Information Processing in Genetic Regulatory Networks

Ofer Biham

Mor Nitzan Yishai Shimoni Baruch Barzel Adiel Loinger Azi Lipshtat Oded Rosolio Assaf Pe'er Yael Altuvia

Hanah Margalit Pascale Romby

Pierre Fechter

Network and motifs Transcriptional network of E. coli Motifs B d Α (e) ์ b (c) С Other modules Α В b

Regulation Mechanisms

Different levels of regulation

- Transcriptional regulation
- Post-transcriptional regulation (by sRNA-mRNA int.)
- Post-translational regulation (by protein-protein int.)

Post-transcriptional regulation

Input Functions

Diverse two-dimensional input functions control bacterial sugar Genes, Kaplan, Bren, Zaslaver, Dekel and Alon, Molecular Cell 29, 783 (2008).

Post-transcriptional regulation

Staphylococcus aureus

- Pathogenic bacteria
- Cause a wide range of human diseases
- Disease manifestations depend on the expression of numerous virulence factors
- Within *S. aureus* virulence pathways lies a regulator switch that is induced by a quorum sensing signal

Quorum sensing for a growing population

- At low numbers, violent bacteria will be quickly targeted for degradation
- Only at higher numbers, the bacteria become virulent.

Quorum sensing for a dense population

- Outer bacteria act as a shield
- Inner, protected bacteria excrete violent proteins

The model- rate equations

$$\frac{dN_S}{dt} = g_S - b_S N_S (N_{Rm} + N_{1m} + N_{2m}) - d_S N_S$$
 (sRNA regulator)

$$\frac{dN_{Rm}}{dt} = g_m - b_S N_S N_{Rm} - d_m N_{Rm}$$
 (mRNA transcripts of TF)

$$\frac{dN_{RP}}{dt} = g_P N_{Rm} - d_P N_{RP} - [b_R N_{RP} (1 - N_{R1}) - u_R N_{R1} + b_R N_{RP} (1 - N_{R2}) - u_R N_{R2}]$$
 (TF protein)

$$\frac{dN_{R1,2}}{dt} = b_R N_{RP} (1 - N_{R1,2}) - u_R N_{R1,2}$$
 (TF - promoter complexes)

$$\frac{dN_{1m}}{dt} = g_m N_{R1} - d_m N_{1m} - b_S N_S N_{1m}$$
 (mRNA transcripts of target 1)

$$\frac{dN_{2m}}{dt} = g_m (1 - N_{R2}) - d_m N_{2m} - b_S N_S N_{2m}$$
 (mRNA transcripts of target 2)

$$\frac{dN_{4R}}{dt} = g_P N_{1m} - d_P N_{1P}$$
 (Target 1 proteins)

$$\frac{dN_{2R}}{dt} = g_P^{S2} N_{S2} + g_P^{2m} N_{2m} - d_P N_{2P}$$
 (Target 2 proteins)

$$\frac{dN_{51,2}}{dt} = b_S N_S N_{1,2m} - u_S N_{51,2}$$
 (sRNA - target mRNA zeroplexes)

Bifurcation Diagrams

Stochastic Trajectories

Deterministic vs. Stochastic Models

Probability Distribution -3 x 10 (a) 8~... 6 4 2~ 0 600 150 200 250 400 200 100 50 sA-3 **(b)** x 10 6 4 2 0 600 400 300 200 200 100 s Λ

E. Levine, Z. Zhang, T. Kuhlman and T. Hwa, Plos. Biol. (2007)

E. Levine, Z. Zhang, T. Kuhlman and T. Hwa, Plos. Biol. (2007)

;Salmena et al., Cell 146, 353 (2011); Tay et al., Cell 147, 344 (2011) Bosia et al., Plos One 8, e66609 (2013); Figliuzzi et al., Biophys J. 104, 1203 (2013)

Summary

- We have studied information processing in genetic regulatory networks that involve different levels of regulation
- These networks combine sharp on/off type regulation with fine tuning processes, fast and slow processes, synchronization and subtle coordination
- Further progress will require experiments both at the single cell level and at the cell population level

Transcriptional vs. Post-transcriptional regulation

	Transcriptional	Post-transcriptional
Response time	Slow	Fast
Regulation type	Sharp On/Off	Enables fine-tuning
Regulator-target interaction	Non-stoichiometric	Stoichiometric
Regulation strength determined by	TF copy number and affinity to promoter	Relative copy numbers of sRNAs and mRNAs and their affinity
Directionality	Directional – from regulator to target	Bi-directional
Energetic cost	Protein synthesis	RNA synthesis

Dynamics of DSS variants

