NNLOPS predictions for Higgs boson production

Emanuele Re

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

GGI

Florence, 12 September 2014

Outline

- brief motivation
- method used
- results
- conclusion, discussion, ...lunch!

NNLO Higgs production

NLO not always enough: NNLO needed when

- 1. large NLO/LO "K-factor" [as in Higgs Physics]
- 2. very high precision needed [e.g. Drell-Yan]
- last couple of years: huge progress in NNLO

σ [pb]

[Anastasiou et al., '04-'05]

NNLO Higgs production

NLO not always enough: NNLO needed when

- 1. large NLO/LO "K-factor" [as in Higgs Physics]
- 2. very high precision needed [e.g. Drell-Yan]
- last couple of years: huge progress in NNLO

Q: can we merge NNLO and PS?

[Anastasiou et al., '04-'05]

Realistic event generation with state-of-the-art perturbative accuracy !
 could be important for precision studies in Higgs physics

ح [pb]

- method presented here was used so far for
 - Higgs production
 - neutral & charged Drell-Yan

[Hamilton,Nason,ER,Zanderighi, 1309.0017]

[Karlberg, ER, Zanderighi, 1407.2940]

loops: 0 1 2

loops: 0 1

loops: 0

(a) 1 and 2 jets: POWHEG H+1j

- (b) integrate down to $q_T = 0$ with MiNLO
 - "Improved MiNLO" allows to build a H-HJ @ NLOPS generator
- (a) 1 and 2 jets: POWHEG H+1j

- (b) integrate down to $q_T = 0$ with MiNLO
 - "Improved MiNLO" allows to build a H-HJ @ NLOPS generator
- (a) 1 and 2 jets: POWHEG H+1j

NNLO+PS

what do we need and what do we already have?

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
H @ NLOPS	NLO	LO	shower
HJ @ NLOPS	/	NLO	LO
H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

NNLO+PS

what do we need and what do we already have?

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
H @ NLOPS	NLO	LO	shower
HJ @ NLOPS	/	NLO	LO
H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

a merged H-HJ generator is almost OK

what do we need and what do we already have?

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
H @ NLOPS	NLO	LO	shower
HJ @ NLOPS	/	NLO	LO
H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

- a merged H-HJ generator is almost OK
 - many of the multijet NLO+PS merging approaches work by combining 2 (or more) NLO+PS generators, introducing a merging scale
 - POWHEG + MiNLO: no need of merging scale: it extends the validity of an NLO computation with jets in the final state in regions where jets become unresolved

Multiscale Improved NLO

[Hamilton,Nason,Zanderighi, 1206.3572]

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

Multiscale Improved NLO

[Hamilton,Nason,Zanderighi, 1206.3572]

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)
 - for each point sampled, build the "more-likely" shower history that would have produced that kinematics (can be done by clustering kinematics with k_T -algo, then, by undoing the clustering, build "skeleton")
 - correct original NLO: $\alpha_{\rm S}$ evaluated at nodal scales and Sudakov FFs
 - has been used in V/H + up to 2 jets and in VH + up to 1 jet

Multiscale Improved NLO

[Hamilton,Nason,Zanderighi, 1206.3572]

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$\bar{B}_{\rm NLO} = \alpha_{\rm S}^3(\mu_R) \Big[B + \alpha_{\rm S}^{\rm (NLO)} V(\mu_R) + \alpha_{\rm S}^{\rm (NLO)} \int d\Phi_{\rm r} R \Big]$$

Multiscale Improved NLO

[Hamilton,Nason,Zanderighi, 1206.3572]

- ▶ original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$\bar{B}_{\rm NLO} = \alpha_{\rm S}^3(\mu_R) \Big[B + \alpha_{\rm S}^{\rm (NLO)} V(\mu_R) + \alpha_{\rm S}^{\rm (NLO)} \int d\Phi_{\rm r} R \Big]$$

$$\bar{B}_{\rm MiNLO} = \alpha_{\rm S}^2(\boldsymbol{m_h})\alpha_{\rm S}(\boldsymbol{q_T})\Delta_g^2(\boldsymbol{q_T},\boldsymbol{m_h}) \Big[B\left(1 - 2\Delta_g^{(1)}(\boldsymbol{q_T},\boldsymbol{m_h})\right) + \alpha_{\rm S}^{\rm (NLO)} V(\bar{\boldsymbol{\mu}_R}) + \alpha_{\rm S}^{\rm (NLO)} \int d\Phi_{\rm r} R \Big]$$

