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Classical Transport in 1d: ASEP

A paradigmatic picture of a non-equilibrium system

R1
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The asymmetric exclusion model with open boundaries
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Our aim is to study the statistics of the current and its large
deviations starting from this microscopic model.
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Elementary Model for Protein Synthesis

C. T. MacDonald, J. H. Gibbs and A.C. Pipkin, Kinetics of
biopolymerization on nucleic acid templates, Biopolymers (1968).
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The Grotthuss Mechanism for proton transfer

(a)

(b)

A proton hops along an oxygen backbone of a line of water molecules
transiently converting each water molecule it visits into H3 O

+.
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The Kardar-Parisi-Zhang equation in 1d

The height of an interface h(x , t) satisfies the generic KPZ equation

∂h

∂t
= ν

∂2h

∂x2
+
λ

2

(
∂h

∂x

)2

+ ξ(x , t)

The ASEP is a discrete version of the KPZ equation in one-dimension.
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Various Boundary Conditions for the ASEP

The pure ASEP can be studied on a periodic chain (a), on the infinite
lattice (b) or on a finite lattice connected to two reservoirs (c).
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Statistics of the Integrated Current

R1

J

R2

Let Yt be the total charge transported through (a bond of) the system
(Integrated or total current) between time 0 and time t.

In the stationary state: a non-vanishing mean-current Yt

t → J

The fluctuations of Yt obey a Large Deviation Principle:

P

(
Yt

t
= j

)
∼e−tΦ(j)

Φ(j) being the large deviation function of the integrated current

Equivalently, use the generating function:
〈
eµYt

〉
' eE(µ)t for t→∞,

They are related by Legendre transform: E (µ) = maxj (µj − Φ(j))

K. Mallick Current Fluctuations in the Exclusion Process



Steady State Properties

of the ASEP
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Steady-State of the PERIODIC ASEP

L

N )(Ω =

N  PARTICLES

L SITES

x  asymmetry parameter

1

x

CONFIGURATIONS

In the stationary state all configurations have the same probability.
If Yt denotes the total number of particles having crossed any bond, then

Yt

t
→ J = (1− x)

N(L− N)

L(L− 1)

where J is the mean-current in the steady state.
What are the current fluctuations?
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Steady-State of the OPEN-BOUNDARY ASEP

Consider first the TASEP on a finite lattice with open boundaries.

α β1
1

1 L

RESERVOIR RESERVOIR

In a system of size L, there are 2L configurations. Each configuration can
be represented by a binary string.

In the steady state, the configurations appear with some stationary
probability: how are these weights be calculated?
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Exact Solution (1993)

The weights of the system satisfy recursion relations: the probability of a
configuration of size L can be written as a linear combination of (at most
2) weights of configurations of size L− 1: there is combinatorial
structure between systems of different sizes.

These recursions can be encoded using generating functions (DDM,
1992: α = β = 1; Schütz and Domany, 1993: General case).
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The Matrix Ansatz (DEHP, 1993)

The totally asymmetric exclusion model with open boundaries

α β1
1

1 L

RESERVOIR RESERVOIR

The stationary probability of a configuration C is given by

P(C) =
1

ZL
〈α|

L∏
i=1

(τiD + (1− τi )E ) |β〉 .

where τi = 1 (or 0) if the site i is occupied (or empty).

The normalization constant is ZL = 〈α| (D + E )L |β〉 = 〈α|CL|β〉

The operators D and E , the vectors 〈α| and |β〉 satisfy

D E = D + E

D |β〉 =
1

β
|β〉 and 〈α|E =

1

α
〈α|
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Representations of the quadratic algebra

The algebra encodes combinatorial recursion relations between systems of
different sizes.
The matrices D and E commute whenever they are finite-dimensional:
(D − 1)(E − 1) = 1.

Infinite dimensional Representation:

D = 1 + d where d =right-shift.

E = 1 + e where e =left-shift.

D =


1 1 0 0 . . .
0 1 1 0 . . .
0 0 1 1 . . .

. . .
. . .

 and E = D† =


1 0 0 0 . . .
1 1 0 0 . . .
0 1 1 0 . . .

. . .
. . .

