## Interference effects for Higgs-mediated ZZ+jet production

E. H. LEWARD STRUCTURE STRUCTURE OF A DAY STORE STRUCTURE

Elisabetta Furlan

Fermilab

in collaboration with John M. Campbell, R. Keith Ellis and Raoul Röntsch



## Motivation

- \* a large fraction of the cross section for events where the
  - Higgs decays to vector bosons,

pp -> H( -> VV) + X

lies in the high mass tail Myy>2 my

Kauer, Passarino, JHEP 1208, 116 (2012)

#### this tail is independent of the Higgs boson width $\Gamma_{ m H}$

|           | bound $\Gamma_{\mathrm{H}}$                                                      | Caola, Melnikov<br>JHEP 14 | y, PRD88, 054024 (2013); Campbell et al.,<br>404, 060 (2014), PRD89,053011 (2014); |  |  |
|-----------|----------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------|--|--|
| use it to | Khachatryan et al. (CMS Collab.), PLB 736, 64<br>Tech. Rep. ATLAS-CONF-2014-042. |                            |                                                                                    |  |  |
|           | study the effecti                                                                | ve                         | Cacciapaglia et al., 1406.1757;<br>Azatov et al., 1406.6338.                       |  |  |
|           | gluon-Higgs coupl                                                                | ing                        |                                                                                    |  |  |

#### Motivation

why the extra jet?

\* radiation in gluon-fusion Higgs production is large

large k-factors in gg -> H

Pawson, NPB 359, 283 (1991); Djouadi et al., PLB 264, 440 (1991); Graudenz et al., PRL 70, 1372 (1993); ...

large cross section for gg -> H + 1 jet Ellis et al., NPB297, 221 (1998)

->> production xsec in H + 1 jet and H + 0 jet comparable



#### Motivation

- the one-loop amplitudes entering ZZ + jet are part of the missing higher-order corrections to inclusive loop-mediated Z pair production relevant to the Higgs-continuum interference
- \* these corrections are expected to be large -> having them

under control would allow for a more reliable bound on  $\Gamma_{\rm H}$ 

from ZZ interference

our results are analytical -> easier to integrate over singular regions

\* virtual corrections are still missing ..

#### Bounding the Higgs width using interference effects in ZZ

Caola, Melnikov, PRD88, 054024 (2013); Campbell et al., JHEP 1404, 060 (2014), PRD89,053011 (2014); Kauer, Passarino, JHEP 1208, 116 (2012)

i  $\frac{H}{g_i \ g_f}$  f  $\frac{d\sigma}{dq^2} \sim \frac{g_i^2 g_f^2}{(q^2 - m_H^2)^2 + m_H^2 \Gamma_H^2}$ 

\* consider an Higgs-mediated process i -> H -> f





cross section to constrain  $\Gamma_{\text{H}}$ 

Caola, Melnikov,



The result this yields large destructive interference between GC uts appropriate for CMS analgened of full dataset? ZZ -> 41



the qq background is 1-2 orders of magnitude larger than the signal

situation improves at higher center of mass energies

Campbell et al., JHEP 1404, 060 (2014)

$$\begin{aligned} & \text{introduction} \\ \text{* constraint on the Higgs width: assume that} \\ & \sigma_{H}^{peak} = \sigma_{H}^{peak,SM} , g_{i,f}^{peak} = g_{i,f}^{off} \\ & \text{but allow for } \Gamma_{H} \neq \Gamma_{H}^{SM} \text{, i.e., } g_{i,f} = \alpha g_{i,f}^{SM}, \\ & \Gamma_{H} = \alpha^{4} \Gamma_{H}^{SM}. \end{aligned} \\ \text{* the ratio of peak and off-peak cross sections at STeV yields} \\ & \frac{\sigma_{off}^{H+I}(m_{4l} > 300 \text{ GeV})}{\sigma_{peak}^{H}} = 0.098 \left(\frac{\Gamma_{H}}{\Gamma_{H}^{SM}}\right) - 0.141 \sqrt{\frac{\Gamma_{H}}{\Gamma_{H}^{SM}}} \\ \text{• } \Gamma_{H} \lesssim 25.2 \Gamma_{H}^{SM} \qquad \text{Campbell et al., JHEP 1404, 060 (2014)} \\ & \Gamma_{H} < 5.4 \Gamma_{H}^{SM} \text{ (CMS)} \\ & \Gamma_{H} < (4.8 - 7.7) \Gamma_{H}^{SM} \text{ (ATLAS)} \end{aligned}$$

- similar ideas for interference effects in pp -> ZZ+1 jet
  - in the tail, the ratio of Higgs signal to LO background even (slightly) better than for pp -> ZZ