1 / 9

$$\begin{array}{c} \bar{\mu}_{R} = (m_{h}^{2}q_{T})^{1/3} \\ & \Delta(q_{T}, m_{h}) \\ & q_{T} \quad \Delta(q_{T}, q_{T}) \\ & \Delta(q_{T}, m_{h}) \\ & \Delta(q_{T}, m_{h}) \end{array} \\ & \Delta(q_{T}, m_{h}) \\ & \Delta(q_{T}, m_{h}) \end{array} \\ \begin{array}{c} \bar{\mu}_{R} = (m_{h}^{2}q_{T})^{1/3} \\ & \log \Delta_{f}(q_{T}, m_{h}) = -\int_{q_{T}^{2}}^{m_{h}^{2}} \frac{dq^{2}}{q^{2}} \frac{\alpha_{S}(q^{2})}{2\pi} \left[A_{f} \log \frac{m_{h}^{2}}{q^{2}} + B_{f}\right] \\ & \Delta(q_{T}, m_{h}) \\ & \Delta_{f}^{(1)}(q_{T}, m_{h}) = -\frac{\alpha_{S}^{(NLO)}}{2\pi} \left[\frac{1}{2}A_{1,f} \log^{2} \frac{m_{h}^{2}}{q_{T}^{2}} + B_{1,f} \log \frac{m_{h}^{2}}{q_{T}^{2}}\right] \\ & \Delta(q_{T}, m_{h}) \\ & \mu_{F} = q_{T} \end{array}$$

Multiscale Improved NLO

[Hamilton,Nason,Zanderighi, 1206.3572]

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$\bar{B}_{\rm NLO} = \alpha_{\rm S}^3(\mu_R) \Big[B + \alpha_{\rm S}^{\rm (NLO)} V(\mu_R) + \alpha_{\rm S}^{\rm (NLO)} \int d\Phi_{\rm r} R \Big]$$

$$\bar{B}_{\text{MiNLO}} = \alpha_{\text{S}}^2(\boldsymbol{m_h})\alpha_{\text{S}}(\boldsymbol{q_T})\Delta_g^2(\boldsymbol{q_T},\boldsymbol{m_h}) \Big[B\left(1 - 2\Delta_g^{(1)}(\boldsymbol{q_T},\boldsymbol{m_h})\right) + \alpha_{\text{S}}^{(\text{NLO})} V(\bar{\boldsymbol{\mu}_R}) + \alpha_{\text{S}}^{(\text{NLO})} \int d\Phi_{\text{r}}R \Big]$$

Sudakov FF included on *H*+*j* Born kinematics

- ▶ with MiNLO, finite results from HJ also when 1st jet is unresolved $(q_T \rightarrow 0)$
- \bar{B}_{MiNLO} ideal to extend validity of HJ-POWHEG [called "HJ-MINLO" hereafter]

► formal accuracy of HJ-MiNLO for inclusive observables carefully investigated

[Hamilton et al., 1212.4504]

- ▶ HJ-MiNLO describes inclusive observables at order $\alpha_{\rm S}^2 + \alpha_{\rm S}^3$
- to reach genuine NLO when fully inclusive (NLO⁽⁰⁾), "spurious" terms must be of <u>relative</u> order \u03c8₂, *i.e.*

 $O_{\rm HJ-MiNLO} = O_{\rm H@NLO} + O(\alpha_{\rm S}^4)$ if O is inclusive

• "Original MiNLO" contains ambiguous " $\mathcal{O}(\alpha_{\rm S}^{2+1.5})$ " terms

► formal accuracy of HJ-MiNLO for inclusive observables carefully investigated

[Hamilton et al., 1212.4504]

- ▶ HJ-MiNLO describes inclusive observables at order $\alpha_{\rm S}^2 + \alpha_{\rm S}^3$
- to reach genuine NLO when fully inclusive (NLO⁽⁰⁾), "spurious" terms must be of <u>relative</u> order \u03c8₂, *i.e.*

 $O_{\rm HJ-MiNLO} = O_{\rm H@NLO} + O(\alpha_{\rm S}^4)$ if O is inclusive

• "Original MiNLO" contains ambiguous " $\mathcal{O}(\alpha_{\rm S}^{2+1.5})$ " terms

► formal accuracy of HJ-MiNLO for inclusive observables carefully investigated

[Hamilton et al., 1212.4504]

- HJ-MiNLO describes inclusive observables at order $\alpha_{\rm S}^2 + \alpha_{\rm S}^3$
- to reach genuine NLO when fully inclusive (NLO⁽⁰⁾), "spurious" terms must be of <u>relative</u> order \u03c8₂, *i.e.*

```
O_{\rm HJ-MiNLO} = O_{\rm H@NLO} + O(\alpha_{\rm S}^4) if O is inclusive
```

- "Original MiNLO" contains ambiguous " $\mathcal{O}(\alpha_{\rm S}^{2+1.5})$ " terms
- ► Possible to improve HJ-MiNLO such that inclusive NLO is recovered (NLO⁽⁰⁾), without spoiling NLO accuracy of H+j (NLO⁽¹⁾).

