

Top quark charge asymmetry and polarisation in ttW production at the LHC

Marco Zaro, LPTHE - UPMC Paris VI

in collabortion with F. Maltoni, M. Mangano, I. Tsinikos, arXiv:1406.3262

GGI@Florence

September 18, 2014

Outline:

- Charge asymmetries at colliders: how to?
- The top-quark asymmetry at hadron colliders
- Enhancing the top asymmetry at the LHC
- W-assisted top asymmetry at the LHC
- Polarisation effects
- A look beyond the SM
- Conclusions

Charge asymmetries at colliders: how to?

Charge asymmetries at lepton colliders

Charge asymmetries at lepton colliders

• Simplest case: $e^+e^- \rightarrow \mu^+\mu^-$, QED only

Charge asymmetries at lepton colliders

• Simplest case: $e^+e^- \rightarrow \mu^+\mu^-$, QED only $A = \frac{N(\eta_{\mu^+} > \eta_{\mu^-}) - N(\eta_{\mu^+} < \eta_{\mu^-})}{N(\eta_{\mu^+} > \eta_{\mu^-}) + N(\eta_{\mu^+} < \eta_{\mu^-})}$

Charge asymmetries at lepton colliders

• Simplest case: $e^+e^- \rightarrow \mu^+\mu^-$, QED only $A = \frac{N(\eta_{\mu^+} > \eta_{\mu^-}) - N(\eta_{\mu^+} < \eta_{\mu^-})}{N(\eta_{\mu^+} > \eta_{\mu^-}) + N(\eta_{\mu^+} < \eta_{\mu^-})}$ μ^+ e⁺ **e**⁻ η<0 η>0

Marco Zaro, 18-09-2014

Charge asymmetries at lepton colliders

- Simplest case: $e^+e^- \rightarrow \mu^+\mu^-$, QED only $A = \frac{N(\eta_{\mu^+} > \eta_{\mu^-}) - N(\eta_{\mu^+} < \eta_{\mu^-})}{N(\eta_{\mu^+} > \eta_{\mu^-}) + N(\eta_{\mu^+} < \eta_{\mu^-})}$
- LO: no asymmetry

$$\frac{d\sigma}{d\Omega} = \mathcal{N}\beta \left[2 - \beta^2 + \beta^2 \cos^2\theta\right]$$

Charge asymmetries at lepton colliders

- Simplest case: $e^+e^- \rightarrow \mu^+\mu^-$, QED only $A = \frac{N(\eta_{\mu^+} > \eta_{\mu^-}) - N(\eta_{\mu^+} < \eta_{\mu^-})}{N(\eta_{\mu^+} > \eta_{\mu^-}) + N(\eta_{\mu^+} < \eta_{\mu^-})}$
- LO: no asymmetry

$$\frac{d\sigma}{d\Omega} = \mathcal{N}\beta \left[2 - \beta^2 + \beta^2 \cos^2\theta\right]$$

• One has to go NLO

Charge asymmetries at lepton colliders

• **NLO:** $d\sigma_{NLO}^n = d\sigma_{LO}^n + d\sigma_V^n + \int d\Phi_1 \, d\sigma_R^{n+1}$

Charge asymmetries at lepton colliders

- NLO: $d\sigma_{NLO}^n = d\sigma_{LO}^n + d\sigma_V^n + \int d\Phi_1 \, d\sigma_R^{n+1}$
 - Virtual (no) photon emission:
 µ⁺ prefers to keep e⁺ direction
 (A>0)

LHCPhenoNet

Marco Zaro, 18-09-2014

Charge asymmetries at lepton colliders

Charge asymmetries at lepton colliders

(more details in J.H.Kuhn, G.Rodrigo. arXiv:hep-ph/9807420)

(more details in J.H.Kuhn, G.Rodrigo. arXiv:hep-ph/9807420)

- QCD asymmetry has the same origin of the QED one
- Consider $q\overline{q} \rightarrow t\overline{t}$ (gg initial state is symmetric)

(more details in J.H.Kuhn, G.Rodrigo. arXiv:hep-ph/9807420)

- QCD asymmetry has the same origin of the QED one
- Consider $q\overline{q} \rightarrow t\overline{t}$ (gg initial state is symmetric)
 - At the NLO one has contributions from

