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Limiting case of a model of biomolecular movement and
processing
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Golgi apparatus

Golgi apparatus
incoming transport vesicle
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Protein vesicles arrive at one end: leave at other end, after
processing

Two scenarios [B Glick et al (1998), E Losev et al (2006), G.H.
Patterson et al (2008)]

Vesicular transport: Biomolecules shuttle between
compartments



Controversy Do biomolecules move singly, or in a
bunch?

‘It is likely that the transport through the Golqgi ... involves eleme
of both’

Essentials of Molecular Trafficking _
( Molecular Biology of the Cell, B Alberts, A Johnson, ] Lewis, New Yor

CpH2a1288%,jhction of vesicles containing unprocessed
biomolecules

Transport By chipping of single vesicles, or movement of

aggregates
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by enzyme .—:. B particle
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H. Sachdeva, M. Barma , Madan Rao, Phys. Rev. E (2011)



Limiting Cases

Aggregation

Fragmentation

Interconversion




Aggregation-Fragmentation Model

Consider the limit of zero interconversion rate : only

influx \

aggregation ‘

SR | fragmentation ‘outﬂux ‘
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outflux

Influx of unit mass with rate a at site 1.
Diffusion of full stack at rate D or D'. Aggregation o
contact.
* Chipping of unit mass with symmetric rate w.
Outflux at site 1 or site L by exit of either

the full stack or single particles.



Related earlier work

A+ A->A (nochipping)
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Model under
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Z Cheng, S Redner, F Leyvraz, PRL (1989)

¢ Input from leftmost point, No egress from left

P(m,r) ~ m 32 F(m/r?)

B Derrida, V Hakim, V Pasquier, PRL (1995)
Origin always occupied
- Persistence exponent

H Takayasu, | Nishikawa, H Tasaki, PRA (1988)
Uniform input at all lattice sites
Power law mass distribution

S Majumdar, S Krishnamurthy, M Barma, PRL (1998)
Periodic boundary conditions
On increasing density, phase transition to
a state with a macroscopic condensate’
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Condensation Phenomehna in Closed

¥stems
Zero Range Process (ZRP)
[M R Evans, T Hanney, ] Phys A (2005)]

Aggregation-Fragmentation on a Ring
[S N Majumdar, S Krishnamurthy, M Barma, PRL (1998) ; ] Stat Phys
(2000) ]

The model shows a condensate peak above a critical mass density
Condensate Phase

*Single site mass distribution P(m) shows a power-law + Aggregate

peak

Finite fraction of the mass in the aggregate; akin to Bose-Einstein

condensation

Normal Phase

° A A A
"z normal = critical = aggregate
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log m log m log m




Related work

The mean-field analysis = Phase boundary in the w-density plane.

normal
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Phase boundary is exact in all dimensions, despite correlations
[ R. Rajesh and S.N. Majumdar, Phys Rev E (2001) ]

Directed chipping : Condensate lost
[ R.Rajesh and S. Krishnamurthy, Phys Rev E (2002) ]

If D~m™% Condensate curbed, but significant effect in finite system
[ R. Rajesh, D. Das, B. Chakraborty and M. Barma, PhysRev E (2002) ]



Condensation in Open Systems?

 |In a closed system with conserved mass,
find ‘real-space Bose-Einstein condensation’

* The open system has strong mass fluctuations

Does condensation occur?

The answer is yes.

But the condensate is

very different in charact

from the closed case.

mentation rate W
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Condensation in the Open System
Unbiased Movement (D=D’)

Steady state and dynamical properties Very different in

the two phases.

Condensate phase

P(m) : Long ‘Condensate tail’ ... P(M) = A exp(-M/M,) at
0.06 . . . . . . |
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Mass Fluctuations:
Size dependence
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Extreme Fluctuations in time

Intermittent, not self-similar
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Self-similarity vs.
Intermittency

Self-similarity: AM(t) = M(t) - M(0) has same statistical
properties for all t

Intermittency: AM(t) depends strongly on t
[Distribution of M(t) is heavy-tailed: extreme events dominate]

Define structure functions in time: u (t) = < ( M(t) - M(0) )» >
[Analogous to structure functions of velocity field in fluid turbulence]

Self-similar signal: u (t) atY*ast/t—> 0
[T is the lifetime of the largest structures]