▶ formal accuracy of HJ-MiNLO for inclusive observables carefully investigated

[Hamilton et al., 1212.4504]

- HJ-MiNLO describes inclusive observables at order $\alpha_{\rm S}^2 + \alpha_{\rm S}^3$
- to reach genuine NLO when fully inclusive (NLO⁽⁰⁾), "spurious" terms must be of <u>relative</u> order \u03c8₂, *i.e.*

 $O_{\rm HJ-MiNLO} = O_{\rm H@NLO} + O(\alpha_{\rm S}^4)$ if O is inclusive

- "Original MiNLO" contains ambiguous " $\mathcal{O}(\alpha_{\rm S}^{2+1.5})$ " terms
- proof based on careful comparisons of MiNLO with general resummation formula

$$\sim \sigma_0 \frac{1}{q_T^2} [\alpha_{\rm S}, \alpha_{\rm S}^2], \alpha_{\rm S}^3, \alpha_{\rm S}^4, \alpha_{\rm S} L, \alpha_{\rm S}^2 L, \alpha_{\rm S}^3 L, \alpha_{\rm S}^4 L] \exp S(q_T, Q) + R_f \quad L = \log(Q^2/q_T^2)$$

- need to include B2 coefficient in MiNLO-Sudakovs:

highlighted terms are needed to reach NLO⁽⁰⁾:

$$\int^{Q^2} \frac{dq_T^2}{q_T^2} L^m \alpha_{\rm S}{}^n(q_T) \exp S \sim \left(\alpha_{\rm S}(Q^2)\right)^{n-(m+1)/2}$$

(scaling in low- p_T region is $\alpha_{\rm S} L^2 \sim 1!)$

- . if I don't include B_2 in <code>MiNLO</code> Δ_g, I miss a term $(1/q_T^2)$ $|\alpha_{\rm S}^2|$ $B_2 \exp S$
- . upon integration, violate NLO⁽⁰⁾ by a term of <u>relative</u> $\mathcal{O}(\alpha_{\rm S}^{3/2})$
- need to evaluate ${lpha_{
 m S}}^{
 m (NLO)}$ in <code>HJ-MiNLO</code> at scale $q_T,$ and $\mu_F=q_T$

► formal accuracy of HJ-MiNLO for inclusive observables carefully investigated

[Hamilton et al., 1212.4504]

- ▶ HJ-MiNLO describes inclusive observables at order $\alpha_{\rm S}^2 + \alpha_{\rm S}^3$
- to reach genuine NLO when fully inclusive (NLO⁽⁰⁾), "spurious" terms must be of <u>relative</u> order \u03c8₂, *i.e.*

```
O_{\rm HJ-MiNLO} = O_{\rm H@NLO} + O(\alpha_{\rm S}^4) if O is inclusive
```

- "Original MiNLO" contains ambiguous " $\mathcal{O}(\alpha_{\rm S}^{2+1.5})$ " terms
- ▶ Possible to improve HJ-MiNLO such that inclusive NLO is recovered (NLO⁽⁰⁾), without spoiling NLO accuracy of *H*+*j* (NLO⁽¹⁾).

Effectively as if we merged NLO⁽⁰⁾ and NLO⁽¹⁾ samples, without merging different samples (no merging scale used: there is just one sample).

