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Plan

‘/Macr'oscopic Fluctuation Theory of diffusive lattice gases
‘/MFT in non-stationary settings: examples
‘/Sur'vival of a target against "searchers”

a. Stationary fluctuations: d>2, long times
b. Non-stationary fluctuations: d=1, and any d for intermediate times

v/ Extensions and summary




Diffusive lattice gases

. ” ' . SSEP: simple

symmetric exclusion
process

RWs, ZRP: a=a(n;)
random walkers; zero-range
process

Large-scale behavior: fluctuating hydrodynamics

_ RN &: Gaussian noise,
Op=V- [D(,O)Vp + G(p)&(x,t)], delta-correlated in x and t
Spohn 1991, Kipnis and Landim 1999

Diffusive lattice gases are fully characterized, at large scales, by the
diffusivity D(p) and mobility op)



0 =V-|D(p)V +Jo(p)5(x.1)]

D(0) and o(p) are related to the equilibrium free energy density F(p):

d*F(p) _2D(p)
dp®  o(p)

When noise is ignored: diffusion equation

o0 =V-[D(p)Vp]



Macroscopic Fluctuation Theory (MFT)
Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim (2001, ...)

Large parameter: number of particles in a relevant region of space. Generalizes the
weak-noise WKB theory of Freidlin and Wentzel to fields

Similar in spirit: Elgart and Kamenev (2004), M and Sasorov (2010) - WKB approximation

to master equation for random walk on lattice and on-site reactions. Large parameter:
number of particles on a single site

MFT can be derived from fluctuating hydrodynamics via saddle-point expansion of a proper path integral
(Tailleur, Kurchan, Lecomte 2007). This leads to a minimization problem that can be cast into a classical
Hamiltonian field theory for the particle density q(x,t) and conjugate "momentum” density p(x,t):

0.q=V-[D(q)Va-ac(q)Vp)] 0.0 = H /.
1 —
o,p =-D(q) Vzp—ia'(q)(vmz o,p=—H /4,

H[q(x, 1), p(x, )] = [ dx 7,

FE=—D(qQ)Vq-Vp + % (Q)(VP)?



2.9 =V-[D(Q)Va-oc(q)Vp)]
1 I
0,p =—D(a) V'p~ o' (a)(VP)*
Boundary conditions, in x and t, are determined by specific problem.

Mean-field (noiseless) limit: p(x,1t)=0: downhill trajectories

0,0=V-[D(a)Vq]
Fluctuations: p(x,1)20: uphill trajectories, the optimal density history

The probability density of a large deviation is given by the mechanical action
along a proper uphill tfrajectory:

—InP=S= jdx]dt [p(x,1)8,q(x,t) — F]

= Jox [dt(@)(vpy

If the initial condition is random, one should also find the optimal /nitial/ density profile and
add to S the Boltzmann-Gibbs free energy “cost” of creating it



MFT emerged in the context of
non-equilibrium steady states of lattice gases

P- P-
L

Expected density profile solves the steady-state mean-field problem

D(p) dp/dx = const
p(x=0=p  p(x=L)=p,

Density fluctuations ~ P[po(x)] ~exp{— LF[po(x/L)]} L>>1

Flo(x/L)] large deviation functional

Reviews: Derrida 2007, Jona-Lasinio 2010, Bertini et al 2014



MFT emerged in the context of
non-equilibrium steady states of lattice gases

P- P-
L

_Alp.p,)
L

Average current (J)

Fluctuations of current P(J) ~exp[-LS(J,o_,p.)], L>>1

S(J,o_,p.) large deviation function

What is the most probable density profile for given J?

Reviews: Derrida 2007, Jona-Lasinio 2010, Bertini et al. 2014



MFT emerged in the context of
non-equilibrium steady states of lattice gases

P- P-
L

* Non-locality: long range correlations

* Uphill trajectory is different from time-reversed downhill trajectory
* Non-smooth parameter dependence of large deviation
function/functional: "phase transitions”

Reviews: Derrida 2007, Jona-Lasinio 2010, Bertini et al. 2014



Non-stationary settings are also interesting

Example 1: Formation of void of size L at time T in an initially
uniform gas

Krapivsky, M and Sasorov 2012

1.
0.8t
0.6} N
o
04 N p,
-8 -4 0 4 8
X

P(L,T)~exp[-T?S, (%,n)], T>>1L>>1

L d: dimension of space
Sy (F’ n) large deviation function; Most probable density history



