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MFT in non-stationary settings: examples 
 
Survival of a target against “searchers” 
 
a. Stationary fluctuations: d>2, long times 
b. Non-stationary fluctuations: d=1, and any d for intermediate times 

 
Extensions and summary 

 
 

  



Diffusive lattice gases 

SSEP: simple 

symmetric exclusion 
process 

RWs, ZRP: a=a(ni) 
random walkers; zero-range 

process 

Large-scale behavior: fluctuating hydrodynamics 

 ,),()()( tDt xξ 
x: Gaussian noise,  

delta-correlated in x and t 

Diffusive lattice gases are fully characterized, at large scales, by the  
diffusivity D() and mobility () 

Spohn 1991, Kipnis and Landim 1999 



D() and ()  are related to the equilibrium free energy density F(): 
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When noise is ignored: diffusion equation 
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Macroscopic Fluctuation Theory (MFT) 
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MFT can be derived from fluctuating hydrodynamics via saddle-point expansion of a proper path integral 
(Tailleur, Kurchan, Lecomte 2007). This leads to a minimization problem that can be cast into a classical 
Hamiltonian field theory for the particle density q(x,t) and conjugate “momentum” density p(x,t): 
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Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim (2001, …) 
 
Large parameter: number of particles in a relevant region of space.  Generalizes the 
weak-noise WKB theory of Freidlin and Wentzel to fields 
 
Similar in spirit: Elgart and Kamenev (2004), M and Sasorov (2010) – WKB approximation 
to master equation for random walk on lattice and on-site reactions. Large parameter: 
number of particles on a single site 
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Mean-field (noiseless) limit: p(x,t)=0: downhill trajectories 
 
 
Fluctuations: p(x,t)≠0: uphill trajectories, the optimal density history 
 
The probability density of a large deviation is given by the mechanical action 
along a proper uphill trajectory: 
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Boundary conditions, in x and t, are determined by specific problem.   

If the initial condition is random, one should also find the optimal initial density profile and 
add to S the Boltzmann-Gibbs free energy “cost” of creating it 



 
 

MFT emerged in the context of  
non-equilibrium steady states of lattice gases  
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Expected density profile solves the steady-state mean-field problem 

)]/([ LxF  large deviation functional 

Reviews: Derrida 2007, Jona-Lasinio 2010, Bertini et al 2014  



 
 

MFT emerged in the context of  
non-equilibrium steady states of lattice gases  
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Average current 

),,(  JS large deviation function 

Reviews: Derrida 2007, Jona-Lasinio 2010, Bertini et al. 2014 

What is the most probable density profile for given J ?  



 
 

MFT emerged in the context of  
non-equilibrium steady states of lattice gases  

 

ρ+ ρ- 

L 

Reviews: Derrida 2007, Jona-Lasinio 2010, Bertini et al. 2014 

• Non-locality: long range correlations 
• Uphill trajectory is different from time-reversed downhill trajectory 
• Non-smooth parameter dependence of large deviation 
function/functional: “phase transitions” 

 



 

                                           
Example 1: Formation of void of size L at time T in an initially 

uniform gas  

Krapivsky, M and Sasorov 2012 
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L
Sd large deviation function; Most probable density history 

d: dimension of space 

  

Non-stationary settings are also interesting 
                                           



 Non-stationary settings are also interesting 
                                           

Example 2: Fluctuations of mass/energy transfer in finite time 

Derrida and Gerschenfeld 2009a,2009b, Sethuraman and Varadhan 2011, Krapivsky and M 2012, 

M and Sasorov 2013, 2014, Vilenkin, M and Sasorov 2014 
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What is the most probable history of the density field conditional on MT ?  
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                                           Example 3 (this talk): Target survival problem 

                                           

  

Non-stationary settings 
                                           

R 

n0 

What is the probability that no particle hit the target until t=T? 
What is the most probable density history of the gas conditional on the non-hitting? 

For a given lattice gas, the answers depend on three parameters: 

0,, nd
DT

R
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Diffusion-controlled reactions 
Smoluchowski 1917 



 

                                           

The T→∞ asymptotic of the target survival probability  

is known for ideal gas (RWs), see references in  

Bray, Majumdar and Schehr, Adv. Phys. 62, 225 (2013) 

 

                                           

Most probable density histories have not been found even for ideal gas. 

For non-ideal  gases such as SSEP there are no previous results,  
except for some bounds. 



MFT formulation is similar to that for the mass transfer: 
 
 
                                                                                  + spherical symmetry 
 
 
     
Boundary condition: 
 
 
The process is conditional on N absorbed particles by time T: 
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This integral constraint calls for a Lagrangian multiplier  and leads to additional 
boundary condition  (in time) coming from the minimization of action: 
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The parameter  is ultimately fixed by N=0  

M and Redner 2014 



 
              
  
 Once q(r,t) and p(r,t) found: 
 
 
 
 
     
 
 
 
 
 
 
 

0)0,( ntRrq Deterministic, or quenched, initial condition 

Random, or annealed initial condition introduces two changes: 
 
• the initial condition becomes p-dependent:  
 
 
 
 
(Derrida and Gerschenfeld 2009) 
 
 
• when evaluating the probability, one should add to S the Boltzmann-Gibbs free energy 
“cost” of creating the optimal initial density profile q(r,0) described by Eq. (1) 
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MFT equations are invariant under rescaling  
 
