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The problem and our goals 

Our method: recipe for a general subtraction 
scheme at any order in perturbation theory 

Main difficulty: integrating the counter terms 

Light in the tunnel: cancellation of poles 

Application 

Conclusions

Outline
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 personal opinion: general solution is not yet available
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Sector decomposition 

Antennae subtraction 

qT-subtraction 

Sector-improved phase space for real radiation 
(STRIPPER) 

Completely Local Subtractions for Fully Differential 
Predictions at NNLO (Colorful NNLO) 

For details see: NNLO Ante Portas (LHCPhenonet 
Summer School in Hungary, June 2014)  

http://www.lhcphenonet.eu/debrecen2014/

Approaches
!

Anastasiou, Melnikov, Petriallo et al 2004- 
!
!

Gehrmann, Gehrmann-De Ridder, Glover et al 2004- 
!
!

S. Catani, M. Grazzini et al 2007-  
!
!

Czakon et al 2010- 
!
!
!
!
!

Somogyi, TZ et al 2005- 

http://www.lhcphenonet.eu/debrecen2014/
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Several options available - why a new one?

Our goal is to devise a subtraction scheme with

✓ fully local counter-terms (efficiency and 
mathematical rigor)

✓ fully differential predictions

✓ explicit expressions including flavor and color 
(color space notation is used)

✓ completely general construction (valid in any 
order of perturbation theory)

✓ option to constrain subtraction near singular 
regions (important check)
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G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 

Z. Nagy, G. Somogyi, ZT hep-ph/0702273 

RR,A2 regularizes doubly-unresolved limits
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RR,A1 regularizes singly-unresolved limits
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RR,A12 removes overlapping subtractions
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Use known ingredients
• Universal IR structure of QCD (squared) matrix elements 

- ε-poles of one-loop amplitudes:  
!
!
!
!
!
!
!
!

Z. Kunszt, ZT 1994, S. Catani, M.H. Seymour 1996, S. Catani, S. Dittmaier, ZT 2000  
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- ε-poles of two-loop amplitudes:  
!
!
!
!
!
!

S. Catani 1998, G. Sterman, M.E.Tejeda-Yeomans 2003, S. Moch, M. Mitov 2007
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Use known ingredients
• Universal IR structure of QCD (squared) matrix elements 

- ε-poles of one- and two-loop amplitudes 
- soft and collinear factorization of QCD matrix 

elements
tree-level 3-parton splitting, double soft current: 

J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002

one-loop 2-parton splitting, soft gluon current: 
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994 

Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000
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• Simple and general procedure for separating overlapping 
singularities (using a physical gauge)

Z. Nagy, G. Somogyi, ZT, 2007

• Extension over whole phase space using momentum mappings 
(not unique):

{p}n+s � {p̃}n
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Momentum mappings
{p}n+s � {p̃}n

‣ implement exact momentum conservation 

‣ recoil distributed democratically 

⇒ can be generalized to any number s of 

unresolved partons 

‣ different mappings for collinear and soft limits  

- collinear limit  pi||pr: 

- soft limit  ps →0:

{p}n+1
Cir�⇥ {p̃}(ir)

n

{p}n+1
Ss�⇥ {p̃}(s)

n
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Momentum mappings

�NNLO = �RR
m+2 + �RV

m+1 + �VV
m = �NNLO

m+2 + �NNLO
m+1 + �NNLO

m

�NNLO
m+2 =

⇤

m+2

⌃
d�RR

m+2Jm+2 � d�RR,A2
m+2 Jm �

�
d�RR,A1

m+2 Jm+1 � d�RR,A12
m+2 Jm

⇥⌥

�NNLO
m+1 =

⇤

m+1

⌃�
d�RV

m+1+
⇤

1
d�RR,A1

m+2

⇥
Jm+1�

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧
Jm

⌥

�NNLO
m =

⇤

m

⌃
d�VV

m +
⇤

2

�
d�RR,A2

m+2 �d�RR,A12
m+2

⇥
+

⇤

1

⌅
d�RV,A1

m+1 +
� ⇤

1
d�RR,A1

m+2

⇥
A1

⇧⌥
Jm

define subtractions

!
G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 

G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 
Z. Nagy, G. Somogyi, ZT hep-ph/0702273 
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Regularized RR and RV contributions
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G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 