Non-stationary settings are also interesting

Example 2: Fluctuations of mass/energy transfer in finite time
Derrida and Gerschenfeld 2009a,2009b, Sethuraman and Varadhan 2011, Krapivsky and M 2012,
M and Sasorov 2013, 2014, Vilenkin, M and Sasorov 2014

P_

P, M: =[[p(x,T)—p(x.0)]dx

P =L, for Random Walkers
T, T>>1 ' Rws) SSEP and KMP

(M) =
P(M;) ~ exp[—ﬁS(b"% popdl, T>>1

M
Large deviation function S(\/?T ,P_,P.)="7 Even P_ = P, is nontrivial

What is the most probable history of the density field conditional on M;?



Non-stationary settings

Example 3 (this talk): Target survival problem

®
®
P Diffusion-controlled reactions
Smoluchowski 1917
o
® o o o °
® ® ®
° ® ®

What is the probability that no particle hit the target until +=T?
What is the most probable density history of the gas conditional on the non-hitting?

For a given lattice gas, the answers depend on three parameters:

l=—— .d,n,



The T—e asymptotic of the target survival probability

is known for ideal gas (RWs), see references in
Bray, Majumdar and Schehr, Adv. Phys. 62, 225 (2013)

( 1/2

2(DT)'> 2

VT
_111 PRw(T) ", < Au DT d—9
no B In(DT/R?)’
M — d/2 pd—2
(d—2)m%* R DT,d>2,

\ ['(d/2)

Most probable density histories have not been found even for ideal gas.

For non-ideal gases such as SSEP there are no previous results,
except for some bounds.



MFT formulation is similar to that for the mass transfer:

0,9=V-[D(Q)Vag-oc(q)Vp)]

1 + spherical symmetry
o.p =—D(a) V'p—Z o' (a)(VP)’

Boundary condition: q(r = R,t) =0

The process is conditional on N absorbed particles by time T:

27Z_d/2 o0
_fdr r‘*[n, —q(r,T)]=N M and Redner 2014

rd/2)

This integral constraint calls for a Lagrangian multiplier A and leads to additional
boundary condition (in tfime) coming from the minimization of action:

p(r,t=T)=460(r — R)

The parameter A is ultimately fixed by N=0



Deterministic, or quenched, initial condition  q(r > R,t=0) =n,

Once q(r,t) and p(r,t) found:

d/

—InP =S(N) = ) j dt j dr r*o(q) (8, p)?

Random, or annealed initial condition infroduces two changes:

* the initial condition becomes p-dependent:

q(r,0)
p(r0)-2 | do 2 =a0(r-R) (1)

Ny o ql

(Derrida and Gerschenfeld 2009)

* when evaluating the probability, one should add to S the Boltzmann-Gibbs free energy
“cost” of creating the optimal initial density profile q(r,0) described by Eq. (1)



Dynamic scaling of the absorption probability

MFT equations are invariant under rescaling t/T —>t, x/~/DT — X
The radius of absorber becomes | = R/~/ DT

N
(DT)d/Z ’no

—In®=S=(DT)%? s{l,

} We are interested

1 in the limit N->0

F(d/2 !

tdr r'?o(a)(@,p)’

d=1: S is independent of R, so s doesn't depend on ¢ leading to survival probability

—-Iny = (DT)UZSl(nO) for all diffusive lattice gases

The T2 scaling signals that the 1d-problem is non-stationary.
An important consequence is that s;(ny) depends on whether the initial
condition is deterministic or random.



Long-time asymptotics for d>2: stationary fluctuations

— D(q)i:—q +o(gq)v=0 zeroflux at all times
r

?d(_ql) c?r (ri-iv)+ %G' (qQ)v* =0, v=dp/dr

This leads to a single nonlinear ODE for q(r):




SSEP
D(q) = D = const, o(q) =2Dq(1-q)

The nonlinear ODE becomes

2
v2q + 2q -1 (dqj _0
29(1—q) \ dr

A simple change of variables q(r) =sin® u(r) brings this equation to
VZu =0.

