Testing General Relativity with Atom Interferometry

Savas Dimopoulos with Peter Graham Jason Hogan Mark Kasevich

Testing Large Distance GR

Cosmological Constant Problem suggests

Our understanding of GR is incomplete

(unless there are $\sim 10^{500}$ universes!)

CCP+DM inspired proposals for IR modifications:

Damour-Polyakov DGP ADDG (non-locality) Ghost condensation

MOND Beckenstein

Brans-Dicke Bimetric

. . .

Precision long distance tests GR: Principle of Equivalence tested to 3×10^{-13} most other tests ~ 10^{-3} to 10^{-5} 10^{-5} time delay (Cassini tracking) 10^{-3} light deflection (VLBI) 10^{-3} perihelion shift 10-3 Nordtvedt effect Lense-Thirring (GPB)

QED: 10 digit accuracy g-2, EDMs, etc

Precision GR tests mostly use:

Planets and photons over astronomical distances

Can we study GR using atoms over <u>short</u> distances (meters)?

Precision GR tests mostly use:

Planets and photons over astronomical distances Can we study GR using atoms over <u>short</u> distances (meters)?

Yes, thanks to the tremendous advances in Atom Interferometry

• Unprecedented Precision

(see Nobel Lectures '97, '01, '05)

• Several control variables (v, t, ω, h)

We are at crossroads where atoms may compete with astrophysical tests of GR

An old idea

Atom Interferometry can measure minute forces

Galileo $\sim g$

Current $\sim 10^{-11}g$

Future $\sim 10^{-17}g$

An old idea

Atom Interferometry can measure minute forces

Galileo $\sim g$

Current $\sim 10^{-11}g$

Future $\sim 10^{-17}g$

 $\phi = G_N \frac{M_e}{R_e}$

Outline

- Post Newtonian General Relativity
- Atom Interferometry
- Preliminary estimates

Post-Newtonian Approximation

Expansion in potential and velocity

Small Numbers

Atom velocity:

$$v_{\rm atoms} \sim 10 \frac{m}{sec} \sim 3 \times 10^{-8}$$

Earth's potential:

Gradient:

$$\phi = \frac{G_{\rm N} M_{\rm earth}}{R_{\rm earth}} \sim \frac{1}{2} \times 10^{-9}$$

$$\frac{\rm height}{\rm R_{\tiny earth}} \sim \frac{10~\rm m}{6\times 10^6~\rm m} \sim \frac{1}{6}\times 10^{-5}$$

Particle equation of motion

Newtonian Gravitational Potential Kinetic Energy Gravitational Potential Rotational Energy Gravitational Potential

Non-abelian gravity

$$+3\vec{v}\frac{\partial\phi}{\partial t} + 4\vec{v}(\vec{v}\cdot\nabla)\phi - \vec{v}^2\nabla\phi$$

Non-abelian gravity

In empty space
Newton
$$\nabla \cdot \vec{g} = \nabla^2 \phi = 4\pi G_N \rho = 0$$

Einstein $\nabla^2 \delta \phi = (\nabla \phi)^2 \sim \nabla^2 \phi^2$
 $\Rightarrow \delta \phi \sim \phi^2$
 $\Rightarrow \delta \phi \sim \phi^2$
 $\Rightarrow "\nabla \cdot \vec{g} \neq 0"$
Effect $\sim 10^{-9}g$
only gradient measurable $\rightarrow 10^{-15}g$

 $\frac{d\vec{v}}{dt} =$

"Kinetic Energy Gravitates"

 $-\vec{v}^2\nabla\phi + 4\vec{v}(\vec{v}\cdot\nabla)\phi$

Effect
$$\sim v_{\rm atoms}^2 g \sim 10^{-15} g$$

$$\begin{aligned} \frac{d\vec{v}}{dt} &= -\nabla(\phi + 2\phi^2 + \psi) - \frac{\partial\vec{\zeta}}{\partial t} + \vec{v} \times (\nabla \times \vec{\zeta}) \\ &+ 3\vec{v}\frac{\partial\phi}{\partial t} + 4\vec{v}(\vec{v}\cdot\nabla)\phi - \vec{v}^2\nabla\phi \end{aligned}$$

$$\frac{d\vec{v}}{dt} = -\nabla(\phi + 2\phi^2 + \psi) - \frac{\partial\vec{\zeta}}{\partial t} + \vec{v} \times (\nabla \times \vec{\zeta})$$

$$+3\vec{v}\frac{\partial\phi}{\partial t} + 4\vec{v}(\vec{v}\cdot\nabla)\phi - \vec{v}^2\nabla\phi$$