 ,

We also have 〈α| = (1, a, a2, a3 . . .) and |β〉 = (1, b, b2, b3 . . .) with
a = (1− α)/α and b = (1− β)/β.
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Phase Diagram of the TASEP

The matrix Ansatz allows one to calculate Stationary State Properties
(currents, correlations, fluctuations). In particular, the following Phase
Diagram is found in the infinite size limit (DEHP, 1993; Schütz and
Domany, 1993).

= β (1 −β)

ρ = 1 − β

J

ρ = α

 = α(1−α)J

ρ = 1/2

J = 1/4

HIGH   DENSITY

LOW DENSITY

α

β
MAXIMAL  CURRENT
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Equal-time Steady State Correlations

More generally, the Matrix Ansatz gives access to all equal time
correlations in the steady-state.
Density Profile:

ρi = 〈τi 〉 =
〈α|C i−1 D CL−i |β〉

〈α|CL|β〉

Average Stationary Current:

J = 〈τi (1− τi+1)〉 =
〈α|C i−1 D E CL−i−1|β〉

〈α|CL|β〉
=
〈α|CL−1|β〉
〈α|CL|β〉

=
ZL−1

ZL

Explicit formulae either by using purely combinatorial/algebraic
techniques or via a specific representation (e.g., C can be chosen as a
discrete Laplacian):

〈α|CL|β〉 =
L∑

p=1

p (2L− 1− p)!

L! (L− p)!

β−p−1 − α−p−1

β−1 − α−1

For α = β = 1, J = L+2
2(2L+1)
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The General Case (DEHP,1993)

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

The operators D and E , the vectors 〈W | and |V 〉 now satisfy

D E − qE D = (1− q)(D + E )

(β D − δ E ) |V 〉 = |V 〉
〈W |(αE − γ D) = 〈W |
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Infinite dimensional Representations

The representations are now related to q-deformed oscillators.

D =


1
√

1− q 0 0 . . .

0 1
√

1− q2 0 . . .

0 0 1
√

1− q3 . . .
. . .

. . .

 and E = D†
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The Phase Diagram of the open ASEP

LOW  DENSITY

HIGH   DENSITY

MAXIMAL 

CURRENT

ρ

1 − ρ

a

b

1/2

1/2

ρa = 1
a++1 : effective left reservoir density.

ρb = b+

b++1 : effective right reservoir density.

a± =
(1− q − α + γ)±

√
(1− q − α + γ)2 + 4αγ

2α

b± =
(1− q − β + δ)±

√
(1− q − β + δ)2 + 4βδ

2β
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The PASEP average current

The Matrix Ansatz again gives access to all equal time correlations in the
steady-state of PASEP but the calculation are much harder.

Average Stationary Current:

J = lim
t→∞

〈Yt〉
t

= (1− q)

∮
Γ

dz
2 i π

F (z)
z∮

Γ
dz

2 i π
F (z)

(z+1)2

(cf. T. Sasamoto, 1999.)
• The function F (z) is the generating function of Askey-Wilson
Polynomials:

F (z) = (1+z)L(1+z−1)L(z2)∞(z−2)∞
(a+z)∞(a+z−1)∞(a−z)∞(a−z−1)∞(b+z)∞(b+z−1)∞(b−z)∞(b−z−1)∞

where (x)∞ =
∏∞

k=0(1− qkx) and a±, b± depend on the boundary rates.

• The complex contour Γ encircles 0, qka+, q
ka−, q

kb+, qkb− for k ≥ 0.
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Current Fluctuations

in the periodic ASEP
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Current Fluctuations on a ring

L

N )(Ω =

N  PARTICLES

L SITES

x  asymmetry parameter

1

x

CONFIGURATIONS

Total integrated current Yt , total distance covered by all the N
particles, hopping on a ring of size L, between time 0 and time t.

WHAT IS THE STATISTICS of Yt?
Let Pt(C,Y ) be the joint probability of being at time t in configuration C
with Yt = Y . The time evolution of this joint probability can be deduced
from the original Markov equation, by splitting the Markov operator

M = M0 + M+ + M−

into transitions for which ∆Y = 0, +1 or -1.
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One can prove that when t →∞ :〈
eµYt

〉
' eE(µ)t

The cumulant generating function E (µ) is the eigenvalue with maximal
real part of the deformed operator

M(µ) = M0 + eµM+ + e−µM−

the Markov operator being splitted M = M0 + M+ + M− into positive,
negative, null jumps.