G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 
Z. Nagy, G. Somogyi, ZT hep-ph/0702273 

can now be computed by numerical  

Monte Carlo integrations



Difficulty
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Integrated approximate xsections
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After integrating over unresolved momenta & summing 
over unresolved  flavors, the subtraction terms can be 
written as products of insertion operators (in color 
space) and lower point cross sections:Z

p
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Integrated approximate xsections

 the integrated counter-terms                                       are 
!

independent of the process & observable
 ⇒ need to compute only once (admittedly cumbersome, though)
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p
[dp(R)

p ]SingR(p
(R)
p )

�
⌦ d�n({p̃}(R))|M(0)

n ({p̃}(R)
n )|2

=
�
8⇡↵sµ

2✏
�p X

R

 Z

p
[dp(R)

p ]SingR(p
(R)
p )

�

| {z }

⌦ d�B
n

I(0)
p ({p}n; ✏)

[X]R /
Z

p
[dp(R)

p ]SingR(p
(R)
p )
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Summation over unresolved flavors
‣ integrated counter-terms [X]fi… carry flavor 

indices of unresolved patrons 

⇒ need to sum over unresolved flavors:   

technically simple, though tedious, result can be 
summarized in flavor-summed integrated counter-
terms 

‣ symbolically: 

!

‣ and precisely, for instance, two-flavor sum:

⇣
X(0)

⌘(j,l)...

fi...
=

X
[X(0)](j,l)...fk...

X

{m+2}

1

S{m+2}

X

t

X

k 6=t

[X(0)
kt ]

(...)
fkft

⌘
X

{m}

1

S{m}

✓
X(0)

kt

◆(...)

!
P. Bolzoni, G. Somogyi, ZT arXiv:0905.4390
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Computing the integrals
‣ Use algebraic and symmetry relations to reduce to 

a basic set ⇒ MI’s (but no IBP was used) 

‣ two strategies: 

!

!

!
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Computing the integrals
‣ Use algebraic and symmetry relations to reduce to 

a basic set ⇒ MI’s (but no IBP was used) 

‣ two strategies: 

!

!

!

!

!

5. evaluate parametric integrals of pole coefficients in 
terms of multiple polylogs, optional: simplify result

1.write phase space using angles 
and energies 

2. angular integrals in terms of 
MB representations 

3. resolve ε-poles by analytic 
continuation 

4.MB integrals -> Euler-type 
integrals, pole coefficients are 
finite parametric integrals

1. choose explicit parametriz-
ation of phase space 

2.write the parametric integral 
representation in chosen 
variables 

3. resolve ε-poles by sector 
decomposition 

4. pole coefficients are finite 
parametric integrals
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Status of integrals
Int status

