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• Monomer-Dimer models describe systems with hard-

core interactions.

• Physical origins: bi-atomic oxygen molecules de-

posited on tungsten (and other phenomena).

• Early rigorous results: Kasteleyn, Fisher and Tem-

perley (pure dimer case, 60ies) and especially Heil-

mann and Lieb (70ies) on the absence of phase

transitions.

• ... up to recent results.
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• In computer science: properties of size and number

matching. This is related to the entropy of the

MD model. Problem is studied for random graphs

and also in presence of attractive interaction among

dimers.

• in physics: the attractive component of the Van der

Waals potential.



Definitions

• G = (V,E) graph with vertex set V and edge set

E ⊆ {uv ≡ {u, v} |u, v ∈ V, u 6= v} .

• A Dimeric Configuration D on the graph G is a

family of edges with no vertex in common.

• We associate to it the monomeric configuration:

MG(D) := {v ∈ V | ∀u∈V uv /∈ D} .

• Notice that hard-core interaction imposes the con-

straint

2 |D| + |MG(D)| = |V |
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Allowed (left) and forbidden (right) dimeric

configuration.
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A monomer-dimer model on G is defined by assigning

activites to monomers and dimers, x > 0, w > 0, and

considering the measure

µG,x,w(D) =
1

ZG(x,w)
x|MG(D)|w|D| .

The constraint between vertices, monomers and dimers

implies

ZG(x,w) = w|V |/2ZG

( x√
w

,1
)

.

Without loss of generality we assume w = 1 and study

µG,x(D) =
1

ZG(x)
x|V |−2 |D| ∀D∈DG ,

and the pressure

PG(x) = lnZG(x)
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Among the main quantities of interest the monomer

density is defined as

εG(x) := x
∂

∂x

PG(x)

|V |
=

〈|MG|
|V |

〉G,x ,

it also useful to consider the probability of having a

monomer on a given vertex o ∈ V :

Rx(G, o) := 〈 1o∈MG
〉G,x ∈ [0,1] ,

whose relation with the monomer density is

εG(x) =
1

|V |
∑

o∈V
Rx(G, o) .
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Basic property. Defining:

• u ∼ v two neighbours in the graph G,

• Eo the set of edges which connect the vertex o ∈ V

to one of its neighbours,

• G− o := (V r o,E r Eo)

the Heilmann-Lieb identity holds:

ZG(x) = xZG−o(x) +
∑

v∼o
ZG−o−v(x) .

The identity can be used to solve any finite graph, and

some limiting cases:
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• the line: the partition function for N sites is the

N-th Chebyshev polynomial of the second type.

• the ρ-regular rooted tree (line is ρ=1): the partition

function for K generations is a product of all the k-

th, 1 ≤ k ≤ K, Chebyshev polynomial of the second

type.

• the complete graph, related to the Hermite poly-

nomials (suitably rescaled with
√
N for the dimer

contribution).
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Plan of the talk. Report on two results, two exact

solutions:

• Mean-field (complete graph) with attractive poten-

tial among similar particles.

• Mean-field (quenched measure) on a class of diluted

graphs (locally tree-like).

• ...
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1) Exact Solution for the Attractive Case

Diego Alberici, P.C., Emanuele Mingione:

JMP 2014, EPL 2014

Configurations with two nearest-neighbor monomers (or

dimers) are favoured:

µN,(h,J)(D) =
1

ZN(h, J)
e(h+1/2 lnN)|MN(D)|+J/N |NN(D)|

NN(D) is the set of neighbouring monomers and J > 0.
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Results:

∃ p = lim
N→∞

1

N
lnZN ,

p = sup
m∈[0,1]

p̃(m) ,

p̃(m) = −J

2
m2 + pMD(J m+ h) .

pMD is the pure (J = 0) monomer-dimer pressure in the
complete graph

pMD(ξ) = −1

2
(1− g(ξ))− 1

2
ln(1− g(ξ))
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where g(ξ) = 1
2(

√

e4ξ +4e2ξ − e2ξ).

The stationarity condition for p̃ gives:

m = g(J m+ h) ,

with critical point
(

Jc, hc
)

=
(

3+2
√
2

2 , 1
2 ln(2

√
2− 2)− 2+

√
2

2

)

,

critical exponents 1/2 and 1/3, a coexistence curve Γ

in the (J, h) plane with first order phase transition.
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The function p̃ plotted versus m, for different values

of the parameters J and h.
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The critical curve, its asymptote and the critical point

(Jc, hc) represented on the half plane (J, h).
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The coexistence surface with the transition.
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Proof Ideas

- new variational principle, upper and lower bounds

Theorem:

pN ≥ −J
2 m2 + pMD(J m+ h− J

2N )

pN ≤ ln(N+1)
N + sup

m
{−J

2 m2 + pMD(J m+ h− J
2N )}
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2) Exact Solution for the Diluted Case

Diego Alberici, P.C.:

CMP 2014

Dilution is introduced through a random graph struc-

ture of Erdös-Rényi type: each vertex has a Poisson(c)

distributed number of neighbors.

This graph is locally tree-like and all the results were

proved for sequences of random graphs (Gn)n∈N locally

convergent to a unimodular Galton-Watson tree T (P, ρ)

and with finite second moment of the asymptotic de-

gree distribution P .
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Results

Consider the random variable Y (x) whose distribution

is defined as the only fixed point supported in [0,1] of

the distributional equation

Y
D
=

x2

x2 +
∑K

i=1 Yi
,

where the (Yi)i∈N are i.i.d. copies of Y , K is Poisson(c)-

distributed and independent of (Yi)i∈N.
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• The solution Y (x) is reached parity-monotonically

in the iterations.

• Starting from Yi ≡ 1, the even iterations decrease

monotonically, the odd ones increase monotonically,

their difference shrinks to zero and their common

limit is an analytic function of x.

• the random monomer density converges almost surely,

in the thermodynamic limit, to the analytic func-

tion:

ε(x) = E(Y (x))

and the random pressure to

p(x) = − E

[

log
Y (x)

x

]

− c

2
E

[

log
(

1+
Y1(x)

x

Y2(x)

x

)]

.
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Proof Ideas

1) Analytic control of the probability of having a monomer

in a vertex o: Rx(G, o)

The Heilmann-Lieb identity translates into the relation

Rx(G, o) =
x2

x2 +
∑

v∼oRx(G− o, v)

Theorem 1:

• The function z 7→ Rz(G, o) is analytic on C+

• If z ∈ C+, then |Rz(G, o)| ≤ |z|/ℜ(z)
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2) Parity-alternating correlation inequalities for trees.

Let [G, o]l be the ball of radius l and center o.

Theorem 2:

- If [G, o]2r is a tree, then Rx(G, o) ≤ Rx([G, o]2r, o) .

- If [G, o]2r+1 is a tree, then Rx(G, o) ≥ Rx([G, o]2r+1, o) .

Morally: we show that odd and even iterations are

monotonically convergent to analytic functions. Since

the square iterated fixed point equation is a contraction

for large values of x the two limits must coincide there

and, by consequences of analyticity, everywhere.
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Remarks

• Zdeborova and Mezard (2006) studied the problem

for sparse random graphs and proposed an exact

solution using the replica-symmetric cavity method.

• Also: C. Bordenave, M. Lelarge, J. Salez
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Perspectives

• Diluted and Attractive

• Add random fields and random interactions, spin

glass like...

• Computer science: belief propagation doesn’t work

anymore. Survey propagation enough?

24