The current statistics is reduced to an eigenvalue problem.
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Bethe Ansatz for current statistics

The function E (µ) can be calculated by Bethe Ansatz, because the
matrix M(µ) defines an integrable dynamics (related to XXZ spin-chain).

An Eigenvector ψ of M(µ) written as a linear combination of plane waves:

ψ(x1, . . . , xN) =
∑
σ∈ΣN

Aσ
N∏
i=1

zxi
σ(i)

The Bethe Equations quantify z1, . . . zN

zL
i = (−1)N−1

N∏
j=1

xe−µzizj − (1 + x)zi + eµ

xe−µzizj − (1 + x)zj + eµ

The eigenvalues of M(µ) are

E (µ; z1, z2 . . . zN) = eµ
N∑
i=1

1

zi
+ xe−µ

N∑
i=1

zi − N(1 + x) .
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Totally Asymmetric Case (Derrida Lebowitz 1998)

The Bethe equations decouple for the special case x = 0.
The structure of the solution is given by a parametric representation of
the cumulant generating function E (µ):

µ = −1

L

∞∑
k=1

[kL]!

[kN]! [k(L− N)]!

Bk

k
,

E = −
∞∑
k=1

[kL− 2]!

[kN − 1]! [k(L− N)− 1]!

Bk

k
.

Mean Total current:

J = lim
t→∞

〈Yt〉
t

=
N(L− N)

L− 1

Diffusion Constant:

D = lim
t→∞

〈Y 2
t 〉 − 〈Yt〉2

t
=

LN(L− N)

(L− 1)(2L− 1)

C 2N
2L(

CN
L

)2

Exact expressions for the large deviation function.
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General Case: Functional Bethe Ansatz

In the general case x 6= 0, there is NO DECOUPLING of the Bethe
equations.
However, the problem can be solved by Functional Bethe Ansatz:

Find two polynomials Q(T ) and R(T ) such that

Q(T )R(T ) = eLµ(1− T )LQ(xT ) + xN(1− xT )LQ(T/x)

where Q(T ) of degree N vanishes at the Bethe roots. (Baxter Equation)

This is a purely algebraic problem, that can be solved perturbatively
w.r.t. µ. This provides us with an expansion of E (µ).
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The General Case (K. M. and S. Prolhac, 2010)

For arbitrary asymmetry q on a ring, The function E (µ) is found by
functional Bethe Ansatz, again in a parametric form:

µ = −
∑
k≥1

Ck
Bk

k
and E = −(1− x)

∑
k≥1

Dk
Bk

k

Ck and Dk are combinatorial factors enumerating some tree structures.
There exists an auxiliary function

WB(z) =
∑
k≥1

φk(z)
Bk

k

such that Ck and Dk are given by complex integrals along a small
contour that encircles 0 :

Ck =

∮
C

dz

2 i π

φk(z)

z
and Dk =

∮
C

dz

2 i π

φk(z)

(z + 1)2

The function WB(z) contains all information about the current statistics.
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The function WB(z) is the solution of a functional Bethe equation:

WB(z) = − ln
(

1− BF (z)eX [WB ](z)
)

where

F (z) = (1+z)L

zN

The operator X is a integral operator

X [WB ](z1) =

∮
C

dz2

ı2π z2
WB(z2)K (z1, z2)

with the kernel

K (z1, z2) = 2
∑∞

k=1
xk

1−xk

{(
z1

z2

)k
+
(

z2

z1

)k}
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Solving this Functional Bethe Ansatz equation to all orders enables us to
calculate cumulant generating function. For x = 0, the TASEP result is
readily retrieved.

The function WB(z) also contains information on the 6-vertex model
associated with the ASEP.

From the Physics point of view, the solution allows one to

Classify the different universality classes (KPZ, EW).

Study the various scaling regimes.

Investigate the hydrodynamic behaviour.
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Cumulants of the Current

• Mean Current: J = (1− x)N(L−N)
L−1 ∼ (1− x)Lρ(1− ρ) for L→∞

• Diffusion Constant: D = (1− x) 2L
L−1

∑
k>0 k2 CN+k

L

CN
L

CN−k
L

CN
L

(
1+xk

1−xk

)
• Third cumulant (Skewness): → Non Gaussian fluctuations.

