
(

pα
µ

)k
− µαk

p − µ Pjam(0).

The normalisation condition fixes

Pjam(0) = (1− α)(1− pα
µ

),

subject to the constraint
pα < µ.

No growing jam.

What is α?

Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June 2014 17 / 27



Arrival frame

The value of α can be determined by considering the arrival frame. One obtains:

0 = −λα(1− α) + pα2(1− α)− pτ1α(1− α) + τ1λ1(1− α) + (1− τ1)λ2α,

which for both τ1 = 0 and τ1 = 1 reduces to

pα2 − (p + λ)α+ λ1 = 0.

The physical solution is the smallest root of this quadratic.
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Density profile

The density at site i in the service frame, 〈τi〉∞, is computed from the domain wall
solution as

〈τi〉∞ = α
∑i−2

k=0 Pjam(k) +
∑∞

k=i Pjam(k)

= α+ (1− α)
(

pα
µ

)i
.
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Conserved current

The bulk equations can be written

d
d t
〈τi〉∞ = J(i+1)

∞ − J(i)
∞,

where
J(1)
∞ = µ〈τ1〉∞, J(i)

∞ = µ〈τi〉∞ + p〈τi(1− τi−1)〉∞.

Stationary current:
J∞ = pα(1− α) + µα

Low priority customers leave the queue at rate

µ− J∞ = (µ− pα)(1− α).

For pα > µ, the jam becomes unbounded, and low priority customers will no longer be
served.
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Bounded phase λ < µ

In the bounded phase the domain wall ansatz breaks down at the arrival end.

Define the probability of a length k jam in a length n queue

P(n, k) =
∑

τn,...,τk+2=0,1

P(τn . . . τk+201k ). (1)

Approximation Length assumption:

P(n, k) = PnP∗jam(k).

The equations for P∗jam(k) have the same form as for Pjam(k) in the unbounded case but
with λ in place of µ.

P∗jam(k) =
p
( pα
λ

)k − λαk

p − λ P∗jam(0).
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Density profile

〈τi〉n = Pn

(
α+ (1− α)

(pα
λ

)i
)
.
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Triangle markers show simulation results, with points for each length connected by
dashed lines.

Domain wall approximation invalid for pα > λ.
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Aggregate density profile and current

Another approximation can be derived for aggregate densities:

〈τi〉 =
∞∑
n=i

〈τi〉n.

d
d t
〈τi〉 = J(i)

ext + J
(i+1,i) − J

(i,i−1)
,

where
J
(i,i−1)

= µ〈τi〉+ p〈τi(1− τi−1)〉.

with stationary solution

J
(i,i−1)

= λ1

(
λ

µ

)i−1

.
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Aggregate density profile

〈τi〉 =
(
λ

µ

)i
[
α+ (1− α)

(
pα
µ

)i
]
,
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Waiting times

We can use the aggregated densities to compute the average number of customers in
the queue
Define

N1 =
∞∑
i=1

∞∑
n=i

〈τi〉n =
∞∑
i=1

〈τi〉.

Average waiting time of high priority customers is

W 1 =
1
λ1

N1 =
1
λ1

(
α

λ

µ− λ + (1− α) pαλ
µ2 − pαλ

)
.
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Conclusions

Conclusion

Queuing model with stochastic scheduling

Fluctuating length

Domain wall ansatz exact for the unbounded phase

Two approximations for bounded phase

Waiting times

Outlook

Full exact solution

More classes of particles

Waiting time distributions

Fluctuations and large deviations?
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