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1. Introduction

Bulk-driven Particle systems with several conservation laws:

• Interacting stochastic particle systems on lattice with biased hopping
        ==> Non-reversible Markovian dynamics
        ==> Invariant measures not known a priori

• A few (!) examples:
        (1) Exclusion processes with several species of particles
        (second-class, slow particles, tagged particles, AHR model, ...)
        (2) Multispecies zero-range models
        (3) Bricklayer model
        (4) Multilane exclusion processes

• Rich behaviour, e.g.,
        - Phase transitions (phase separation, spontaneous symmetry breaking)
        - (Conjectured) hydrodynamic equations sensitive to regularization
        - Intricate interplay of shocks and rarefaction waves
        - Universal fluctuations (Diffusive, KPZ)



Generic lattice gas models

• 1-d Torus with N sites (labeled by k,l,m,...)

• finite local state space S (local occupation variable ωk ∈ S)

• Particle jumps between two different sites at most M sites apart

• Jump rate depends on configuration up to a distance M < N/2

Further definitions:

- Shift operator σ: (σω)k = ωk+1

- Switch operator Θ:

- Jump rate from ω to Θωʼ,ωʼʼ
j,m (ω):



 Generator and conserved quantities:

Infinitesimal generator:

Conserved quantities ξα:=

- Assume at least two conservation laws (particle numbers) ξα

- Irreducibility condition on rates to exclude non-ergodicity for fixed ξα
  (e.g. no “hidden” conservation laws)



•  Microscopic current across bond (k,k+1):

(lengthy but straightforward computation)

•  Conservation law ==> (Discrete) Noether theorem

                                                α                       α

(Lattice continuity equation)



Invariant measures:

Translation invariance and ergodicity for fixed values of conserved particle
numbers ξα 

==> “canonical” invariant measure µ is unique and translation invariant

Define “grandcanonical” invariant measures with chemical potentials φα 

where

 
Stationary density of particles of type α:     ρα({φ}) = <ξαk>φ 

Stationary current of particle type α:    jα({φ}) = <jαk>φ



Time-reversed dynamics and currents:

Time-reversed hopping rates:

==> adjoint process

Adjoint conservation law

Notice:   jα∗ = − jα



 Hydrodynamics under Eulerian Scaling

Study large-scale dynamics under coarse-graining x = ka, t = τa:

==> Law large numbers:
       Occupation numbers on lattice nαk(t) → ρα(x,t) (Conserved particle densities)

==> Local stationarity:
       Microscopic current jαk(t) → jα({ρ}): Associated locally stationary currents

==> Lattice continuity equation → System of hyperbolic conservation laws

Origin of hyperbolicity: Onsager-type symmetry

φα({ρ}): Fugacities associated with the densities (Legrende transformation)

Proof (Toth, Valko, 2003) for family of models with invariant product measure



Full proof for generic lattice gas models (Grisi, GMS (2011)):

Lemma 1: For N > 2M we have

Proof: Straightforward computation, but requires

(1) no overlap of expression of current (adjoint current) at site N/2 
     with conserved quantity at site 0

(2) for 0 ≤ n < m ≤ M                                      

(guaranteed by condition on interaction range M < N/2)

 

2. Onsager-type symmetries



Main result:

Theorem:  For finite system with N sites we have

Proof: (a) By construction of grandcanonical measure

Therefore with translation invariance:



(b) Conservation law, translation invariance, time-reversal:

(c) Partial summation and translation invariance:



Similarly for time-reversed process

Lemma 1 completes the proof.

Remark 1:  Valid for finite size, no assumption of product measure

Remark 2:  Product measure yields Toth/Valko



Corollary 1: For sufficiently fast decaying stationary current-density correlations
(o(1/N)) one has in the thermodynamic limit N → ∞ the current symmetry

Remark: Can be written S = ST with Sαβ = ∂jα / ∂φβ

Corollary 2: Define

Current Jacobian A with matrix elements Aαβ = ∂jα / ∂ρβ

Compressibility matrix C with matrix elements

Cαβ = 1/N <(ξα - Nρα)(ξβ - N ρβ) > = ∂ρα / ∂φβ

Then     C AT = A C

Remark: Cf. Ferrari, Sasamoto, Spohn (2013) for heuristic proof.