E3 '
(

3

2
− 8

3
√

3

)
π(ρ(1− ρ))2L3

E3

6L2 = 1−x
L−1

∑
i>0

∑
j>0

CN+i
L CN−i

L CN+j
L CN−j

L

(CN
L )4 (i2 + j2) 1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

∑
j>0

CN+i
L CN+j

L CN−i−j
L

(CN
L )3

i2+ij+j2

2
1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

∑
j>0

CN−i
L CN−j

L CN+i+j
L

(CN
L )3

i2+ij+j2

2
1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

CN+i
L CN−i

L

(CN
L )2

i2

2

(
1+x i

1−x i

)2

+ (1−x)N(L−N)
4(L−1)(2L−1)

C 2N
2L

(CN
L )2

+ (1−x)N(L−N)
4(L−1)(2L−1)

C 2N
2L

(CN
L )2−

(1−x)N(L−N)
6(L−1)(3L−1)

C 3N
3L

(CN
L )3
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L

CN
L
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L
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L
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E3 '
(

3

2
− 8

3
√

3

)
π(ρ(1− ρ))2L3

E3

6L2 = 1−x
L−1

∑
i>0

∑
j>0

CN+i
L CN−i

L CN+j
L CN−j

L

(CN
L )4 (i2 + j2) 1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

∑
j>0

CN+i
L CN+j

L CN−i−j
L

(CN
L )3

i2+ij+j2

2
1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

∑
j>0

CN−i
L CN−j

L CN+i+j
L

(CN
L )3

i2+ij+j2

2
1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

CN+i
L CN−i

L

(CN
L )2

i2

2

(
1+x i

1−x i

)2

+ (1−x)N(L−N)
4(L−1)(2L−1)

C 2N
2L

(CN
L )2

+ (1−x)N(L−N)
4(L−1)(2L−1)

C 2N
2L

(CN
L )2−

(1−x)N(L−N)
6(L−1)(3L−1)

C 3N
3L

(CN
L )3
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Full large deviation function (weak asymmetry)

E
(µ

L

)
' ρ(1− ρ)(µ2 + µν)

L
− ρ(1− ρ)µ2ν

2L2
+

1

L2
ψ[ρ(1− ρ)(µ2 + µν)]

with ψ(z) =
∞∑
k=1

B2k−2

k!(k − 1)!
zk
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Current Fluctuations

in the open ASEP
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Current Fluctuations in the Open ASEP

Now, the observable Yt counts the total number of particles exchanged
between the system and the left reservoir between times 0 and t.

Hence, Yt+dt = Yt + y with

y = +1 if a particle enters at site 1 (at rate α),

y = −1 if a particle exits from 1 (at rate γ)

y = 0 if no particle exchange with the left reservoir has occurred
during dt.

These three mutually exclusive types of transitions lead to a three parts
decomposition of the Markov Matrix: M = M+ + M− + M0 .

The cumulant-generating function E (µ) when t →∞,
〈
eµYt

〉
' eE(µ)t ,

is the dominant eigenvalue of the deformed matrix

M(µ) = M0 + eµM+ + e−µM−

E (µ) can be calculated by using a Generalized Matrix Product Ansatz.
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Generalized Matrix Ansatz

We have proved that the dominant eigenvector of the deformed matrix
M(µ) is given by the following matrix product representation:

Fµ(C) =
1

Z
(k)
L

〈Wk |
L∏

i=1

(τiDk + (1− τi )Ek) |Vk〉+O
(
µk+1

)
The matrices Dk and Ek are the same as above

Dk+1 = (1⊗ 1 + d ⊗ e)⊗ Dk + (1⊗ d + d ⊗ 1)⊗ Ek

Ek+1 = (1⊗ 1 + e ⊗ d)⊗ Ek + (e ⊗ 1 + 1⊗ e)⊗ Dk

The boundary vectors 〈Wk | and |Vk〉 are constructed recursively:

|Vk〉 = |β〉|Ṽ 〉|Vk−1〉 and 〈Wk | = 〈W µ|〈W̃ µ|〈Wk−1|

[β(1− d)− δ(1− e)] |Ṽ 〉 = 0

〈W µ|[α(1 + eµ e)− γ(1 + e−µ d)] = (1− q)〈W µ|

〈W̃ µ|[α(1− eµ e)− γ(1− e−µ d)] = 0
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Structure of the solution I