I(k)
1C ,0

4

I(k)
1C ,1

4

I(k)
1C ,2

4

I(k)
1C ,3

4

I(k)
1C ,4

4

I(k,l)
1C ,5

4

I(k,l)
1C ,6

4

I(k)
1C ,7

4

I1C ,8 4

Int status

I(k)
12S ,1

4

I(k)
12S ,2

4

I(k)
12S ,3

4

I(k)
12S ,4

4

I(k)
12S ,5

4

I12S ,6 4

I12S ,7 4

I12S ,8 4

I12S ,9 4

I12S ,10 8

I12S ,11 8

I12S ,12 4

I12S ,13 4

Int status

I1S ,0 4

I1S ,1 4

I1S ,2 (m > 3) 8

I(k)
1S ,3

4

I1S ,4 4

I1S ,5 4

I1S ,6 4

I1S ,7 4

Int status

I(k)
12CS ,1

4

I12CS ,2 4

I12CS ,3 4

Int status

I1CS ,0 4

I1CS ,1 4

I(k)
1CS ,2

4

I1CS ,3 4

I1CS ,4 4

Int status

I(j,k,l,m)
2C ,1

4

I(j,k,l,m)
2C ,2

4

I(j,k,l,m)
2C ,3

4

I(j,k,l,m)
2C ,4

8

I(j,k,l,m)
2C ,5

8

I(k,l)
2C ,6

4

Int status

I(k,l)
12C ,1

4

I(k,l)
12C ,2

4

I(k)
12C ,3

4

I(k,l)
12C ,4

4

I(k)
12C ,5 m = 2: 4/8

I(k)
12C ,6

4

I(k)
12C ,7

4

I(k)
12C ,8

4

I(k)
12C ,9

4

I(k)
12C ,10

4

Int status

I(k)
2CS ,1

8

I(k)
2CS ,2

8

I(k)
2CS ,3

4

I(k)
2CS ,4

4

I(k)
2CS ,5

4

Int status

I2S ,1 4

I2S ,2 4

I2S ,3 4

I2S ,4 4

I2S ,5 4

I2S ,6 4

I2S ,7 4

I2S ,8 4

I2S ,9 4

I2S ,10 4

I2S ,11 4

I2S ,12 4

I2S ,13 4

I2S ,14 4

I2S ,15 4

I2S ,16 4

I2S ,17 4

I2S ,18 4

I2S ,19 8

I2S ,20 4

I2S ,21 4

I2S ,22 4

I2S ,23 4

| | page 0

✓: pole coefficients are known analytically, finite numerically	

✗: pole coefficients are known up to O(ε-1), rest numerically
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Structure of insertion operators
recall general form for Born sections

Z

p
d�RR,Ap = I(0)

p ({p}n; ✏)⌦ d�B
n

Insertion operators involve all possible color 
connections with given number of unresolved 

patrons with kinematic coefficients 

for 1 unresolved parton on tree SME |M(0)|2: 

!

kinematic functions contain poles starting from 
O(ε-2) for collinear and from O(ε-1) for soft

I(0)
1 ({p}m+1; ✏) =

↵s

2⇡
S✏

✓
µ2

Q2

◆✏ X

i

"
C(0)

1,fi
T 2

i +
X

k

S(0),(i,k)1 T iT k

#

!
G. Somogyi, ZT hep-ph/0609041
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Structure of insertion operators
recall general form for Born sections

Z

p
d�RR,Ap = I(0)

p ({p}n; ✏)⌦ d�B
n

for 2 unresolved patrons on tree SME |M(0)|2:
I(0)
2 ({p}m; ✏) =


↵s

2⇡
S✏

✓
µ2

Q2

◆✏ �2⇢X

i


C(0)

2,fi
T 2

i +
X

k

C(0)
2,fifk

T 2
k

�
T 2

i

+
X

j,l


S(0),(j,l)2 CA +

X

i

CS(0),(j,l)2,fi
T 2

i

�
T jT l

+
X

i,k,j,l

S(0),(i,k)(j,l)2 {T iT k,T jT l}
�

the iterated doubly-unresolved has the same 
color structure, kinematic coefficients differ!

G. Somogyi et al arXiv:0905.4390, arXiv:1301.3504, arXiv:1301.3919
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Structure of insertion operators
general form at one loop 

for 1 unresolved parton on loop SME |M(1)|2: 

!

!

!

present for m > 3 (four or more hard patrons) 

only non-abelian contributions

Z

1
d�RV,A1

m+1 = I(0)
1 ({p}m; ✏)⌦ d�V

m + I(1)
1 ({p}m; ✏)⌦ d�B

m

I(1)
1 ({p}m; ✏) =


↵s

2⇡
S✏

✓
µ2

Q2

◆✏ �2 X

i


C(1)

1,fi
CAT

2
i +

X

k

S(1),(i,k)1 CAT iT k

+
X

k,l
k 6=l

S(1),(i,k,l)1

X

a,b,c

fabcT
a
i T

b
kT

c
l

�

!
G. Somogyi, ZT arXiv:0807.0509
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Structure of insertion operators
singly-unresolved integrated singly unresolved:

with only non-abelian contributions on iterated I: 

!

kinematic functions contain poles starting from 
O(ε-3) only 

I(0,0)
1,1 ({p}m; ✏) =


↵s

2⇡
S✏

✓
µ2

Q2

◆✏ �2 X

i


C(0,0)

1,1,fi
CAT

2
i +

X

k

S(0,0),(i,k)1,2 CAT iT k

�

Z

1

⇣

Z

1
d�RR,A1

m+2

⌘

A1 =



1

2

n

I(0)
1 ({p}m; ✏), I(0)

1 ({p}m; ✏)
o

+ I(0,0)
1,1 ({p}m; ✏)

�

⌦ d�B
m

!
G. Somogyi, ZT arXiv:0807.0509
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Structure of insertion operators

‣ the color structures are independent of the 
precise definition of subtractions (momentum 
mappings), only subleading coefficients of ε-
expansion in kinematic functions may depend 

‣ we computed all insertion operators (defined in our 
subtraction scheme) up to O(ε-2) for arbitrary m



Light in the tunnel
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Cancellation of poles