$$\frac{d\vec{v}}{dt} = \boxed{-\nabla(\phi + 2\phi^2 + \psi)} - \frac{\partial\vec{\zeta}}{\partial t} + \vec{v} \times (\nabla \times \vec{\zeta})$$

$$\frac{1}{10^{-9}}$$

$$+3\vec{v}\frac{\partial\phi}{\partial t} + 4\vec{v}(\vec{v}\cdot\nabla)\phi - \vec{v}^2\nabla\phi$$

$$\frac{d\vec{v}}{dt} = \boxed{-\nabla(\phi + 2\phi^2 + \psi)} - \frac{\partial\vec{\zeta}}{\partial t} + \vec{v} \times (\nabla \times \vec{\zeta})$$

$$1 \qquad 10^{-9}$$

$$10^{-15}$$

$$+3\vec{v}\frac{\partial\phi}{\partial t} + 4\vec{v}(\vec{v}\cdot\nabla)\phi - \vec{v}^2\nabla\phi$$

$$+3\vec{v}\frac{\partial\phi}{\partial t} + 4\vec{v}(\vec{v}\cdot\nabla)\phi - \vec{v}^2\nabla\phi$$

$$\frac{d\vec{v}}{dt} = -\nabla(\phi + 2\phi^2 + \psi) - \frac{\partial\vec{\zeta}}{\partial t} + \vec{v} \times (\nabla \times \vec{\zeta})$$

$$1 \qquad 10^{-9} \sim 0 \qquad 10^{-13}$$

$$10^{-15}$$

$$+3\vec{v}\frac{\partial\phi}{\partial t} + 4\vec{v}(\vec{v}\cdot\nabla)\phi - \vec{v}^2\nabla\phi$$
$$\sim 0 \qquad 10^{-15}$$

$$\frac{d\vec{v}}{dt} = -\nabla(\phi + 2\phi^2 + \psi) - \frac{\partial\vec{\zeta}}{\partial t} + \vec{v} \times (\nabla \times \vec{\zeta})$$

$$1 \qquad 10^{-9} \sim 0 \qquad 10^{-13}$$

$$10^{-15}$$

$$+3\vec{v}\frac{\partial\phi}{\partial t} + 4\vec{v}(\vec{v}\cdot\nabla)\phi - \vec{v}^2\nabla\phi$$
$$\sim 0 \qquad 10^{-15}$$

Can these terms be measured in the lab?

Light Interferometry

use lasers as beamsplitters and mirrors

slow atoms fall more under gravity and the interferometer can be as long as 1 sec ~ earth-moon distance!

Raman Transition

 $\omega_{eff} = \omega_1 - \omega_2 \sim 10^{-5} \text{ eV}$

Raman Transition

 $\Psi = c_1 |1, p\rangle + c_2 |2, p+k\rangle$

 $|c_1|^2, |c_2|^2$

 $\pi/2$ pulse is a beamsplitter π pulse is a mirror

AI Phase Shifts

Total phase difference comes from three sources:

$$\Delta\phi_{\rm tot} = \Delta\phi_{\rm propagation} + \Delta\phi_{\rm laser} + \Delta\phi_{\rm separation}$$

Propagation Phase

$$\Delta\phi_{\rm tot} = \Delta\phi_{\rm propagation} + \Delta\phi_{\rm laser} + \Delta\phi_{\rm separation}$$
$$\phi_{\rm propagation} = \int m d\tau = \int L dt = \int p_{\mu} dx^{\mu}$$

integral taken over each arm of interferometer

Laser Phase

$$\begin{split} \Delta\phi_{\rm tot} &= \Delta\phi_{\rm propagation} + \Delta\phi_{\rm laser} + \Delta\phi_{\rm separation} \\ \phi_{\rm laser} &= \sum_{\rm vertices} (\text{phase of laser}) \\ \langle \text{out} | H_{\rm int} | \text{in} \rangle &= \langle \text{out} | \vec{\mu} \cdot \vec{E}_0 e^{i \vec{k} \cdot \vec{x}} | \text{in} \rangle \end{split}$$

the laser imparts a phase to the atom just as a mirror or beamsplitter imparts a phase to light

Separation Phase

Measuring Gravity

a constant gravitational field produces a phase shift:

$\frac{GkMT^2}{R^2}$	$1. \times 10^{8}$
$-\frac{2GkMT^3v_L}{R^3}$	$-2. \times 10^{3}$
$-\frac{GMT^2\omega}{R^2}$	$-1. \times 10^{3}$
$\frac{GMT^2\omega_A}{R^2}$	$1. \times 10^3$
$\frac{7G^2kM^2T^4}{6B^5}$	1.16667×10^2
$\frac{3GkMT^2v_L}{R^2}$	$3. imes 10^1$
$-\frac{3G^2kM^2T^3}{R^4}$	-3.
$-\frac{Gk^2MT^3}{mB^3}$	-1.
$\frac{7GkMT^4v_L^2}{2D4}$	$3.5 imes 10^{-2}$
$\frac{2K_{e}^{2}}{2GMT^{3}\omega v_{L}}$	$2. \times 10^{-2}$
$-\frac{2GMT^3v_L\omega_A}{D^3}$	$-2. \times 10^{-2}$
$\frac{3Gk^2MT^2}{2R^2}$	1.5×10^{-2}
$\frac{2mR_e^2}{G^2kM^2T^2}$	$1. \times 10^{-2}$
$-\frac{11G^2kM^2T^5v_L}{2R^6}$	$-5.5 imes10^{-3}$
$-\frac{7G^2M^2T^4\omega}{6B^5}$	-1.16667×10^{-3}
$\frac{7G^2M^2T^4\omega_A}{6R^5}$	$1.16667\times 10^{\text{-}3}$
$-\frac{8GkMT^3v_L^2}{R^3}$	$-8. \times 10^{-4}$
$-\frac{3GMT^2\omega v_L}{D^2}$	$-3. imes 10^{-4}$
$\frac{35G^2kM^2T^4v_L}{2D^5}$	$1.75 imes 10^{-4}$
$\frac{2R_e^2}{5GkMT^2v_L^2}$	5×10^{-6}
$-\frac{R_{e}^{2}}{11G^{2}k^{2}M^{2}T^{5}}$	-2.75×10^{-6}
$-\frac{4mR_{6}^{6}}{15G^{2}kM^{2}T^{3}v_{L}}$	-1.5×10^{-6}
R_e^4	1.0 // 10

Charity Dlagan

$\frac{GkMT^2}{R^2}$	1
$-\frac{2GkMT^3v_L}{R^3}$	
$-\frac{GMT^2\omega}{P^2}$	
$\frac{GMT^2\omega_A}{D^2}$	1
$\frac{7G^2kM^2T^4}{6R^5}$	1
$\frac{3GkMT^2v_L}{B^2}$	3
$-\frac{3G^2kM^2T^3}{R^4}$	
$-\frac{Gk^2MT^3}{mR^3}$	
$\frac{7GkMT^4v_L^2}{2P^4}$	3
$\frac{2R_{e}}{2GMT^{3}\omega v_{L}}$	2
$-\frac{2GMT^3v_L\omega_A}{R^3}$	_
$\frac{3Gk^2MT^2}{2mR^2}$	1
$\frac{G^2 k M^2 T^2}{R^3}$	1
$-\frac{11G^2kM^2T^5v_L}{2B^6}$	_
$-\frac{7G^2M^2T^4\omega}{6B^5}$	
$\frac{7G^2M^2T^4\omega_A}{6B^5}$	1
$-\frac{8GkMT^3v_L^2}{B^3}$	
$-\frac{3GMT^2\omega v_L}{R^2}$	
$\frac{35G^2kM^2T^4v_L}{2R^5}$	1
$\frac{5GkMT^2v_L^2}{R^2}$	5
$-\frac{11G^{2}k^{2}M^{2}T^{5}}{4mR^{6}}$	
$-\frac{15G^2kM^{2}T^{3}v_{L}}{P^{4}}$	_
n_{e}^{-}	

Gra	vity Phases
$1. \times 10^8$	
$-2. \times 10^3$	non-relativistic constant g
$-1. \times 10^3$	
$1. \times 10^{3}$	NR gravity gradient
1.16667×10^2	int gravity gradient
$3. \times 10^1$	
-3.	
-1.	
$3.5\times10^{\text{-}2}$	
$2. \times 10^{-2}$	
$-2. \times 10^{-2}$	
$1.5\times10^{\text{-}2}$	
$1. \times 10^{-2}$	
$-5.5\times10^{\text{-}3}$	
$-1.16667 imes 10^{-3}$	
$1.16667 imes 10^{-3}$	
$-8. \times 10^{-4}$	
$-3. \times 10^{-4}$	
$1.75\times10^{\text{-}4}$	
$5. \times 10^{-6}$	
-2.75×10^{-6}	
$-1.5 imes 10^{-6}$	

