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Abstract

What one should understand as a central point in the subject of radiative corrections is a
matter of debate. Theoretically oriented physicist would say that proof of the field theory
renormalizability should be considered as a focusing point in the domain of radiative
corrections. On the other hand, one can think of radiative corrections in a very practical
sense, that is, as theoretical corrections that must be included in the data analysis. In
these lectures we will try to explain radiative corrections in this second practical context.
In particular we will try to explain the meaning of the following keywords: “factorization”,
“inclusive and exclusive exponentiation”, “soft photon factor”, “leading logarithms”. We
will also discuss briefly the definition of the technical and physical precision of theoretical
predictions and their relevance to the quality of experimental data and thus, possibly, to
everyday experimental work.

The aim of my lectures is to explain the relation between the concepts listed above
and the prediction of the perturbative Quantum Field Theory. We will limit ourself to
the Quantum Electrodynamics process eTe™ — v* (Z*) + initial-state bremsstrahlung,
v* (Z*) — anything, but some of the results are similar in the case of QCD. We will rely
heavily on the explicit example calculations that we present throughout the text. A step-
by-step recalculation of the presented material is strongly recommended for understanding
these lectures. Some information on how to read them is given in the summary.

Over the years 2004 and 2005 significant changes were introduced. At present LEP
era applications are becoming less interesting. Material concerning explanation of relation
between matrix element calculations, formalism of fixed body final states, exponentiation
and formulation of parton showers using as an intermediate example PHOTOS; algorithm
for generation of bremsstrahlung in decays, is slowly expanding, but the new shape is not
yet visible. The old outdated parts of 1993 lectures are not removed.

Written on the basis of lectures
given at the 1993 European School of High Energy Physics,
Zakopane, Poland, 12-25 September, 19935.
Changes for lectures in Cracow Poland, Louvain-la-nevve Belgium
and Melbourne Australia introduced in 2004/2005 are included.
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1 INTRODUCTION

Over the last twenty years the precision and complexity of high-energy e™e™ experiments
has increased significantly. Testing the theory by a direct comparison of measured cross
sections and calculated quantities has become only an idealized picture.

The most obvious reason why it can only be an idealization is due to experimental
inefficiencies such as the lack of hermeticity of the detectors or existence of the regions
of the phase space which are strongly contaminated by the background, to be excluded
by means of cuts. It is sometimes very difficult or just impossible to impose such cuts on
the theoretical predictions represented in the form of analytical calculations [1]. The use
of Monte Carlo simulations thus becomes imperative.

Let us use a symbolic, algebraic-like notation. If X denotes a physical event as it really
happens, then the response of the detector can be symbolically noted as an action of the
operator B on X. The expression B ® X should thus be understood as an electronic re-
sponse of the detector. Such a signal is then analysed and finally an event y = A ® B ® X
is reconstructed — here A represents the selection and analysis of the data. A difference
A = § — X represents an essential ingredient of the systematic error. A study of this
error also requires a Monte Carlo for the physics processes under consideration. With
the help of the MC one can generate a series of events {x;} and later, relying on the
detailed knowledge of the detector components, generate a series of detector responses
{B ® x;}. Such a simulation represents a perfect testing environment in which study the
properties of A. For idealized theoretical events x;, the difference A = y; — x; can be
explicitly calculated for every generated event. It is obvious that imperfections in our
knowledge of B will introduce a systematic bias in A. However an inappropriate choice of
the theoretical sample {x;}, due to missing topologies of final states and, to some extent,
to crude approximations in the theoretical differential distribution, will also indirectly
affect the analysis A and contribute to the total systematic error. For charged particles,
due to properties of QED radiative corrections, to obtain physically meaningful results
one has to perform summation over final states with a different number (zero to infinity)
of additional outgoing real photons.

This is the motivation for studying radiative corrections for somebody active (or plan-
ning to be) in the field of high-precision high-energy data analysis. That is also why
we will concentrate on real photon emission corrections, which introduce experimentally
significant effects. We will not go however into a discussion of the details of Monte Carlo
implementations of these calculations.

In fact, it is only in a very special case of QED and/or electroweak perturbative
calculation that the question of the theoretical systematic error can be addressed in a
fully satisfactory way. In other cases, where hadronic low-energy interactions play an
important role, the situation is much less satisfactory.

On the other hand, Monte Carlo is also used in defining selection criteria, experimental
cut-offs, etc. In this way the systematic error of the Monte Carlo will also enter the
experimental data in an irreversible way.