(more details in J.H.Kuhn, G.Rodrigo. arXiv:hep-ph/9807420)

- QCD asymmetry has the same origin of the QED one
- Consider $q\overline{q} \rightarrow t\overline{t}$ (gg initial state is symmetric)
 - At the NLO one has contributions from

(more details in J.H.Kuhn, G.Rodrigo. arXiv:hep-ph/9807420)

- QCD asymmetry has the same origin of the QED one
- Consider $q\overline{q} \rightarrow t\overline{t}$ (gg initial state is symmetric)
 - At the NLO one has contributions from

(more details in J.H.Kuhn, G.Rodrigo. arXiv:hep-ph/9807420)

- QCD asymmetry has the same origin of the QED one
- Consider $q\overline{q} \rightarrow t\overline{t}$ (gg initial state is symmetric)
 - At the NLO one has contributions from

asymmetry from d^{2}_{abc}

• QCD asymmetry can be related to the QED one by replacing

$$\alpha_e Q_q Q_Q \to \frac{d_{abc}^2}{16N_C T_F C_F} \alpha_s = \frac{5}{12} \alpha_s$$

$$\frac{\partial c}{\partial_F C_F} \alpha_s = \frac{3}{12} \alpha_s$$

The top-quark asymmetry at hadron colliders

t

TOP QUARK

t

Discovered at Fermilab in 1995, the TOP QUARK is as short-lived as it is massive. Weighing in at a hefty 175 GeV, its lifetime, a mere 10-24 second, is the briefest of the six quarks. Top Quarks are an enigmatic particle whose personal life is sought after by thousands of physicists.

> Acrylic felt with gravel fill for maximum mass.

TOP QUARK

 QCD asymmetry can be tested at hadron colliders by looking at top pair production

- QCD asymmetry can be tested at hadron colliders by looking at top pair production
- Use pp colliders (Tevatron):
 - p mostly contains quarks, p mostly anti-quarks
 - gg (symmetric) contribution is small (10% of the x-sect)

8

- SM prediction: $A_t = 8.8 \pm 0.6$ %
- Measured values:
 - CDF:A_t=16.4±4.7 %
 - D0:At=19.6±6.5 %
- 2 σ tension
 - A manna for model builders!

- QCD asymmetry can be tested at hadron colliders by looking at top pair production
- Use pp colliders (Tevatron):
 - p mostly contains quarks, p mostly anti-quarks
 - gg (symmetric) contribution is small (10% of the x-sect)

8

- SM prediction: $A_t = 8.8 \pm 0.6$ %
- Measured values:
 - CDF:A_t=16.4±4.7 %
 - D0:A_t=10.6±3 %
- 2 σ tension
 - A manna for model builders!

- Top asymmetry mass dependence also deviates from SM predictions
 - Stronger deviations for larger $t \bar{t}$ invariant masses

Several factors make it (much) more difficult to observe the top asymmetry at the LHC

Several factors make it (much) more difficult to observe the top asymmetry at the LHC

- Initial state is symmetric (but quarks are harder than antiquarks):
 - No more forward/backward, but central/peripheral asymmetry

$$A_t^{FB} = \frac{N(\eta_t > \eta_{\bar{t}}) - N(\eta_t < \eta_{\bar{t}})}{N(\eta_t > \eta_{\bar{t}}) + N(\eta_t < \eta_{\bar{t}})} \qquad A_t^{CP} = \frac{N(|\eta_t| > |\eta_{\bar{t}}|) - N(|\eta_t| < |\eta_{\bar{t}}|)}{N(|\eta_t| > |\eta_{\bar{t}}|) + N(|\eta_t| < |\eta_{\bar{t}}|)}$$

Several factors make it (much) more difficult to observe the top asymmetry at the LHC

- Initial state is symmetric (but quarks are harder than antiquarks):
 - No more forward/backward. but central/peripheral asymmetry

Several factors make it (much) more difficult to observe the top asymmetry at the LHC