r

The solution, in the variable q, is

d-2
q(r):sinZK1— Irdzjarcsin no} I % d>?2




SSEP, d>2

. 12 . R
— 2 1_ . I =
q(r) =sin K rO|2jarcsm no} o
v(r) = dp 1 dg  2(d —2)IO"2 arcsin ,/n,

dr- 2q{1-q) dr ré- sm{Z( ]arcsm\/i}

Asymptotics of q and v near the target, r-R«R:

q(r-1<<1)=(d —2)2arcsin2(\/n70)(|£_ j

quadratic so that theflux to the target is zero

v(r—|<<|)=|i
—r

singular at all times; doesn't depend on n,



SSEP, d>2

. |4-2 . R
r)=sin?||1- arcsin/n_ |, 1= ——
q(r) |:( r“j 0} \/ﬁ

_ oyd-2 :
v(r)zdp 1 dq  2(d-2)l arcsm\/i

drqi-ayar sm{Z( ]arcsm\/i}

Taking ny<<1 we get the results for ideal gas”

14-2)° R
N=nl|l-—|, —
q(r) ( rdzj DT

V()_dp d— 2[ 1}

r



Survival probability for SSEP

2(d — 2) 7%/2 R*2DT arcsin® \/ng

—InP ~ @2

g > 2.

differs from the result for ideal gas only by the density dependence. The LDF
increases much faster with the density, but remains finite.
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The stationary solution does not satisfy the boundary conditions in time.
As a result, boundary layers at =0 and =1 develop

Numerical solution: iterations of q forward in time, p backward in fime
Chernykh and Stepanov 2001

05 v v v v l|
- B
0.4} -
= 0.3}
- 3 d=3
S o2l }
s =5 x 103
0.1} 0.0%= ooo/e 0.008 0.010 1 0.1 - n0:0°5
r
0.0 0.1 0.2 0.3 0.4 0.5 000 0.2 0.4 0.6 0.8 10
r t
Stationary solution for d=3: dots
1=0: dashed line Sppoon= 3.876..x102

1=0.25, 0.5 and 0.75: three green lines (coincide) )
t=1: black line Spum= 3.92x10-2



The stationary solution also implies that the survival probability is
independent, at d>2 and &«<1, on whether the initial condition is quenched
or annealed

For ideal gas (RWs) this prediction is verified by microscopic calculations
M .Vilenkin and Krapivsky 2014



d=2: critical dimension for long-time asymptotic

( i
Siﬂz (111 a,lrc:bm \/_) / <r< L,
CI(T) = < n 7
\n07 F > .
2 arcsin y/ngo
B QIIl%a,rcsinm ) g S r S L?
U(T) — J rilnF sin ’111%
07 P > L.

L~1. In the original variables L~(DT)?2
Logarithmic accuracy

27w DT arcsin? 2/
—111732S2 n resit O’ R<< ‘/DT.

/DT
In =




d=1: Non-stationary fluctuations, SSEP

We have been unable to solve the complete non-stationary problem analytically

1. We solved it in the ideal gas limit ny«1

2. We calculated finite-density corrections perturbatively

3. We solved the problem numerically for different gas densities
and determined s;(nyp).



Ideal gas limit: non-interacting Random Walkers (RWs)
D(a)=1 o(q)=2q

0,0=V-(Vq—-2qVp)
op=—Vp—(Vp)
Q=qe®, P=¢"

Hopf-Cole canonical transformation
jdxcp(q,P):jdxqu

HIQ(x,1), P(x,1)] = [ dx Z,

FE=-VQ-VP

New Hamiltonian

. . atQ — VZQ .
New Hamilton equations are linear and uncoupled
o,P=—-V?°P



Solution for ideal gas, quenched initial condition

(xf2-p1) 2 (x2+p) 2
n X Toe to—eg it
q(x,t):oerf{ }x du
Jrt 4(1—t) ! erf u
_42(1-'[)
v(x,t)=gp= °
X
Jr(@d-t) erf
7= {4@-0}

steady state eqn. for p:

v(X,t) :E, X <<A/1-t
X

A singularity of v at x=0 is present at
all tfimes; universal asymptotic, solves

0=-p"—(p')°



Action for ideal gas, quenched initial condition:

Sew = —2N, [durerf=—An,, A, =2.06883...
0
—InP =A,n,~T

2
This is different from—INn P = f Ny~ T obtained for annealed initial condition
JC

The two results (quenched and annealed) can be also obtained from the
microscopic model:

Example of quenched initial condition: particles are arranged periodically in space.
Annealed initial condition: random distribution.
The microscopic theory also gives pre-exponential factors