Intermittent signal: Deviation from u, (t) a tY" at small t
Useful measures of intermittency:

Flatness: k(t) = u,(t) / (u,(t)?)

g— - B F = B F = W - ry F o W\ =y B



Temporal Intermittency in the Aggregate
Phas?ime dependence of Flatness

K(t) = u,(t) / (u,(t)2) with u (t) = < ( M(t) -

M(0) )» >
For intermittent signals, k(t) diverges as t/t > 0
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Analytic results: Pure aggregation
limit

« Moments u,(t) = < ( M(t) - M(O) )» >

* Define generalized autocorrelation function
Hij(t) = <M;;(t) Mg,(0) >- < M;;(t) > < Mg, (0) >
where M;; is the mass between sites i and |

« Write time evolution equation for Hi,j(t)

Take continuum limit to convert recursions to PDE for H(x,y,t)
Can be solved by ‘folding’ triangle to square
Result:

U,(t) ~ = Ag t log (A, Dt/L2) Ao , Ajare constants, Dt << L2

Uon(t) ~ =L 202t g,, log (Dt/L2)



Condensate

Normal Phase

Critical Point

Phase (w<w,) (w>w) (w= w,)
P(M) - P(M) - P(M) -
Statics Condensate tall Gaussian tail Non-Gaussian tall
Giant Normal Fluctuations: Large
Fluctuations: Fluctuations:
AM o< L AM o< L AM o [
M() - Strongly M() - Not M) -
Dynamics Intermittent Intermittent Intermittent

Flatness
diverges
ast/L? - 0

No divergence of
Flatness.

Flatness diverges
at small t.




Reflecting:

No Exit at Left
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flatness(t)

Directed Stack Hopping

Find: -
Phase transition from Normal =
to Intermittent Aggregate Pha:

w=0.25, L=200 -+

X w=0.25, L=400 x
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Difference:

The aggregate spends less
time (O(L)) in the system,
hence mass gathered is O(V



Conclusion

Condensation phase transition in open system, with
No Mass conservation

Key signature: Fluctuations
* Giant number fluctuations in the condensate
* Total mass shows temporal intermittency

Related phase transitions
* With reflecting boundary conditions
 With directed motion of masses

Open question

Do other systems which show clustering and giant
fluctuations also

exhibit temporal intermittency?


















Analysed by Monte Carlo simulations and by solving for P(m)
assuming factorizability: P(m;,m,) = P(m,)P(m,)
0P,

m
— = —(D +w)|1+s]|P, +wP,, 41 +wWsP,,_1+D Z PoPn—n
n=1

where s = 1 — P, is the probability that the site is occupied

Find: Phase transition as the density is increased
critical aggregate

NN\

log m log m log m

log P(m)
log P(m)
log P(m)

* In the normal phase, P, ~e~™/™Mo

* Atthe critical point, PB,~m™"; t=5/2
 Beyond the critical point, P,,~m~" + Condensate
A single site holds a finite fraction of particles ---

Bose condensation, but in real space

[ S. N. Majumdar, S. Krishnamurthy, M. Barma, J Stat Phys (2000) ]



Analysed by Monte Carlo simulations and by solving for P(m)
assuming factorizability: P(m;,m,) = P(m;) P(m,)

Find: In Aggregate phase, a single site holds a finite fraction ¢
--- akin to Bose condensation, but in real space

normal

$of 808 of 8 ool &
g

A

% aggregate
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R. Rajesh and S. Majumdar ; R. Rajesh and S.
Krishnamurthy

Phase boundary found through factorizability is exact [Phys
Rayvs F (ONONT)]




Given the rules of molecular trafficking,
can one model some aspects of processes within the cell?

(e.g. motion and processing of biomolecules in the Golgi)

cisternae

vesicular

~ER_ - ‘tubular cluster CGN. Irfe'f_l madiaf rf:’_i_'ﬂ% i L: | .
B
O~ 71 I I
Cfarica_tu re of o » (- -
biological g
rocess -8 \& N
P LT e C’;h@”@n“é‘ﬁ{ t_é O

matrix profeins
{4} VESICULAR TRANSPORT MODEL (B} CISTERMNAL MATURATION MODEL

( Molecular Biology of the Cell, B Alberts, A Johnson, J Lewis, New
York: Garland ; 2002. )

Q —= A particle
. —— B particle

Statistical

Physics model g
1
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