2 CALCULATIONS FROM FIELD THEORY

For the electroweak interactions one tends to use “QED-subtracted data”, which exhibit
solely the properties of hard processes, with QED bremsstrahlung and related detector-
dependent effects removed. In such an approach, one finally confronts theory and ex-
periment in the following (indirect) way. On one side there are “data”, which in fact
include implicitly some theoretical effects due to QED subtraction, and on the other side
theoretical predictions, calculated in a subset of the Standard Model without QED brems-

strahlung.
At first, the above scenario looks awkward because “theory” is involved in both sides
of the Equation “data” = “theory”. The concept of “QED-subtracted data” is however

a very useful one because such corrected data are free of all detector-dependent effects.
It should be stressed that the dependence of the QED corrections on particular experi-
mental cuts is the major argument for subtracting them from the data. In practice QED
subtraction is done simultaneously with removing the acceptance of the detector. On the
other hand “QED-subtracted theoretical predictions” are also easier to calculate than the
complete results.

The above QED (detector acceptance) subtraction approach brings a new kind of
experimental error owing to uncertainty in the theoretical calculations used in the data
analysis. The means of calculating this “theoretical” component of the experimental
systematic error should thus be provided with the theoretical calculation to be used in
the data analysis. Is it possible?

It is well known that QED is a field theory of well-defined perturbation expansion and
in principle any physical prediction can be calculated with practically infinite precision, up
to, perhaps, the Dyson limit [2]. That is also why, in principle, there exists a standard way
of calculating the systematic errors of QED predictions as well. The idea is quite simple;
one should calculate predictions for a given observable P at different orders of perturbation
expansion Py, P, P, ..., and the calculation should be continued until the difference
A, = P, — P,_; is smaller, by a safe factor (usually 3), than the expected experimental
error for the observable P. This analysis has to be performed for every observable and
every new set of cuts, which may eventually change the size of the corrections. There are
serious, although not fundamental, difficulties in applying the above scheme in practice.
If the Born predictions for a given process can be calculated within days, the calculation
of O(«) corrections already may require up to one year. It is only in a very special case
of the Z line-shape calculation for LEP [3] that the complete O(a?) QED results are
available. Even, this is true only for idealized cuts and only for initial-state radiation .

Owing to these practical limitations, it is rather clear that the above scheme of cal-
culating QED systematic errors cannot be applied directly. Having at our disposal only
Born and O(«) results it is rather obvious that the smallness of the difference can be
just a simple numerical accident. In fact, the situation is quite often the opposite, and
the difference A; is significantly larger than the experimental error, indicating that the
higher orders should be included.

On the other hand, we should not forget that the electromagnetic coupling constant is

In addition, starting at O(a?), QED corrections cannot be separated from complete electroweak
corrections. Genuine O(a?) electroweak corrections (which are not yet calculated) can be numerically of
the same order as QED O(a?) terms. At this level, the procedure of subtracting QED corrections cannot
be defined, and complete electroweak corrections and detector effects have to be analysed simultaneously.
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Figure 1: QED perturbative leading and subleading corrections. The rows represent cor-
rections in consecutive perturbative orders — the first row is the Born contribution. The
first column represents the leading logarithmic (LL) approzimation and the second col-
umn depicts the next-to-leading (NLL) approximation. In the Figure, terms selected for
(a) second and (b) third order pragmatic expansion (for photon emission from the electron
at LEP energies) are limited with the help of an additional line.

rather small, of the order of 1% and one would thus expect the O(a?) terms to be typically
10~* and therefore completely negligible. Corrections are however larger due to various
enhancement factors present in the QED results. The source of these enhancements is
well understood and governed by the structure of QED singularities; ultraviolet, infrared
and collinear. Because the structure of QED singularities is much simpler than that of
the full theory, a multitude of techniques (such as structure functions, exponentiation
and running coupling constants) was developed to control these enhanced terms. Using
these techniques it is possible either to calculate higher-order leading terms (which are
very often the only higher-order interesting terms) in a relatively easy way or to improve
the convergence of the perturbation expansion, by the appropriate redefinition and/or
reordering of the expansion.