M Vilenkin and Krapivsky 2014



Solution for ideal gas, annealed initial condition

q(x,t) =n erf( X jerf a tri d
L) = —— symmeftric aroun

’ Jat Ja(l—t) t=1/2, no overshot

X2

4(1-t)

v(X,t) = P = © same as for quenched
X
J7r(A-t) erf
Va4 —t)
! ot
s 1
o V(X,t) ==, Xx<<~/1-t
V4 X
7
£ 05 j A singularity of v at x=0 is present at
- 5 all times; universal asymptotic, solves
/i1=0,1/4,1/2,3/4,1 steady state eqn. for p:
/I . ] 1\2
N , , 0=—p"—(p')




Finite density correction

Split the SSEP Hamiltonian FE=—-0,90,p+q@—q)(o, p)? D=1

in two parts: the ideal gas Hamiltonian, h, =—3,90,p+Aq(3,p)*

and small correction h, = —g%(8, p)?

coming from exclusion interaction. The small correction to action can be computed
perturbatively. For the quenched initial condition:

| « OO0
0s = ——/ dt/ dx hi|qo(x,t), po(x,t)]
Jo 0
i O
= [t [ dogd i
Jo Jo

where the integration is over unperturbed (that is, ideal gas) trajectory.
The final result is

S=—AN,+A,nS +..., A, =2[duerfu=206883.., A,=108337..
0

—InP=+/Ts



Finite density correction

Split the SSEP Hamiltonian FE=—-0,90,p+q@—q)(o, p)? D=1

in two parts: the ideal gas Hamiltonian, h, =—3,90,p+Aq(3,p)*
and small correction h, = —-g*(8, p)°

coming from exclusion interaction. The small correction to action can be computed
perturbatively. For the annealed initial condition one also needs to calculate the small
correction to the Boltzmann-Gibbs free energy cost. The final result is

s,.(n,) = %[no + (/2 -1)nZ + ]
T
—InP = ﬁsan(no)

That is, for d=1 one obtains different ny-dependences of the survival probability for the
SSEP in the quenched and annealed case

The ny? correction in the annealed case agrees with Santos and Schiitz (2001). They solved a different
problem: of particle injection info a semi-infinite line. Thei problem, however, is directly related to the
target survival problem. Thanks to Gunter Schiitz for this comment!



Arbitrary densities: numerical solution, quenched initial condition

20

15f

n,=0.8

"0 1 2 3 4 5 6 8.0 0.2 0.4

"+0,0.25, 0.5 and 1 (0.75 for v)

Numerically found action vs. density
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s, apparently diverges as 0.0 02 04 06 08 10

s,oc(1—n,)"?asn, —>1 Mo



¢>>1: Intermediate asymptotic of the target survival probability
in any dimension

d/

j dt j dr r*“o(q)(8, p)’

F(d/2)
_ d/2|d -1 1 0 ,
= @ /2)-([dt-!dr o (a)(8, p)

For the SSEP this becomes
_ 27Z'd/2|d_151(n0)
r(d/2)
27925 (n,)RYVT
r(d/2)

—Iny =S

112
112

, In-any dimension

Quenched and annealed are different for any d in this limit!



Extensions to other lattice gases

I I 2
Vg + D' o' \dg) _ 0
D 20 /\dr
Conjecture (cf. with additivity principle of Derrida): if solution obeying q(£)=0
and g(e)=ny exists, it yields 2(T)

1
Example. ZRP with departure rate  a(n;) = > n;

= D(g)=9, o(Q =qg*
D' o'

=5 55" 0=V:q=0
o
[4-2 R different n,
q(r) =n, 1‘@ | :F ;gendence
4 (d — 2) 79/2 Ri=2p2 T

r I

V(r)zd_z{(rj_} —InP~85= T(d/2) ., d>2,



Extensions to other lattice gases
Va5 5o far)
D 20 /\dr

Let D(g)~q*, o(q)~q” a q—0
D' o _2a-p

— — as q—0
D 20 2q
Look for gq(r—1<<Il)=const(r—1)" +..., >0
q''(r) is balanced by thenonlinear term
=y = 2 , Which yields a necessary condition
2 -+ 2

2a-p+2>0

When this condition is met, the action is bounded



Summary

MFT makes it possible to evaluate (in some cases, quite easily) the target survival
probability for a class of interacting host gases where no previous results existed
Possible applications for diffusion-controlled reactions in crowded environments.

One more example of efficiency and versatility of the MFT

One more example of ever-lasting effect of initial condition in 1d

MFT equations are usually hard to solve. More examples should be worked
out to gain experience and intuition

Large deviations in non-stationary problems provide a fascinating insight into
non-equilibrium stochastic systems

Thank you