- similar ideas for interference effects in pp -> ZZ+1 jet
  - in the tail, the ratio of Higgs signal to LO background even better than for pp -> ZZ!
  - also in this case the interference between pp -> H(->ZZ) + 1 jet and pp -> ZZ + 1 jet in the high energy region is large and needs to be taken into account

## Ingredients

| order         | process                                                                             | background                         | signal                         |
|---------------|-------------------------------------------------------------------------------------|------------------------------------|--------------------------------|
| $g_w^2 g_s$   | $\begin{array}{c} q\bar{q} \rightarrow ZZ + g \\ qg \rightarrow ZZ + q \end{array}$ | $\mathcal{B}_t^{qqg}$              |                                |
| $g_w^2 g_s^3$ | $\begin{array}{c} q\bar{q} \rightarrow ZZ + g \\ qg \rightarrow ZZ + q \end{array}$ | B <sup>qqg</sup> 200 m             | S <sup>qqg</sup> <sub>1l</sub> |
|               | $gg \rightarrow ZZ + g$                                                             | B <sup>ggg</sup> <sub>1l</sub> und | Sggg eee                       |



#### Ingredients



#### Ingredients



# Results for pp -> ZZ + jetdemand\* one single jet $|\eta_j| < 3$ , $p_{T,j} > p_{T,cut}$ \* $m_{ZZ} > 300$ GeV (high mass tail)

|                            |                                      | $ \mathcal{S}_{1l}^{ggg} ^2$ | $ \mathcal{S}_{1l}^{qqg} ^2$        | S                          | $\mathcal{B}_{1l}^{qqg} 	imes \mathcal{B}_{1l}^{*,}$ | qqg                             |
|----------------------------|--------------------------------------|------------------------------|-------------------------------------|----------------------------|------------------------------------------------------|---------------------------------|
|                            | $p_{T,\mathrm{cut}}  [\mathrm{GeV}]$ | $\sigma_H^{gg}$ [fb]         | $\sigma_H^{qg+q\bar{q}}[\text{fb}]$ | $\sigma_I^{gg}[\text{fb}]$ | $\sigma_I^{qg+q\bar{q}}[{ m fb}]$                    | $\sigma_I^{\rm tree}[{\rm fb}]$ |
|                            | 30                                   | 0.0212                       | 0.00679                             | -0.0299                    | -0.00929                                             | 0.00230                         |
| $\sqrt{c} = 8 \text{ ToV}$ | 50                                   | 0.0124                       | 0.00522                             | -0.0173                    | -0.00706                                             | 0.00182                         |
| $\sqrt{s} = 0$ Iev         | 100                                  | 0.00467                      | 0.00279                             | -0.00632                   | -0.00369                                             | 0.00097                         |
|                            | 200                                  | 0.00104                      | 0.00086                             | -0.00133                   | -0.00111                                             | 0.00026                         |

 $\mathcal{S}_{1l}^{ggg} imes \mathcal{B}_{1l}^{*,ggg} \quad \mathcal{S}_{1l}^{qqg} imes \mathcal{B}_{t}^{*,qqg}$ 

demand

one single jet

\*  $|\eta_j| < 3$  ,  $p_{T,j} > p_{T,cut}$ 

 $m_{ZZ} > 300 \text{ GeV}$  (high mass tail) \*

|                                 | $p_{T,\mathrm{cut}}  [\mathrm{GeV}]$ | $\sigma_H^{gg}$ [fb] | $\sigma_H^{qg+q\bar{q}}[\text{fb}]$ | $\sigma_I^{gg}[\text{fb}]$ | $\sigma_I^{qg+q\bar{q}}[\mathrm{fb}]$ | $\sigma_I^{\mathrm{tree}}[\mathrm{fb}]$ |
|---------------------------------|--------------------------------------|----------------------|-------------------------------------|----------------------------|---------------------------------------|-----------------------------------------|
|                                 | 30                                   | 0.0212               | 0.00679                             | -0.0299                    | -0.00929                              | 0.00230                                 |
| $\sqrt{2}$ $9$ T <sub>2</sub> V | 50                                   | 0.0124               | 0.00522                             | -0.0173                    | -0.00706                              | 0.00182                                 |
| $\sqrt{s} = 8$ lev              | 100                                  | 0.00467              | 0.00279                             | -0.00632                   | -0.00369                              | 0.00097                                 |
|                                 | 200                                  | 0.00104              | 0.00086                             | -0.00133                   | -0.00111                              | 0.00026                                 |

agree with Campanario et al., JHEP 1306, 069 (2013)