It is important to realize that in order to improve the precision of QED predictions, the
strict approach of the order-by-order calculation is in most cases not the optimal one. To
understand this point it is convenient to consider the contributions to a certain observable
(for instance total cross section or asymmetry), of any perturbation order, separated into
leading logarithmic terms, next-to-leading logarithmic terms, etc. (see Fig. 1). There L
stands for the leading log and « for the coupling constant. If our calculation is limited, let
us say to order n, then we may omit all contributions that are smaller than o' L"*!, that
is all terms proportional to oL~/ < o™t "' without weakening the total precision of
our calculations. We will call it “pragmatic” n th order.

For the typical LEP applications L ~ 24 (electron in the initial state), and is not
so much smaller for the other leptons. Inclusion of complete order-o? non-leading terms
does not improve on the precision, even if we work in “pragmatic” third order (see Fig.
1), because fourth-order (leading logarithmic) terms are expected to be larger?.

In discussing the systematic error of QED predictions one should not forget that large
computer programs can be prone to simple programming bugs, machine rounding errors
and other numerical problems, which we call collectively technical errors. They form the

2Tt should be stressed here that, unlike in QCD where there is always a certain uncertainty due to,
e.g., the non-perturbative content of the structure functions, in QED the answers are unique, once the
framework of calculation is defined.



technical component of the total precision/error and have to be calculated first, before
any attempt at discussing the physical precision can be made. A solution to this problem
is to calculate a certain observable using different methods and obtain numerically the
same answer. The optimal solution is to calculate the prediction for a certain observable
analytically and to compare this result with the Monte Carlo simulation obtained with
identical cuts and identical physical input.

The aim of these lectures is to present relatively simple calculations (with only minor
and explicitly listed simplifications), which are useful in understanding physics of radiative
corrections. Calculations are presented at length so that the experimental physicist is
helped to comprehend theoretical techniques. Parts of the text which may disturb the
reader at first reading, are written in smaller, footnote-size characters.

3 BASIC DEFINITIONS

In the following, we will recall conventions for spinors normalization, Feynman rules for
QED etc. as defined in ref. [4]. Following these conventions we will use the speed of light
¢ = 1, and all energies and momenta as well as masses will be given in units of GeV.
We assume that the reader will browse quickly through this section first, and later will
come back for definitions whenever necessary. Actually there is nothing more than a list
of definitions in this section.

3.1 Phase Space, Decay Rate, Cross Section

We will start with a definition of the differential cross section:

1 1 1 d3l<;1 d3k n
do = ———— 2 . 27 )45t k; S 1
7 = = o M e TR 2 e e = Ek) xS ()

and the differential decay rate of particle with mass M (and four-momentum P) as

&k, &k,
DRI 2R 2B

_ 1 2 4 -
dw—2M|M| (2m)*6t (P — Zl:kl (2)

In these two formulas one can find (i) a kinematical factor, (ii) a matrix element
squared, and (iii) the phase space for the final-state particles. Let us elaborate on these
three ingredients of the cross section in more detail:

(i) In the case of the decay, the kinematical factor is just % of the inverse decaying
particle mass. For the scattering process, the expression is slightly more complicated:

1

1
|Ul —U2|

1
2] )
here vy, ve denote velocities of colliding particles and py, po their four-momenta. Zero-th
components of four-momenta denote energies.
(ii) All dynamical information (which may be calculated from QED for example) is
included in the matrix element M. As particles of non-zero spin (or carrying colour,
for instance) may participate in the reaction, |M|? should read as a contraction of the



corresponding density matrices [5] of the initial and final states with spin amplitude M
and its Hermitian conjugate M!. If one is not interested in spin-dependent effects, a
summation over all possible final-state spin states and an average over initial-state spin
states should be performed. The M is a function of all momenta of incoming and outgoing
particles.

(iii) The phase space

dLips,(P) x S = &y il (2m)*o* (P — fjk) (4)
bon = 22 Ak ) o) i

consists of a four-dimensional §* function enforcing four-momentum conservation and,
for each particle in the final-state, a Lorentz-invariant integration element over particle

momenta? %. In addition if there are m; identical particles of type ¢ in the final

state, then the statistical factor reads: S = []; . Depending on the convention for the

spinor normalization in use, a factor z% may need to replace factor - for the final-state

and initial-state particles. In case of scattering: P = p; + po.