‣ we checked the cancellation of the leading and 
first subleading poles (defined in our subtraction 
scheme) for arbitrary m 

‣ for m=2,  

‣ the insertion operators are independent of the 
kinematics (momenta are back-to-back, so  
MI’s are needed at the endpoints only) 

‣ color algebra is trivial: 

‣ so can demonstrate the cancellation of poles

T 1T 2 = �T 2
1 = �T 2

2 = �CF
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Example: H→bb at µ = mH
_

d�VV
H!bb̄ =

✓
↵s(µ2)

2⇡

◆2

d�B
H!bb̄

⇢
2C2

F

✏4
+

✓
11CACF

4
+ 6C2

F � CFnf

2

◆
1

✏3

+

✓
8

9
+

⇡2

12

◆
CACF +

✓
17

2
� 2⇡2

◆
C2

F � 2CFnf

9

�
1

✏2

+

✓
� 961

216
+

13⇣3
2

◆
CACF +

✓
109

8
� 2⇡2 � 14⇣3

◆
C2

F +
65CFnf

108

�
1

✏

�

�NNLO
m =

Z

m

n

d�VV
m +

Z

2

h

d�RR,A2
m+2 � d�RR,A12

m+2

i

+

Z

1

h

d�RV,A1
m+1 +

⇣

Z

1

d�RR,A1
m+2

⌘

A1
io

Jm

XZ
d�A =

✓
↵s(µ2)

2⇡

◆2

d�B
H!bb̄

⇢
�2C2

F

✏4
+

✓
� 11CACF

4
� 6C2

F +
CFnf

2

◆
1

✏3

+

✓
� 8

9
� ⇡2

12

◆
CACF +

✓
� 17

2
+ 2⇡2

◆
C2

F +
2CFnf

9

�
1

✏2

+


� 3.36424CACF + 22.9414C2

F � 0.601852CFnf

�
1

✏

�

!
C. Anastasiou, F. Herzog, A. Lazopoulos arXiv:0111.2368
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Example: H→bb at µ = mH
_

�NNLO
m =

Z

m

n

d�VV
m +

Z

2

h

d�RR,A2
m+2 � d�RR,A12

m+2

i

+

Z

1

h

d�RV,A1
m+1 +

⇣

Z

1

d�RR,A1
m+2

⌘

A1
io

Jm

XZ
d�A =

✓
↵s(µ2)

2⇡

◆2

d�B
H!bb̄

⇢
�2C2

F

✏4
+

✓
� 11CACF

4
� 6C2

F +
CFnf

2

◆
1

✏3

+

✓
� 8

9
� ⇡2

12

◆
CACF +

✓
� 17

2
+ 2⇡2

◆
C2

F +
2CFnf

9

�
1

✏2

+


� 3.36424CACF + 22.9414C2

F � 0.601852CFnf

�
1

✏

�

d�VV
H!bb̄ =

✓
↵s(µ2)

2⇡

◆2

d�B
H!bb̄

⇢
2C2

F

✏4
+

✓
11CACF

4
+ 6C2

F � CFnf

2

◆
1

✏3

+

✓
8

9
+

⇡2

12

◆
CACF +

✓
17

2
� 2⇡2

◆
C2

F � 2CFnf

9

�
1

✏2

+


3.36429CACF � 22.9430C2

F + 0.601851

�
1

✏

�

!
C. Anastasiou, F. Herzog, A. Lazopoulos arXiv:0111.2368
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Message: 
the method works, try to apply 



Application



38

Example: H→bb at µ = mH

Energy spectrum of the leading jet in the rest frame of the Higgs 
boson. Jets are clustered using the JADE algorithm with ycut = 0.1

−

!
AHL = C. Anastasiou, F. Herzog, A. Lazopoulos arXiv:0111.2368
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Example: H→bb at µ = mH

Energy spectrum of the leading jet in the rest frame of the Higgs 
boson.  
left: jets are clustered using the JADE algorithm with ycut = 0.05 
right: jets are clustered using the Durham algorithm with ycut = 0.1
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for processes with no colored particles in the initial state)
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Conclusions
✓ Defined a general subtraction scheme for computing 

NNLO fully differential jet cross sections (presently only 
for processes with no colored particles in the initial state)

✓ Subtractions are

✓ fully local

✓ exact and explicit in color (using color state 
formalism)

✓ Demonstrated the cancellation of ε-poles for m=2

✓ First application: Higgs-boson decay into a b-quark pair