- Initial state is symmetric (but quarks are harder than antiquarks):
 - No more forward/backward, but central/peripheral asymmetry

$$A_t^{FB} = \frac{N(\eta_t > \eta_{\bar{t}}) - N(\eta_t < \eta_{\bar{t}})}{N(\eta_t > \eta_{\bar{t}}) + N(\eta_t < \eta_{\bar{t}})} \qquad A_t^{CP} = \frac{N(|\eta_t| > |\eta_{\bar{t}}|) - N(|\eta_t| < |\eta_{\bar{t}}|)}{N(|\eta_t| > |\eta_{\bar{t}}|) + N(|\eta_t| < |\eta_{\bar{t}}|)}$$

- Much larger gg fraction (symmetric) than at the Tevatron
 - Asymmetry is a very small effect (<1% at 8TeV)

Several factors make it (much) more difficult to observe the top asymmetry at the LHC

- Initial state is symmetric (but quarks are harder than antiquarks):
 - No more forward/backward, but central/peripheral asymmetry

$$A_t^{FB} = \frac{N(\eta_t > \eta_{\bar{t}}) - N(\eta_t < \eta_{\bar{t}})}{N(\eta_t > \eta_{\bar{t}}) + N(\eta_t < \eta_{\bar{t}})} \qquad A_t^{CP} = \frac{N(|\eta_t| > |\eta_{\bar{t}}|) - N(|\eta_t| < |\eta_{\bar{t}}|)}{N(|\eta_t| > |\eta_{\bar{t}}|) + N(|\eta_t| < |\eta_{\bar{t}}|)}$$

- Much larger gg fraction (symmetric) than at the Tevatron
 - Asymmetry is a very small effect (<1% at 8TeV)
- Preliminary measurements by ATLAS and CMS (at 7 and 8 TeV) show no strong deviation from the SM prediction

check CMS-PAS-TOP-12-010, ATLAS-CONF-2012-057, CMS-PAS-TOP-12-033 CMS-TOP-11-030, arXiv:1207.0065, PLB ATLAS-CONF-2013-078

CMS-PAS-TOP-12-033 CMS-TOP-11-030, arXiv:1207.0065, PLB ATLAS-CONF-2013-078

Enhancing the top asymmetry at the LHC

LHCPhenoNet

Marco Zaro, 18-09-2014

Enhancing the asymmetry at the LHC

- What makes the top asymmetry small at the LHC is the large gluon luminosity
 - How to reduce/kill gg?

Look for $t\bar{t}$ production in association with "something" that prefers coupling to quarks

Enhancing the asymmetry at the LHC

- What makes the top asymmetry small at the LHC is the large gluon luminosity
 - How to reduce/kill gg?

Look for $t\overline{t}$ production in association with "something" that prefers coupling to quarks

ttV at the LHC

- Cross-section measurements of tTV have been published by CMS for 7TeV
- More data expected to come from the 8TeV and the next I3TeV run

The best gluon-killer:

Marco Zaro, 18-09-2014

The best gluon-killer:

- Prefers coupling to light quarks
- Has a fairly large asymmetry already at the LO (-4%)
- NLO QCD corrections slightly reduce the asymmetry
- Asymmetry is a mixed QED-QCD effect
- For a recent LO-based study, see arXiv:1402.3598
- $\sigma_{NLO}=1.2pb$ at 13TeV (Frixione isolation, R=0.7 pT>20 GeV, $|\eta|<2$)

The best gluon-killer:

- Prefers coupling to light quarks
- Has a fairly large asymmetry already at the LO (-4%)
- NLO QCD corrections slightly reduce the asymmetry
- Asymmetry is a mixed QED-QCD effect
 - For a recent LO-based study, see
- σ_{NLO}
- Does not enhance the coupling to light quarks, nor the asymmetry

LHCPhenoNet

• Small (<1%) asymmetry at the NLO

15

σ_{NLO}=0.76pb at I3TeV

PARTICLEZOO

Marco Zaro, 18-09-2014

The best gluon-killer:

- Prefers coupling to light quarks
- Has a fairly large asymmetry already at the LO (-4%)
- NLO QCD corrections slightly reduce the asymmetry
- Asymmetry is a mixed QED-QCD effect
- For a recent LO-based study, see