3.2 Dirac Equation, gamma matrices and
some of their relations

Let me start with the four-dimensional v* matrices (1 = 0, 1, 2, 3). Their most important
relation, from our point of view, is the anti commutation relation:

Yy =291, (7)
where 1 stands for the four-dimensional unit matrix (it will usually be omitted in our
formulas). The Lorentz metric tensor is g% = —g'!' = —¢??> = —¢3 = 1 and otherwise

zero; also, ¢" = g,,. We use the following short-hand notations:

e = Pl = P9 = OEV o P*0" g (8)
p o= p" = P = Zu 0 Xm0 P G-

It is now straightforward to realize?

pd = —dP¥P+2pq
Py = (9)
3Note that
‘;Z‘;i = d*k;i0(k2 — m?)O(K?). (5)

This relation can be easily obtained by simple integration of the § function over the zero-th component
of k, using the following mathematical formula:

(6)

Convince yourself!
‘Do it!



The spinors u(p, s) and v(p, s), for particles and anti particles, are four-component
complex vector-like objects, but of different Lorentz transformation properties with re-
spect to usual vectors. If their momentum and spin are denoted as p and s, they satisfy

the Dirac Equation:
(# —m)u(p,s) =0

(#+m)v(p,s) = 0. (10)
We will use also adjoint spinors
U = UT’YO
v =00, (11)

For adjoint spinors, the Dirac Equation reads®

i(p, 5)(F+m) = 0
5(p, s) (= m) = 0. (12)

The normalization condition for spinors reads as follows

u(p,s)u(p,s) = 1
’l_}(p,S)'U(p,S) = -1 (13)

The following relations (projection operators) will turn out to be very useful in calculating
the squares of matrix elements:

u(p, s)u(p, s) (25—1- m 1475 731>

2m 2
v(p,s)v(p,s) = —(ﬁ_m Rt g)
2m 2
v =7 = iyPyly?R (14)

Summing over the spin simplifies projection operators; they take a form

> ulp, s)ulp,s) = (M)

+s 2m
;v(p, s)i(p,s) = —(%) (15)

3.3 Feynman rules

In the following, let us list those of the Feynman rules of QED that will be used in our
lectures for calculating M.

1. For each internal fermion line (i.e. connecting two vertices) carrying momentum p

there is a fermion propagator iSg(p) = _Em) Qe Fig. 2. Note that the fermion
o . pr—m=tie’ : .
line is oriented and p is the momentum carried in the diagram along fermion line

orientation.

5Tt can be obtained from the previous two Equations.



iSp(p) = 2L iDp(q)uy = — 2 —1eYy
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Figure 2: Graphic representation for Feynman rules, respectively for fermion and photon
propagators, and for electromagnetic coupling.

2. For each internal photon line there is a photon propagator iDp(q),, = —%ﬁ. See
Fig. 2.

3. For the photon coupling to fermion line the vertex is: —iey,. See Fig. 2.

4. For each external fermion line entering a graph there is a factor (scattering particle
wave function) u(p, s) or v(p, s) according to whether it enters in the initial or final
state. Similarly for the fermion line leaving the diagram in the initial and final state
factor: @(p, s) or v(p, s).

5. For every external photon line, a factor €, (photon polarization) has to be intro-
duced.

6. For each internal momentum [ not fixed by momentum conservation at vertices there
is a factor [ %.
7. For each closed fermion loop there is a factor —1.

For completeness, let us note that

a=—. (16)

3.4 Electron-Muon Scattering ete™ — putpu=(*)

During lectures in a year 2004, it turned out that at this point it is interesting, and
possible to calculate amplitude and later cross section for the process: ete™ — utpu~.
This section was written by Bartlomiej Biedron on the basis on my improvised lecture.

Let us start with the amplitude M for our process. Following the Feynman’s rules for
QED

M =)y (—ie)u(pr) —— 2B (g7 (ie)o(qy) (17)

Averaging over initial (factor 1) and summing over final spins we get

1 . g )

MMP = = v(pa, 52)Y*(—1e)u(py, s B (g, 55)7" (ie)v(q, 8,
42 (2, s2)7"(—i€)ulpr, 51) oo v e, o)y (ie)v(an, )
_ 1. _igu’ll’ _ NV /
u(p1, s1)7" (ve)v(pg, s —9(qq, s —ie)u(qs, s 18
(p1, 51)7" (ie)v(py z)(pﬁpz)Q_Z6 (g1, 51)7" (—ie)u(gz, 55) (18)

7



At this point all variables are still defined in the frame independent way

1 62 2 ’
MM = = li] > v(p2, s2)7"u(pr, s1)u(pr, 1)7" v(p2, 52)
4 (pl +p2)2 spin
a(QQJSIZ)VMU(qIJSII)E(QIJSII)’VM’U’(QQJSQ) (19)

