Magnets: even a bit of disorder can make a great difference.

With M.Zannetti, E.Lippiello, A.Decandia, S.Puri, A.Mukherjee ...

Outlook

- Coarsening in clean magnets
- Coarsening in dirty magnets (d=1)

• Coarsening in dirty magnets (d>1)

Warm up

Clean magnets

Equilibrium

If Disorder Present Must not Alter This Structure

Model

Dynamics

Never Equilibrating Processes

Ordering

Building up an infinite length

(Dynamical) RG interpretation

Dynamical Scaling

For large times
$$(\not t \to \emptyset)$$

 $G(r,t) = \langle S_i(t)S_j(t) \rangle = g\left(\frac{r}{L(t)}\right)$, $r = dist(i,j)$
 $C(t,t_w) = \langle S_i(t)S_i(t_w) \rangle = c\left(\frac{L(t)}{L(t_w)}\right)$
 $L(t) \approx t^{1/z}$

Simplest case: d=1

+ annihilation

$J=\infty$ Reaction-diffusion

D>1

Curvature Driven

Some open issues

Single interface

Characteristic Length associated to Disorder

Numerical check

Analogously for L(t)

Scaling

$$L(t) = L(t,\varepsilon) = \lambda(\varepsilon) l\left(\frac{t^{1/z}}{\lambda(\varepsilon)}\right)$$

$$C(t,t_{w}) = C(t,t_{w},\varepsilon) = \overline{\langle S_{i}(t)S_{i}(t_{w})\rangle} = c\left(\frac{L(t)}{L(t_{w})},\frac{\lambda(\varepsilon)}{L(t_{w})}\right) \neq c\left(\frac{L(t)}{L(t_{w})}\right)$$

In general

Superuniversality? No!

RG interpretation

$\varepsilon \rightarrow 0$

$\lim_{t \to \infty} \lim_{\varepsilon \to 0} \cdots \neq \lim_{\varepsilon \to 0} \lim_{t \to \infty} \cdots$

Sergio Chibbaro - Lamberto Rondoni Angelo Vulpiani

Reductionism, Emergence and Levels of Reality The Importance of Being Borderline

2 Springer

Linear Response Function

$$TM(t,\varepsilon) = \frac{T}{N\varepsilon^2} \sum_{i=1}^{N} \overline{\langle S_i(t) \rangle h_i}$$

Staggered Magnetization

$$T\chi(t,t_w) = \lim_{\varepsilon \to 0} \frac{T}{N\varepsilon^2} \sum_{i=1}^{N} \overline{\langle S_i(t) \rangle h_i}$$
 Linear Response Function
(Susceptibility)
Switched on at t_w

Scaling

$$\chi(t,t_w) = \mathbf{X}\left(\frac{L(t)}{L(t_w)}, \frac{\lambda(\varepsilon)}{L(t_w)}\right)$$

 $\chi(t,t_w) = \hat{\chi}(C)$

Fluctuation-Dissipation Relation

Statics-Dynamics

$$\lim_{t_w \to \infty} \left[-T \frac{\partial^2 \hat{\chi}(C)}{\partial C^2} \right] = P_{eq}(q)$$

D>1

 $L(t) \ll t^{1/z}$

Pinning

Barriers

Some results (SD d=2)

d is dilution (ϵ)

Some results (SD d=2)

Substrate

Scaling

$$L(t) = \lambda(\varepsilon) l\left(\frac{t^{1/z}}{\lambda(\varepsilon)}, \frac{t^{1/\zeta}}{\xi(\varepsilon)}\right)$$

$$\lambda(\varepsilon) \approx \varepsilon^{-1}$$

$$\xi(\varepsilon) \approx \left(\varepsilon_c - \varepsilon\right)^{-\upsilon}$$

Numerics

RG interpretation

Scaling of C

$$C(t,t_w) = \overline{\left\langle S_i(t)S_i(t_w) \right\rangle} = c \left(\frac{L(t)}{L(t_w)}, \frac{\lambda(\varepsilon)}{L(t_w)}, \frac{\xi(\varepsilon)}{L(t_w)} \right)$$

Scaling of C

Role of Topology (?)

Some results (RF d=2)

Some results (RF d=2)

Some results (RF d=2)

Some results (RB d=2)

Some results (RB d=2)

Conclusions

Notkankcybaled!