3. Superdiffusive structure function in DDS
Go beyond LLN and study fluctuations:

• Dynamical structure function

                   Sαβ(p,t) = ∑k eikp <(ξαk (t) - ρα)(ξβ0(0) - ρβ) > = <uα(p,t) uβ(-p,t)>

where uα(p,t)  = Fourier transform of locally conservd quantity ξαk (t)

• One conservation law:     Scaling form S(p,t) = F(pzt)

• KPZ universality class z=3/2, universal scaling function F [Praehofer, Spohn (2002)]

• Several conservation laws: Different universality classes in the same DDS

• Known cases for two-component DDS: (a) Both KPZ (generic)
                                                                 (b) KPZ and Diffusive (z=2)
                                                                                    [Das et al (2001), Rakos, GMS (2005)]

                           ==> Is that all there is?



•  Model: Interacting two-lane TASEPs with densities ρ1,2

• Product measure: r1 = 1 + γ n(2)/2,  r2 = b + γ n(1)/2         [Popkov, Salerno (2004)]

• Stationary currents:



Nonlinear fluctuating hydrodynamics (non-rigorous):

• Starting point: (Deterministic) hyperbolic system of conservation laws

with density vector and current Jacobian A

• Stationary solutions: ρi

• Introduce fluctuation fields ui(x,t) = ρi(x,t) - ρi and expand in ui



A) Linear theory:

• Diagonalize A:   RAR-1 = diag(ci), Normalization RCRT = 1

==> Eigenmode equation    ∂ t φi = - ci ∂ x φi

- Travelling waves (eigenmodes) φi(x,t) = φi(x-cit)

- Characteristic speeds c1,2(ρ1, ρ2) = eigenvalues of current Jacobian A

- Strict hyperbolicity for two-lane model: c1 ≠c2  ∀ (ρ1, ρ2) ∈ (0,1) × (0,1)

• Microscopic: Stationary center of mass motion of localized perturbation
[Popkov, GMS (2003)]
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B) Nonlinear fluctuating theory

• Expand to second order, add phenomenological diffusion term and noise [Spohn]

diffusion = regularization, noise B and diffusion matrix D related by FDT

- Mode coupling coefficients for eigenmodes

- Hessian H(γ)  with matrix elements   ∂ 2 jγ / (∂ρα ∂ρβ)



One component:  ∂ t φ = - ∂ x [c φ  + g φ2  - D ∂ x φ + B ξ]   (KPZ equation, g = jʼʼ/2)

Two components ==> Two coupled KPZ equations

Remarks:

1) Higher order terms irrelevant in RG sense (if second order non-zero)

2) Offdiagonal terms neglible for strictly hyperbolic systems (no overlap between
modes)

3) Self-coupling terms G(α)
αα  leading, other diagonal terms G(α)

ββ subleading

          ∂ t φ1 = - ∂ x [c1 φ1 + G(1)
11 (φ1)2 + G(1)

22 (φ2)2 + diff. + noise]
==>
          ∂ t φ2 = - ∂ x [c2 φ2 + G(2)

11 (φ1)2 + G(2)
22 (φ2)2 + diff. + noise]



Some scenarios:

A) Both self-coupling coefficients nonzero:     G(1)
11 ≠  0, G(2)

22 ≠  0

        ==> two KPZ modes (z1 = 3/2, z2=3/2)

B) One self-coupling coefficient nonzero, all diagonal terms of other mode-
coupling matrix 0, e.g.,  G(1)

11 ≠  0, G(2)
22 = G(2)

11 = 0

       ==> one KPZ mode, one diffusive mode (z1 = 3/2, z2=2)

C) One self-coupling coefficient nonzero, subleading diagonal of other mode-
coupling matrix 0, e.g.,  G(1)