For arbitrary values of q and (α, β, γ, δ), and for any system size L the
parametric representation of E (µ) is given by

µ = −
∞∑
k=1

Ck(q;α, β, γ, δ, L)
Bk

2k

E = −
∞∑
k=1

Dk(q;α, β, γ, δ, L)
Bk

2k

The coefficients Ck and Dk are given by contour integrals in the complex
plane:

Ck =

∮
C

dz

2 i π

φk(z)

z
and Dk =

∮
C

dz

2 i π

φk(z)

(z + 1)2

There exists an auxiliary function

WB(z) =
∑
k≥1

φk(z)
Bk

k

that contains the full information about the statistics of the current.
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Structure of the solution II

This auxiliary function WB(z) solves a functional Bethe equation:

WB(z) = − ln
(

1− BF (z)eX [WB ](z)
)

• The operator X is a integral operator

X [WB ](z1) =

∮
C

dz2

ı2π z2
WB(z2)K

(
z1

z2

)

with kernel K (z) = 2
∑∞

k=1
qk

1−qk

{
zk + z−k

}
• The function F (z) is given by

F (z) = (1+z)L(1+z−1)L(z2)∞(z−2)∞
(a+z)∞(a+z−1)∞(a−z)∞(a−z−1)∞(b+z)∞(b+z−1)∞(b−z)∞(b−z−1)∞

where (x)∞ =
∏∞

k=0(1− qkx) and a±, b± depend on the boundary rates.

• The complex contour C encircles 0, qka+, q
ka−, q

kb+, qkb− for k ≥ 0.
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Discussion

These results are of combinatorial nature: valid for arbitrary values
of the parameters and for any system sizes with no restrictions.

Average-Current:

J = lim
t→∞

〈Yt〉
t

= (1− q)
D1

C1
= (1− q)

∮
Γ

dz
2 i π

F (z)
z∮

Γ
dz

2 i π
F (z)

(z+1)2

(cf. T. Sasamoto, 1999.)

Diffusion Constant:

∆ = lim
t→∞

〈Y 2
t 〉 − 〈Yt〉2

t
= (1− q)

D1C2 − D2C1

2C 3
1

where C2 and D2 are obtained using

φ1(z) =
F (z)

2
and φ2(z) =

F (z)

2

(
F (z)+

∮
Γ

dz2F (z2)K (z/z2)

2ıπz2

)
(TASEP case solved in B. Derrida, M. R. Evans, K. M., 1995)
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Asymptotic behaviour in the Phase Diagram

Maximal Current Phase:

µ = −L−1/2

2
√
π

∞∑
k=1

(2k)!

k!k(k+3/2)
Bk

E − 1− q

4
µ = − (1− q)L−3/2

16
√
π

∞∑
k=1

(2k)!

k!k(k+5/2)
Bk

Low Density (and High Density) Phases:
Dominant singularity at a+: φk(z) ∼ F k(z). By Lagrange Inversion:

E (µ) = (1− q)(1− ρa)
eµ − 1

eµ + (1− ρa)/ρa

(de Gier and Essler, 2011).
Current Large Deviation Function:

Φ(j) = (1− q)
{
ρa − r + r(1− r) ln

(
1−ρa
ρa

r
1−r

)}
where the current j is parametrized as j = (1− q)r(1− r).

Matches the predictions of Macroscopic Fluctuation Theory in the
Weak Asymmetry Limit, as obtained by T. Bodineau and B. Derrida.
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The TASEP case

Here q = γ = δ = 0 and (α, β) are arbitrary.
The parametric representation of E (µ) is

µ = −
∞∑
k=1

Ck(α, β)
Bk

2k

E = −
∞∑
k=1

Dk(α, β)
Bk

2k

with

Ck(α, β) =

∮
{0,a,b}

dz

2iπ

F (z)k

z
and Dk(α, β) =

∮
{0,a,b}

dz

2iπ

F (z)k

(1 + z)2

where

F (z) =
−(1 + z)2L(1− z2)2

zL(1− az)(z − a)(1− bz)(z − b)
, a =

1− α
α

, b =
1− β
β
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A special TASEP case

In the case α = β = 1, a parametric representation of the cumulant
generating function E (µ):

µ = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)]!