H-HJ @ NLOPS

- "H+Pythia": standalone POWHEG ($gg \rightarrow H$) + PYTHIA (PS level) [7pts band, $\mu = m_H$]
- ▶ "HJ+Pythia": HJ-MINLO + PYTHIA (PS level) [7pts band, µ from MiNLO]
- ✓ very good agreement (both value and band)

Notice: band is $\sim 20-30\%$

Higgs at NNLO+PS I

► HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
🗸 H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

HJ-MINLO+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
🗸 H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

▶ reweighting (differential on *y_H*) of "MiNLO-generated" events:

$$W(y_H) = \frac{\left(\frac{d\sigma}{dy_H}\right)_{\text{NNLO}}}{\left(\frac{d\sigma}{dy_H}\right)_{\text{HJ-MiNLO}}}$$

- ▶ by construction NNLO accuracy on fully inclusive observables (σ_{tot}, y_H) [√]
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-MiNLO in 1-jet region

HJ-MINLO+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
🗸 H-HJ @ NLOPS	NLO	NLO	LO
√H@NNLOPS	NNLO	NLO	LO

▶ reweighting (differential on *y_H*) of "MiNLO-generated" events:

$$W(y_H) = \frac{\left(\frac{d\sigma}{dy_H}\right)_{\text{NNLO}}}{\left(\frac{d\sigma}{dy_H}\right)_{\text{HJ-MiNLO}}} = \frac{\alpha_{\text{S}}^2 c_0 + c_1 \alpha_{\text{S}}^3 + c_2 \alpha_{\text{S}}^4}{\alpha_{\text{S}}^2 c_0 + c_1 \alpha_{\text{S}}^3 + d_2 \alpha_{\text{S}}^4} \simeq 1 + \frac{c_2 - d_2}{c_0} \alpha_{\text{S}}^2 + \mathcal{O}(\alpha_{\text{S}}^3)$$

- ▶ by construction NNLO accuracy on fully inclusive observables (σ_{tot}, y_H)
- ► to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-MiNLO in 1-jet region
 [√]

[1]

HJ-MINLO+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
🗸 H-HJ @ NLOPS	NLO	NLO	LO
√H@NNLOPS	NNLO	NLO	LO

▶ reweighting (differential on *y_H*) of "MiNLO-generated" events:

$$W(y_H) = \frac{\left(\frac{d\sigma}{dy_H}\right)_{\text{NNLO}}}{\left(\frac{d\sigma}{dy_H}\right)_{\text{HJ-MiNLO}}} = \frac{\alpha_{\text{S}}^2 c_0 + c_1 \alpha_{\text{S}}^3 + c_2 \alpha_{\text{S}}^4}{\alpha_{\text{S}}^2 c_0 + c_1 \alpha_{\text{S}}^3 + d_2 \alpha_{\text{S}}^4} \simeq 1 + \frac{c_2 - d_2}{c_0} \alpha_{\text{S}}^2 + \mathcal{O}(\alpha_{\text{S}}^3)$$

- ▶ by construction NNLO accuracy on fully inclusive observables (σ_{tot}, y_H) [√]
- ► to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-MiNLO in 1-jet region
 [√]
- ▶ notice: formally works because no spurious $O(\alpha_s^{2+1.5})$ terms in H-HJ @ NLOPS

Higgs at NNLO+PS II

• Variants for reweighting $(W(y_H))$ are also possible:

$$\begin{split} W(y,p_T) &= h(p_T) \frac{\int d\sigma_A^{\text{NNLO}} \delta(y - y(\mathbf{\Phi}))}{\int d\sigma_A^{\text{MiNLO}} \delta(y - y(\mathbf{\Phi}))} + (1 - h(p_T)) \\ d\sigma_A &= d\sigma \ h(p_T), \qquad d\sigma_B = d\sigma \ (1 - h(p_T)), \qquad h = \frac{(\beta m_H)^2}{(\beta m_H)^2 + p_T^2} \end{split}$$

- . $h(p_T)$ controls where the NNLO/NLO K-factor is distributed (in the high- p_T region, there is no improvement in including it)
- . β cannot be too small, otherwise resummation spoiled: for Higgs, chosen $\beta = 1/2$
- for Higgs (and for Drell-Yan) we used

$$W(y, p_T) = h(p_T) \frac{\int d\sigma^{\text{NNLO}} \delta(y - y(\mathbf{\Phi})) - \int d\sigma_B^{\text{MiNLO}} \delta(y - y(\mathbf{\Phi}))}{\int d\sigma_A^{\text{MiNLO}} \delta(y - y(\mathbf{\Phi}))} + (1 - h(p_T))$$

. one gets exactly $(d\sigma/dy)_{
m NNLOPS} = (d\sigma/dy)_{
m NNLO}$ (no $lpha_{
m S}^5$ terms)

. we used $h(p_T^{j_1})$

inputs for following plots:

- results are for 8 TeV LHC
- scale choices: NNLO input with $\mu=m_H/2$, HJ-MiNLO "core scale" m_H (other powers are at q_T)
- PDF: everywhere MSTW2008 NNLO
- NNLO always from HNNLO
- 6M events reweighted at the LH level
- plots after $k_{\rm T}\text{-}ordered \ \mbox{PYTHIA}\ \ 6$ at the PS level (hadronization and MPI switched off)

NNLO+PS (fully incl.)