11 ≠  0, G(2)
11 ≠  0, G(2)

22 = 0

       ==> one KPZ mode, second non-KPZ superdiffusive mode (z1 = 3/2, z2=5/3)

Remark: Heat mode with z=5/3, two KPZ sound modes in Hamiltonian dynamics
              with three conservation laws [van Beijeren (2012)]

Mode coupling theory                          [van Beijeren (2012), Spohn (2013)]



Measure dynamical exponents zi

1) Average over 107 - 108 runs with uniform random initial conditions with
densities ρi

2) Excite each mode independently at site k=N/2 at t=0 and measure
dynamical structure function of each mode

3) Compute center of mass motion <Xi(t)> of excitation ==>  ci t

4) Compute CM variances Vi(t):
Scaling hypothesis Vi(t) ~  t2/zi ==> zi
(no assumption on existence for asymptotic scaling function)

5) Measure amplitudes Ai(t) at maximum:
Mass conservation Ai(t) ~  1/t1/zi ==> zi

Monte-Carlo simulations                          [Popkov, Schmidt, GMS (PRL, 2014)]



Choose equal densities ρ1 = ρ2 = ρ, and interaction strength γ =1

Set b = 2 (inequivalent lanes)

       G(1)
11 = - 2 g (6 ρ4 - 8 ρ3 + 5 ρ2 + ρ -1)

       G(1)
12 = G(1)

21 = g (4 ρ3 - 10 ρ2 + 8 ρ -1)
       G(1)

22 = - 2 g ρ (1-ρ) (2 ρ2 - 6 ρ +3)
                                                                  g = -1/2 {ρ (1-ρ) / [2 ρ2 - 2 ρ +1]3}1/2

       G(2)
11 = 4 g ρ (1-ρ)

       G(2)
12 = G(1)

21 = - g (1 - 2 ρ2)2

       G(2)
22 = 4 g (3 ρ2 - 3 ρ +1)

==> Generically case A (two KPZ modes) with c1 ≠  c2 and z1,2 = 3/2

Good agreement with Monte-Carlo data for c1,2 and z1,2

Monte-Carlo simulations                          [Popkov, Schmidt, GMS (PRL, 2014)]



ρ1 = ρ2 = 0.5, γ = - 0.8 , b = 1 (symmetry between lanes) ==> c1 = 0.2, c2 = 0.2

Mode coupling matrices:

==> KPZ with z1 = 3/2 (mode 1) and diffusive with z2 = 2 (mode 2)

Monte-Carlo data for diffusive mode:

                                                            Error in velocities < 1%

                                                            Variance: 2/z1 = 1.343 ≈ 4/3
                                                                            2/z2 = 1.030 ≈ 1

Monte-Carlo simulations (contʼ)



ρ1 = ρ2 = ρ, γ =-052588 , b = 1.3

G(2)
22 = 0 at ρ* = 0.55000..., G(2)

11 (ρ*) ≠  0, G(1)
11 (ρ*) ≠  0

==> At ρ*: KPZ with z1 = 3/2 (mode 1) and superdiffusive with z2 = 5/3 (mode 2)

Monte-Carlo data:

KPZ mode:

Superdiffusive non-KPZ mode:

Monte-Carlo simulations (contʼ)



Measurement of center of mass: c1 ≈ -0.22, c2 ≈ 0.045  (error < 1%)

Variances:

KPZ mode 2/z1 = 1.302 ≈ 4/3

Non-KPZ: 2/z2 = 1.19 ≈ 6/5

Amplitudes: 1/z2 = 0.58 ≈ 3/5

Monte-Carlo simulations (contʼ)



4. Conclusions

 Onsager type current symmetry without assumption of invariant product 
    measure (rigorous)

   ==> Hyperbolicity of associated system of conservation laws

 Numerical observation of new universality class for fluctuations in strictly 
   hyperbolic two-component systems (z=5/3)

Open question: Universality classes at umbilical points c1 = c2?