Let us use now formula (15), then

_ 1 e2 (pé m) u(p/{ + m) o _(q _ m/) (41 + m,)
e ! lm] " [ 2m om ] TT [ ol o ¥
) i l(pl jpﬂz] 4m241(m’)2Tr Py b | T gl b (20)

Next we will use the following identity which can be obtained from the anticomutation
property of v matrices

Tr(y"y"7*y%) = 4(g" g* + g"°g"" — g""9"7) (21)

We neglect all masses, that is we will work in ultrarelativistic limit. The square of the
invariant amplitude now becomes

MM =

[(p1 j2p2)2] 1677121(m')24 [(p2)u(p1)ul + (p2)" (1) — gu’up1p2]
)

[(qQ)IJ(ql)u' + (q2)u’(QI uw guu’QIQQ] (22)

i e

Using also equation

s=(p1+p2)° = (1 + @)~ 2pp2 ~ 2142 (23)

we calculate

MM = 3G [0 + 00 2 = 7

452 m2(m

s
(@)ulaa) + (@), = 93] (29)
Let us choose now, the explicit coordinate frame, where w = cosfl, [ = sinf. 6 denotes

the angle between the axises of incoming and outgoing particles. In this centre-of-mass
system, we have

m = (£,0,0,F))

P2 (E,0,0,—FE)

o = (E 0,15, wE)

¢ = (F,0,—IF,—wE) (25)



The spin average square of the invariant amplitude can be written as

1et 1

MM = Z?W (2P1¢I1P2QQ + 2p1gapaqi — sp1p2 — Sq1q2 + 82)
et 1 5
= ?W (PL1P2G2 + P1G2P2G1)
=Sl B —w) (1 —w) 4 (14w +w)] (26)
2 m2(m/)2

We finally get for the matrix element averaged over the spin

o1

€
MM = i (m’)2E4(1 + cos? ) (27)
p_et 1 4 2

In the next step we can use phase space parametrization (from the next Section) and
definition of the cross section from Section 3.1 (36) Note replacement in this formula (1)
due to incoming and outgoing fermionic fields. They are defined in the text, not in the
formulas. They give factor (2m)?(2m/)2.

do 111 et 1 4 2
dcos0dg = w205 5_2m2(m/)2E (1+ cos® )
1 2m2 m2
o 8 e (2m)2m')? (20)

after simplifications

do 11 1 €, 1 1A3(M2 m2, md)
= ——— —5*(1 20 - LA 30
dcosOdgp  |vy — vy 2p9 2p8 520 (14 cos™6) (30)

(2m)% 8 M?

do 1 1 et (
dcosfOdp — |vy — vy| 5 8(2m)2
and finally, if one use definition of «, ultrarelativistic limit and natural units where v; —
vy = 2¢ = 2 we get:

1+ cos® 0) (31)

do 1 1 a?1

2 2 2
= - 1 0)=—-(1 0 32
d cosBd¢ 2|vl—02|sa (1+cos™6) 4 s (1+cos™6) (32)
After integration over angles:
a?l 8 4ma?
ot = —— 2= = —— 33
Otot 4 s 7r3 3 s (33)

We are ready to search for missing factors of 2 7 etc etc.
(*) End of part collected by Bartlomiej Biedron



4 PHASE SPACE

The differential cross section is the product of the phase space and the matrix element.
To explain properties of factorization, we shall discuss them first independently and later
combine them.

The plan of this chapter is to first present a calculation of the two-body phase space
as an example of the method. In the second step we will present the relation between
n—body and the (n + 1)-body phase space, initially in a general form and later in a form
suitable for exponentiation. Finally, we will obtain the same result in an intuitive, easy
but oversimplified way.