• **O**NLO

- Does not enhance the coupling to light quarks, nor the asymmetry
- Small (<1%) asymmetry at the NLO
- **O**NLO
 - It only couples to light quarks, no gg up to NNLO
- Has a fairly large asymmetry at the NLO (2-3%)
- It polarises the initial quark line, with some (very nice) surprises
- σ_{NLO}=0.55pb at I3TeV

W-assisted top asymmetry at the LHC

Marco Zaro, 18-09-2014

16

W-assisted top asymmetry at the LHC

17

- The W boson kills the symmetric gg contribution, leaving only qq
- The resulting asymmetry is much larger than in the tt inclusive case

$\overline{t}\overline{t}$	LO	LO+PS	NLO	NLO+PS
$\sigma(\mathrm{pb})$	$128.8^{+35\%}_{-24\%}_{-3\%}^{+2\%}$		$198^{+15\%}_{-14\%}{}^{+2\%}_{-3\%}$	
A_C^t (%)	0.01 ± 0.04	$4 \ 0.07 \pm 0.03$	$0.61_{-0.08}^{+0.1}$	$0.72_{-0.09}^{+0.14}$

	Order	$t\bar{t}W^{\pm}$	$t\bar{t}W^+$	$t\bar{t}W^{-}$
$\sigma({\rm fb})$	NLO	$210^{+11\%}_{-11\%}$	$146^{+11\%}_{-11\%}$	$63.6^{+11\%}_{-11\%}$
A_C^t (%)	LO	0.01 ± 0.05	-0.02 ± 0.05	0.00 ± 0.05
	LO+PS	0.02 ± 0.03	0.05 ± 0.03	0.05 ± 0.03
	NLO	$2.5^{+0.7}_{-0.3}$	$2.7^{+0.8}_{-0.4}$	$2.0\substack{+0.8 \\ -0.2}$
	NLO+PS	$2.3^{+0.6}_{-0.4}$	$2.4^{+0.6}_{-0.2}$	$1.9^{+0.4}_{-0.4}$

W-assisted top asymmetry at the LHC

- The W boson kills the symmetric gg contribution, leaving only qq
- The resulting asymmetry is much larger than in the tt inclusive case

$\overline{t\overline{t}}$	LO	LO+PS	NLO	NLO+PS
$\sigma(\mathrm{pb})$	$128.8^{+35\%}_{-24\%}_{-3\%}_{-3\%}$		$198^{+15\%}_{-14\%}{}^{+2\%}_{-3\%}$	
A_C^t (%)	0.01 ± 0.04	$4 \ 0.07 \pm 0.03$	$0.61_{-0.08}^{+0.1}$	$0.72_{-0.09}^{+0.14}$

	Order	$t\bar{t}W^{\pm}$	$t\bar{t}W^+$	$t\bar{t}W^{-}$
$\sigma({\rm fb})$	NLO	$210^{+11\%}_{-11\%}$	$146^{+11\%}_{-11\%}$	$63.6^{+11\%}_{-11\%}$
A_C^t (%)	LO	0.01 ± 0.05	-0.02 ± 0.05	0.00 ± 0.05
	LO+PS	0.02 ± 0.03	0.05 ± 0.03	0.05 ± 0.03
	NLO	$2.5_{-0.3}^{+0.7}$	$2.7^{+0.8}_{-0.4}$	$2.0^{+0.8}_{-0.2}$
	NLO+PS	$2.3^{+0.6}_{-0.4}$	$2.4^{+0.6}_{-0.2}$	$1.9^{+0.4}_{-0.4}$

more in Parke, Shadmi, hep-ph:9606419

- Initial quarks are polarised by the W boson
 - $q\overline{q} \rightarrow t\overline{t}W$ is totally analogous to $q_L\overline{q}_R \rightarrow t\overline{t}$

more in Parke, Shadmi, hep-ph:9606419

- Initial quarks are polarised by the W boson
 - $q\overline{q} \rightarrow t\overline{t}W$ is totally analogous to $q_L\overline{q}_R \rightarrow t\overline{t}$