[k(L + 1)]! [k(L + 2)]!

Bk

2k
,

E = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)− 2]!

[k(L + 1)− 1]! [k(L + 2)− 1]!

Bk

2k
.

First cumulants of the current

Mean Value : J = L+2
2(2L+1)

Variance : ∆ = 3
2

(4L+1)![L!(L+2)!]2

[(2L+1)!]3(2L+3)!

Skewness :
E3 = 12 [(L+1)!]2[(L+2)!]4

(2L+1)[(2L+2)!]3

{
9 (L+1)!(L+2)!(4L+2)!(4L+4)!

(2L+1)![(2L+2)!]2[(2L+4)!]2 − 20 (6L+4)!
(3L+2)!(3L+6)!

}
For large systems: E3 → 2187−1280

√
3

10368 π ∼ −0.0090978...
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Numerical results (DMRG)

20 30 40 50 60 70 80
L

- 0.004

- 0.002
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E3 , E4

20 40 60 80 100
L

- 0.03

- 0.02

- 0.01

0.01

0.02

0.03

0.04

E2 , E3

Left: Max. Current (q = 0.5, a+ = b+ = 0.65, a− = b− = 0.6), Third
and Fourth cumulant.

Right: High Density (q = 0.5, a+ = 0.28, b+ = 1.15, a− = −0.48 and
b− = −0.27), Second and Third cumulant.

A. Lazarescu and K. Mallick, J. Phys. A 44, 315001 (2011).

M. Gorissen, A. Lazarescu, K.M., C. Vanderzande, PRL 109 170601 (2012).
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Large Deviations at the Hydrodynamic Level

What is the probability to observe an atypical current j(x , t) and the
corresponding density profile ρ(x , t) during 0 ≤ s ≤ L2 T ?

Pr{j(x , t), ρ(x , t)} ∼ e−L I(j,ρ)

where the Large-Deviation functional is given by macroscopic fluctuation
theory (Jona-Lasinio et al.)

I(j , ρ) =

∫ T

0

dt

∫ 1

0

dx

(
j − νσ(ρ) + 1

2∇ρ
)2

σ(ρ)

with the constraint: ∂tρ = −∇.j
This leads to a variational procedure to calculate deviations of the
density and of the associated current: an optimal path problem. From
I(j , ρ) one can deduce the LDF of the current or the profile. For example
Φ(j) = minρ{I(j , ρ)}
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MFT Equations

Mathematically, one has to solve the corresponding Euler-Lagrange
equations. After some transformations, one obtains a set of coupled
PDE’s (here, we take ν = 0):

∂tq = ∂x [D(q)∂xq]− ∂x [σ(q)∂xp]

∂tp = −D(q)∂xxp − 1

2
σ′(q)(∂xp)2

where q(x , t) is the density-field and p(x , t) is a conjugate field.
The physical content is encoded in the ’transport coefficients’ D(q) and
σ(q) that contain the information of the microscopic dynamics relevant
at the macroscopic scale.
Note that these equations have a Hamiltonian structure.

A general framework but these non-linear MFT equations are very
difficult to solve in general.

For a finite external field (that does not vanish with the system
size), the M. F. T. framework has to be extended (Jensen-Varadhan
Large Deviation Theory).
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Conclusion

Large deviation functions (LDF) play a crucial role in non-equilibrium
physics: they are studied through experimental, mathematical or
computational techniques. The formulae presented here are one of very
few exact analytically exact formulae known for Large Deviation
Functions, valid for systems with arbitrary finite size.

What is the crossover between finite-size system statistics and the
KPZ statistics in the infinite system?

Could we derive current-fluctuations directly from the MFT without
having to use combinatorics/Bethe Ansatz?

The tensor Matrix Ansatz provides us with a formal representation
for the optimal profile that solves the MFT equation for ASEP.
Could these equations be integrable in the ASEP case?

Tagged particle Large Deviation Function? (see Tridib’s talk).

These results were obtained in collaboration with A. Lazarescu and
S. Prolhac.
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Florence et Stendhal

“J’étais dans une sorte d’extase par l’idée d’être à Florence. Absorbé
dans la contemplation de la beauté sublime, je la voyais de près, je la
touchais pour ainsi dire...”
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