strong cancellation as required by unitarity \*

demand

\* one single jet \*  $|\eta_j| < 3$  ,  $p_{T,j} > p_{T,cut}$ 

\*  $m_{ZZ} > 300 \text{ GeV}$  (high mass tail)

|                    | $p_{T,\mathrm{cut}}  [\mathrm{GeV}]$ | $\sigma_H^{gg}$ [fb] | $\sigma_H^{qg+q\bar{q}}[\text{fb}]$ | $\sigma_I^{gg}[\text{fb}]$ | $\sigma_I^{qg+q\bar{q}}[{ m fb}]$ | $\sigma_I^{\mathrm{tree}}[\mathrm{fb}]$ |
|--------------------|--------------------------------------|----------------------|-------------------------------------|----------------------------|-----------------------------------|-----------------------------------------|
|                    | 30                                   | 0.0212               | 0.00679                             | -0.0299                    | -0.00929                          | 0.00230                                 |
|                    | 50                                   | 0.0124               | 0.00522                             | -0.0173                    | -0.00706                          | 0.00182                                 |
| $\sqrt{s} = 8$ lev | 100                                  | 0.00467              | 0.00279                             | -0.00632                   | -0.00369                          | 0.00097                                 |
|                    | 200                                  | 0.00104              | 0.00086                             | -0.00133                   | -0.00111                          | 0.00026                                 |

\* small, as expected from Dixon et al., PRD 60, 114037 (1999)

by unitarity arguments

demand

\* one single jet \*  $|\eta_j| < 3$  ,  $p_{T,j} > p_{T,cut}$ 

\*  $m_{ZZ} > 300 \text{ GeV}$  (high mass tail)

|                         | $p_{T,\mathrm{cut}}  [\mathrm{GeV}]$ | $\sigma_H^{gg}$ [fb] | $\sigma_H^{qg+q\bar{q}}[\text{fb}]$ | $\sigma_I^{gg}[\text{fb}]$ | $\sigma_I^{qg+q\bar{q}}[\text{fb}]$ | $\sigma_I^{ m tree}[{ m fb}]$ |
|-------------------------|--------------------------------------|----------------------|-------------------------------------|----------------------------|-------------------------------------|-------------------------------|
| 111                     | 30                                   | 0.0212               | 0.00679                             | -0.0299                    | -0.00929                            | 0.00230                       |
|                         | 50                                   | 0.0124               | 0.00522                             | -0.0173                    | -0.00706                            | 0.00182                       |
| $\sqrt{s} = \delta$ lev | 100                                  | 0.00467              | 0.00279                             | -0.00632                   | -0.00369                            | 0.00097                       |
| T AVE IL                | 200                                  | 0.00104              | 0.00086                             | -0.00133                   | -0.00111                            | 0.00026                       |

 $\frac{\sigma_H^{qg+q\bar{q}}}{\sigma_H} \sim \frac{\sigma_I^{qg+q\bar{q}}}{\sigma_I} \sim \begin{cases} 25\% & \text{for } p_{T,cut} = 30 \text{ GeV} \\ 50\% & \text{for } p_{T,cut} = 200 \text{ GeV} \end{cases}$ 

an harder cut probes regions of large x, where quark PDFs are relatively more important than gluon PDFs

importance of the interference term:

- \* the Higgs-mediated contribution becomes negative
- \* its shape changes





# Results for pp -> ZZ + jet analogous to the ZZ case, the ratio of peak and off-peak cross sections at 8 TeV can be used to bound the Higgs width $\frac{\sigma_{off,ZZ+jet}^{H+I}(m_{ZZ} > 300 \text{ GeV})}{\sigma_{peak,ZZ+jet}^{H}} = 0.02890 \left(\frac{\Gamma_{H}}{\Gamma_{H}^{SM}}\right) - 0.0391 \sqrt{\frac{\Gamma_{H}}{\Gamma_{H}^{SM}}}$ in the next run of the LHC, expect about 100 events to be produced in the high mass tail alternative extraction of the Higgs width

#### Conclusions

- Higgs width already constrained from interference effects in ZZ production
- similar analysis in the ZZ + jet channel is viable: in the high invariant mass tail,
  - the Higgs production cross section in the zero and one jet bins are comparable
  - the ratio of the Higgs signal to the LO background is larger in the one-jet bin than in the zero-jet bin

#### Conclusions

- we performed a detailed analysis of the high invariant mass tail
  - interference effects between Higgs and QCD ZZ production:
     large and negative as required by unitarity
- \* as in the pp -> ZZ case, relate the ratio of peak and off-peak cross sections to the Higgs decay width relative to the Standard Model