Possible top polarisation states in $q_L \overline{q}_R \rightarrow t \overline{t}$ (beam axis basis):

$$\frac{d\sigma_{\uparrow\uparrow}}{d\cos\theta} = \frac{d\sigma_{\downarrow\downarrow}}{d\cos\theta} = \mathcal{N}(\beta) \frac{\beta^2 (1-\beta^2) \sin^2 \theta}{(1+\beta\cos\theta)^2} \qquad (\text{Thresh.}) \quad (\text{H.E.}) \\
0 \quad 0 \\
\frac{d\sigma_{\downarrow\uparrow}}{d\cos\theta} = \mathcal{N}(\beta) \frac{\beta^4 \sin^4 \theta}{(1+\beta\cos\theta)^2} \qquad 0 \quad \mathcal{N}(1)(1-\cos\theta)^2 \\
\frac{d\sigma_{\uparrow\downarrow}}{d\cos\theta} = \mathcal{N}(\beta) \frac{[(1+\beta\cos\theta)^2 + (1-\beta^2)]^2}{(1+\beta\cos\theta)^2} \qquad 4\mathcal{N}(0) \quad \mathcal{N}(1)(1+\cos\theta)^2$$

 $\beta \rightarrow 1$

 $\beta \to 0$

more in Parke, Shadmi, hep-ph:9606419

- Initial quarks are polarised by the W boson
 - $q\overline{q} \rightarrow t\overline{t}W$ is totally analogous to $q_L\overline{q}_R \rightarrow t\overline{t}$

Possible top polarisation states in $q_L \overline{q}_R \rightarrow t \overline{t}$ (beam axis basis):

 $\beta \to 0 \qquad \beta \to 1$

$$\frac{d\sigma_{\uparrow\uparrow}}{d\cos\theta} = \frac{d\sigma_{\downarrow\downarrow}}{d\cos\theta} = \mathcal{N}(\beta) \frac{\beta^2 (1-\beta^2) \sin^2 \theta}{(1+\beta\cos\theta)^2} \qquad (\text{Thresh.}) \quad (\text{H.E.}) \\
\frac{d\sigma_{\downarrow\uparrow}}{d\cos\theta} = \mathcal{N}(\beta) \frac{\beta^4 \sin^4 \theta}{(1+\beta\cos\theta)^2} \qquad 0 \quad \mathcal{N}(1)(1-\cos\theta)^2 \\
\frac{d\sigma_{\uparrow\downarrow}}{d\cos\theta} = \mathcal{N}(\beta) \frac{[(1+\beta\cos\theta)^2 + (1-\beta^2)]^2}{(1+\beta\cos\theta)^2} \qquad 4\mathcal{N}(0) \quad \mathcal{N}(1)(1+\cos\theta)^2$$

- At threshold (leading contribution to the cross-section) only one polarisation survives: tops are fully polarised
- At high energies top polarisations are opposite, and $\#\uparrow\downarrow=\#\downarrow\uparrow$

more in Parke, Shadmi, hep-ph:9606419

• Initial quarks are polarised by the W boson

Marco Zaro, 18-09-2014

- The produced tops are highly polarised, leading to asymmetric decay products already at LO
 - Leptons from tops are strongly correlated with top polarisation
 - Need to include spin-correlations to see this effect
 - Decay products asymmetries are much larger than the top one

- The produced tops are highly polarised, leading to asymmetric decay products already at LO
 - Leptons from tops are strongly correlated with top polarisation
 - Need to include spin-correlations to see this effect
 - Decay products asymmetries are much larger than the top one

- The produced tops are highly polarised, leading to asymmetric decay products already at LO
 - Leptons from tops are strongly correlated with top polarisation
 - Need to include spin-correlations to see this effect
 - Decay products asymmetries are much larger than the top one

Intermediate

Threshold

High Energy

Marco Zaro, 18-09-2014

Polarisation effects: results

Artoisenet, Frederix, Mattelaer, Rietkerk, arXiv:1212.3460

LHCPhenoNet

Marco Zaro, 18-09-2014

Polarisation effects: results

Artoisenet, Frederix, Mattelaer, Rietkerk, arXiv:1212.3460

LHCPhenoNet

Marco Zaro, 18-09-2014

Polarisation effects: results

Polarisation effects: ttW vs ttH

Marco Zaro, 18-09-2014

Plans for the future...