$\underline{GkMT^2}$	1×10^8	
$\frac{R_e^2}{2GkMT^3v_L}$	$1. \times 10$ -2 × 10 ³	> non volativistic constant
$\frac{-\frac{R_e^3}{GMT^2\omega}}{-\frac{R_e^3}{GMT^2\omega}}$	$-2. \times 10$ -1×10^{3}	- non-relativistic constant g
$R_e^2 \ GMT^2 \omega_A$	$-1. \times 10^{3}$	
$\frac{R_e^2}{7G^2kM^2T^4}$	$1. \times 10$ 1 16667 × 10 ²	NR gravity gradient
$\frac{6R_e^5}{3GkMT^2v_L}$	3×10^{1}	
$\frac{R_e^2}{3G^2kM^2T^3}$	-3	
$\frac{R_e^4}{Gk^2MT^3}$	1	> Doppler shift
$\frac{1}{mR_e^3}$ $7GkMT^4v_L^2$	-1.	
$\overline{\frac{2R_{g}^{4}}{2GMT^{3}\omega v_{L}}}$	3.5×10^{-2}	
$\frac{R_e^3}{2GMT^3v_L\omega_A}$	2. $\times 10^{-2}$	
$\frac{-\frac{R_s^3}{R_s^3}}{3Gk^2MT^2}$	$-2. \times 10^{-2}$	
$\frac{2mR_e^2}{G^2kM^2T^2}$	1.5×10^{-2}	
$\frac{R_e^3}{R_e^2}$	$1. \times 10^{-3}$	
$\frac{-\frac{2R_e^6}{2R_e^6}}{7G^2M^2T^4\omega}$	$-5.5 \times 10^{\circ}$	
$\frac{-\frac{10^{-111} \text{ m}}{6R_e^5}}{7G^2 M^2 T^4} $	-1.10007×10^{-3}	
$\frac{10^{\circ} M^{\circ} 1^{\circ} \omega_A}{6R_e^5}$	1.16667×10^{-3}	
$-\frac{3GKMT}{R_e^2}$	$-8. \times 10^{-4}$	
$-\frac{3GMI}{R_e^2}$	$-3. \times 10^{-4}$	
$\frac{35G^{-}kM^{-}T^{-}v_{L}}{2R_{e}^{5}}$	1.75×10^{-4}	
$\frac{5GkMT^2v_L^2}{R_g^2}$	$5. imes 10^{-6}$	
$-rac{11G^2k^2M^2T^5}{4mR_{ m g}^6}$	-2.75×10^{-6}	
$-\frac{15G^{2}kM^{2}T^{3}v_{L}}{R_{e}^{4}}$	$-1.5\times10^{\text{-}6}$	

Atomic Interferometer

10 m atom drop tower.

currently under construction at Stanford

Atomic Equivalence Principle Test

10 m atom drop tower.

Atomic Equivalence Principle Test

10 m atom drop tower.

Will reach accuracy $\sim 10^{-16}$

Compared to Lunar Laser Ranging $\sim 3 \times 10^{-13}$

Atomic Equivalence Principle Test

10 m atom drop tower.

Will reach accuracy $\sim 10^{-16}$ Compared to Lunar Laser Ranging $\sim 3 \times 10^{-13}$ Then will test PN GR

Other equivalence principle measurements

Atomic Equivalence Principle Test at Stanford	10 ⁻¹⁵ g	2008
MICROSCOPE	10 ⁻¹⁵ g	2011
Galileo Galilei	10 ⁻¹⁷ g	launch 2009?
STEP	10 ⁻¹⁷ g	?

Can we measure H?

Pioneer anomaly ?

Radio ranging of Pioneer ↔ Laser ranging of atoms

BUT equivalence principle says only tides measurable

and Riemann $R \sim H^2$ way too small

Can we measure H?

Pioneer anomaly ?

Radio ranging of Pioneer ↔ Laser ranging of atoms

BUT equivalence principle says only tides measurable

and Riemann $R \sim H^2$ way too small

Similarly DM is not measurable

But, Sun's radiation pressure is measurable at the $10^{-17}g$ level, and causes the earth not to be an inertial frame

GR Experimentation

1916 - 1920 Precession of Mercury and light bending

1920 - 1960 Hibernation

1960 - Now Golden Era, many astronomical tests

New epoch? High precision atom interferometry allows for greater control and ability to isolate and study individual effects in GR such as 3-graviton coupling and gravitation of kinetic energy

Good to Go!