The radius of absorber becomes 
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Dynamic scaling of the absorption probability 
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We are interested  
in the limit N->0 

d=1: S is independent of R, so s doesn’t depend on l leading to survival probability 

)()(ln 01

2/1 nsDT P for all diffusive lattice gases 

The T1/2 scaling signals that the 1d-problem is non-stationary. 
An important consequence is that s1(n0) depends on whether the initial 
condition is deterministic or random. 
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Long-time asymptotics for d>2: stationary fluctuations 

This leads to a single nonlinear ODE for q(r): 
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SSEP  

The nonlinear ODE becomes 

0.
)1(2

12
2

2 













dr

dq

qq

q
qr

q)-2Dq(1(q)        const,)(  DqD

A simple change of variables                           brings this equation to  u(r) sin)( 2rq

0.2  ur

The solution, in the variable q, is 

2,,arcsin1sin)( 02

2
2 






















d
DT

R
ln

r

l
rq

d

d



SSEP, d>2  
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Asymptotics of q and v near the target, r-R<<R: 



SSEP, d>2  

Taking n0<<1 we get the results for ideal gas” 
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Survival probability for SSEP 
 
 
 
 
     
 
 
 
 
 
 
 

differs from the result for ideal gas only by the density dependence. The LDF 
increases much faster with the density, but remains finite.  



The stationary solution does not satisfy the boundary conditions in time. 
As a result, boundary layers at t=0 and t=1 develop 

Numerical solution: iterations of q forward in time, p backward in time 
                                                                                 Chernykh and Stepanov 2001 

Stationary solution for d=3: dots 
t=0: dashed line 
t=0.25, 0.5 and 0.75: three green lines (coincide) 
t=1: black line 

d=3 
l=5  10-3 

n0=0.5 

stheor= 3.876…10-2 

snum= 3.9210-2 



The stationary solution also implies that the survival probability is 
independent, at d>2 and l<<1, on whether the initial condition is quenched 

or annealed 

For ideal gas (RWs) this prediction is verified by microscopic calculations 
                                                                 M,Vilenkin and Krapivsky 2014 



d=2: critical dimension for long-time asymptotic  

L~1.  In the original variables L~(DT)1/2  

Logarithmic accuracy  



d=1: Non-stationary fluctuations, SSEP 

We have been unable to solve the complete non-stationary problem analytically 
  
1. We solved it in the ideal gas limit n0<<1 
2. We calculated finite-density corrections perturbatively 
3. We solved the problem numerically for different gas densities  
 and determined s1(n0). 
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Solution for ideal gas, quenched initial condition 
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A singularity of v at x=0 is present at 
all times; universal asymptotic, solves 
steady state eqn. for p: 
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Action for ideal gas, quenched initial condition: 
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The two results (quenched and annealed) can be also obtained from the 
microscopic model: 
 
Example of quenched initial condition: particles are arranged periodically in space. 
 
Annealed initial condition: random distribution.  
         
The microscopic theory also gives pre-exponential factors                                                                                             
 
                                                                                            M,Vilenkin and Krapivsky 2014 

 



Solution for ideal gas, annealed initial condition 
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A singularity of v at x=0 is present at 
all times; universal asymptotic, solves 
steady state eqn. for p: 
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symmetric around 
t=1/2, no overshot 

same as for quenched 



Finite density correction 
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in two parts: the ideal gas Hamiltonian,  
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and small correction  
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coming from exclusion interaction. The small correction to action can be computed 
perturbatively. For the quenched initial condition: 

where the integration is over unperturbed (that is, ideal gas) trajectory.  
The final result is  
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Finite density correction 
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in two parts: the ideal gas Hamiltonian,  
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and small correction  
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coming from exclusion interaction. The small correction to action can be computed 
perturbatively. For the annealed initial condition one also needs to calculate the small 
correction to the Boltzmann-Gibbs free energy cost. The final result is 
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That is, for d=1 one obtains different n0-dependences of the survival probability for the 
SSEP in the quenched and annealed case  
 

The n0
2 correction in the annealed case agrees with Santos and Schütz (2001).  They solved a different 

problem: of particle injection into a semi-infinite line. Thei problem, however, is directly related to the 
target survival problem. Thanks to Gunter Schütz for this comment! 
 



Arbitrary densities: numerical solution, quenched initial condition 

n0=0.8 

t=0, 0.25, 0.5 and 1 (0.75 for v) 
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Numerically found action vs. density 
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l>>1: Intermediate asymptotic of the target survival probability  

in any dimension 

For the SSEP this becomes 
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Quenched and annealed are different for any d in this limit! 



Extensions to other lattice gases 
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Example. ZRP with departure rate 
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different n0 
dependence 

Conjecture (cf. with additivity principle of Derrida): if solution obeying q(l)=0 
and q(∞)=n0 exists, it yields P(T) 



Extensions to other lattice gases 
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When this condition is met, the action is bounded 



Summary 

 
MFT makes it possible to evaluate (in some cases, quite easily) the target survival 
probability for a class of interacting host gases where no previous results existed 
Possible applications for diffusion-controlled reactions in crowded environments. 
 
 
One more example of efficiency and versatility of the MFT 
 
 
One more example of ever-lasting effect of initial condition in 1d 
 
MFT equations are usually hard to solve. More examples should be worked 
out to gain experience and intuition  
 
Large deviations in non-stationary problems provide a fascinating insight into  
non-equilibrium stochastic systems 
 
 Thank you 