		8 TeV	$13 { m TeV}$	$14 { m TeV}$	$33 { m TeV}$	$100 { m TeV}$
++	$\sigma({ m pb})$	$198^{+15\%}_{-14\%}{}^{+2\%}_{-3\%}$	$661^{+15\%}_{-13\%}{}^{+2\%}_{-3\%}$	$786^{+14\%}_{-13\%}{}^{+2\%}_{-3\%}$	$4643^{+12\%}_{-11\%}{}^{+1\%}_{-2\%}$	$30670^{+13\%}_{-13\%}{}^{+1\%}_{-2\%}$
	$A_C^t(\%)$	$0.72_{-0.09}^{+0.14}$	$0.45\substack{+0.09 \\ -0.06}$	$0.36^{-0.01}_{-0.02}$	$0.11\substack{+0.07 \\ +0.04}$	$0.07\substack{+0.02 \\ -0.04}$
	$\sigma({ m fb})$	$210^{+11\%}_{-11\%}{}^{+2\%}_{-2\%}$	$587^{+13\%}_{-12\%}{}^{+2\%}_{-1\%}$	$678^{+14\%}_{-12\%}{}^{+2\%}_{-1\%}$	$3216^{+17\%}_{-13\%}{}^{+1\%}_{-1\%}$	$18970^{+20\%}_{-17\%}{}^{+1\%}_{-1\%}$
$t\bar{t}W^{\pm}$	$A_C^t(\%)$	$2.3^{+0.6}_{-0.40}$	$2.24_{-0.28}^{+0.56}$	$2.23_{-0.19}^{+0.29}$	$2.01\substack{+0.02 \\ -0.27}$	$1.84_{-0.08}^{-0.24}$
	$A^b_C(\%)$	$8.50^{+0.15}_{-0.10}$	$7.56_{-0.03}^{+0.09}$	$7.56_{-0.10}^{+0.16}$	$5.51_{-0.17}^{+0.26}$	$3.60^{-0.53}_{-0.16}$
	$\left A^e_C(\%)\right $	$-14.83^{-0.65}_{+0.95}$	$-13.11_{+0.95}^{-1.20}$	$-12.82_{+0.86}^{-1.07}$	$-9.26^{-1.09}_{+0.79}$	$-4.84_{+0.84}^{-0.47}$

- Several BSM solutions have been proposed to cure the discrepancies observed at the Tevatron
- What is their effect at the LHC, in particular for $t\overline{t}W$?

- Several BSM solutions have been proposed to cure the discrepancies observed at the Tevatron
- What is their effect at the LHC, in particular for $t\overline{t}W$?
- Choose one simple case: the axigluon model Frampton, Shu, Wang arXiv:0911.2955
 - Extra color octet G which couples differently to quarks of different chiralities and to u/d and heavy quarks

$$\begin{split} i = u, d, t \\ \hline 0000000 = \lambda^a \left(\frac{1 - \gamma_5}{2} g_L^i + \frac{1 + \gamma_5}{2} g_R^i \right) \gamma^\mu \end{split}$$

- Several BSM solutions have been proposed to cure the discrepancies observed at the Tevatron
- What is their effect at the LHC, in particular for $t\overline{t}W$?
- Choose one simple case: the axigluon model Frampton, Shu, Wang arXiv:0911.2955
 - Extra color octet G which couples differently to quarks of different chiralities and to u/d and heavy quarks
 - The interference between the gluon and axigluon gives an asymmetry at LO

Benchmark scenarios:

Light, ι	niversal G	Heavy, non-universal G		
l (left) ll (axial)		III (left)	IV (axial)	
m		m		
Γ _G		Г	Г	
g	g	g	g	
g	g	g	gu	
gt		g	g	

W boson polarises light quarks: $\sigma=0$ in right-handed scenarios

Marco Zaro, 18-09-2014

Results

Marco Zaro, 18-09-2014

Conclusions

- The top quark asymmetry is a very intriguing observable which can provide us with some hints on new physics
- Measurement at the LHC is very tricky
 - symmetric initial state
 - large gg fraction
- The associated production of a top pair and a W boson is a very interesting channel to look at
 - Larger asymmetry than $t\overline{t}$
 - Tops are highly polarised \rightarrow asymmetric decay products at LO
 - Together with $t\overline{t}, t\overline{t}W$ can provide useful informations on NP

Thanks for your attention!