▶ NNLO with $\mu = m_H/2$, HJ-MiNLO "core scale" m_H

[NNLO from HNNLO, Catani, Grazzini]

• $(7_{Mi} \times 3_{NN})$ pts scale var. in NNLOPS, 7pts in NNLO

 \mathbb{P} Notice: band is 10% (at NLO would be \sim 20-30%)

[Until and including $\mathcal{O}(\alpha_{\rm S}^4)$, PS effects don't affect y_H (first 2 emissions controlled properly at $\mathcal{O}(\alpha_{\rm S}^4)$ by MiNLO+POWHEG)]

NNLO+PS: multi-dim reweighting

- ▶ for Higgs: 1-dim NNLOPS reweighting $(W(y; p_T))$, so y_H will be obviously OK
- does it work if Φ_B is multi-dim (as in Drell-Yan)?

- $p_{T,\ell}$ is not the observable we are using to do the NNLO reweighting
- ✓ we see exactly what we expect: $p_{T,\ell}$ has NNLO uncertainty if $p_{T,\ell} < M_W/2$, and NLO if $p_{T,\ell} > M_W/2$
- ▶ [just above peak, <code>DYNNLO</code> uses M_W , <code>WJ-MiNLO</code> uses $p_{T,W}$ and here $0 \lesssim p_{T,W} \lesssim M_W$]

NNLO+PS (p_T^H)

▶ HqT: NNLL+NNLO, $\mu_R = \mu_F = m_H/2$ [7pts], $Q_{\rm res} \equiv m_H/2$ [HqT, Bozzi et al.]

 $\checkmark~~eta=1/2~\&~\infty$: uncertainty bands of HqT contain <code>NNLOPS</code> at low-/moderate p_T

- ▶ $\beta = 1/2$: HqT tail harder than NNLOPS tail ($\mu_{HqT} < "\mu_{MiNLO}"$) HJ @ NNLO will allow to say more for large $p_{T,H}$
- $\beta = 1/2$: very good agreement with HqT resummation ["~ expected", since $Q_{\rm res} \equiv m_H/2$]

NNLO+PS (p_T^H)

▶ HqT: NNLL+NNLO, $\mu_R = \mu_F = m_H/2$ [7pts], $Q_{\rm res} \equiv m_H/2$

▶ $\beta = 1/2$: NNLOPS tail \rightarrow NLOPS tail [$W(y, p_T \gg m_H) \rightarrow 1$] larger band (affected just marginally by NNLO, so it's ~ genuine NLO band)

NNLO+PS $(p_T^{j_1})$

▶ JetVHeto: NNLL resum, $\mu_R = \mu_F = m_H/2$ [7pts], $Q_{\rm res} \equiv m_H/2$, (a)-scheme only [JetVHeto, Banfi et al.]

- nice agreement, differences never more than 5-6 %
- Separation of $H \to WW$ from $t\bar{t}$ bkg: x-sec binned in N_{jet} 0-jet bin \Leftrightarrow jet-veto accurate predictions needed !

other NNLOPS results this year

UNNLOPS

[Hoeche,Li,Prestel '14]

formalism worked out also within the Geneva framework: [Alioli,Bauer, et al, '13]
 work in progress, preliminary results for DY shown at "PSR2014"

- MiNLO-improved POWHEG generator allows to reach NNLOPS accuracy for simple processes
- shown results for Higgs at NNLOPS
- predictions and theoretical uncertainties match NNLO where they have to
- typically, quite good agreement with analytic resummation (but for Drell-Yan slightly worse...)
 - good news, but not yet really studied/understood formally
- other approaches appeared: will be interesting to compare
- mass effects in Higgs @ NNLOPS
- ... phenomenology ...

- MiNLO-improved POWHEG generator allows to reach NNLOPS accuracy for simple processes
- shown results for Higgs at NNLOPS
- predictions and theoretical uncertainties match NNLO where they have to
- typically, quite good agreement with analytic resummation (but for Drell-Yan slightly worse...)
 - good news, but not yet really studied/understood formally
- other approaches appeared: will be interesting to compare
- mass effects in Higgs @ NNLOPS
- ... phenomenology ...

Thank you for your attention!