5 Two-body phase space

In the case of a two-body final state, the phase space (4) can be written, with the help of
(5), in the following form,

dLipsy(P) =
d3k; d®k,
2k9(2m)3 2k9(27)3
1 &Pk dPky
= P—k —
@ 2k 2 TRk
1
= Wd4k16(k% - m%)@(k?)d4k25(k§ - m%)@(kg)(54(P — ky — k), (34)
T
where my, my denote the masses of the two particles in the final state. We integrate
four-dimensional 6* with the d*ky, and in the next step §(k? — m3) with dk?. We get the
following expression:

(277')4(54(]) — kl — k2)

dLipss(P) =
(271r)2 d4k1(5(k% — m%)é((P _ kl)Z _ m%)@(k?)@(PO B k(l))
1 &k , ,
= G (P k) —m). )

At this moment we are left with the three-dimensional integration and a one-dimensional
5. We represent a three-dimensional volume in spherical coordinates d®k; = k?dkd cos Od¢.
Here k denotes a module of the three-vector part of kf'; k = \/(k%)Q + (k?)? + (k3)? angular
variables # and ¢ can be defined in any coordinate frame, provided that its definition is
independent from the four-vector k; — k». In the final step of our calculation, we will first
change the variables for Lorentz-dependent ones and later use formula (6):

dLipsy(P) =

1 k2
5 d cos Odpdk———0(M? = 2M\/k* + m3 +m} — m3)

(2m) 21/k? +m?

1 1 A2 (M2, m2, m2)
= (QW)QdCOS Odo 3 e

. (36)
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Here for the first time we use the \ function
Ma, b, c) = a® + b* + ¢ — 2ab — 2ac — 2bc, (37)

which is very common in any calculation of the phase space with massive particle kine-
matics. Finally M? = P2,

5.1 (n+1) — n-body phase space

Now, having gained some experience, let us browse through the case of the n—body phase
space. We will try to calculate the relation expressing (n+1)-body phase space as a
convolution of n—body phase space with single particle variables. By iteration we will get
an explicit phase-space parametrization valid for any number of final-state particles.

Let us start again with formula (4) and rewrite it for (n + 1) different particles. We
define ¢ = k,y and p = 37 ky; p* = M2, my 1 = m. We then have

dLipsy41(P) =
By Bk 43 n
n (2m)*6* (P — . —
2K(2m)% T 2K0 (273 2q0(27r) mo*( ;k 1)

Bg Bk Bk, ) n
. (2
240 (2m)? 2k0(2)? 2k0(27r) ™o (p - ;k)
3
2¢°(2m)?

We have found a relation between (n + 1)-body phase space and n-body phase space. Let
us rewrite it in a more convenient way. To this end we introduce another integration over
M i.e. the mass of p:

= d'ps*(P—p—q)

= d'pé*(P—p—q) dLips,(p — ki...ky). (38)

dLipanrl(P) =
d3q
2f 4 cr2 a2 ONsd(p _ o ~
dMl{d pd(p” — M7)O(p")d* (P —p q)2q0(27r)3}dL2psn(p—> ky...kp)
- dM2(27r)_1{d37p(27r)454(P—p—q);}dlﬂjps (p— k1. k)
' 2p°(2m)? 2¢°(2m)? ! o

= dM12(27r)_1dLip52(P —pq) X dLipsn (p = ky...ky)

1Az (M2, M2, m?
= dM12(27r)_1{ dcos@d¢— i ]’\421’m

1 AR (M2, M2, m?
8(2m)3 M?

) .
oL } X dLipsy(p = ky...ky)

_ {ded cos Od¢

)] X dLips,(p = k1...ky). (39)

Let us now recall the two most interesting forms of the (n + 1)-body phase space:

dLipSn+1(P) =
dM?
(2m)
= de d cos0do

dLipsy(P — p q) X dLips,(p — ky...ky)

1 A5(M?, M3, m?)
8(2)? M?

X dLips,(p — ky...ky). (40)
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The first one exhibits the iterative relation between n + 1-, n- and two-body phase space
as in the cascade decay. The second one will be used later in our lectures. Note that
angles f and ¢ define the direction of the p or ¢ in the P rest frame. As in the case of
two-body phase space these angles can be defined with respect to any frame, under the
sole condition that it is independent from the (p — ¢) four-vector. It may depend on all
other kinematical variables!

It is rather easy to realize that formula (39) can be iterated to give explicit parametrization of n-body
phase space using invariant masses M}, of (n — k) particle systems and 6, ¢ angles defining (n — k)
particle orientation in the Mj, restframe.

n—2 1 . . .
1 AZ(M'thM'Z;me' 1)
dLlpS (P) = |:dM2dC050d¢ U i n—i+ :|
n ll;[l i i 18(27r)3 MiQ_l
1 )‘%(szzamfam%)
X <8(2ﬂ)3dc0s9n_1d¢n_1 STER >, (41)
where
n—i 9
Mz2 = (Zkl) , My = M. (42)
=1

5.2 Phase Space in form for Exponentiation

Let us now go back to formula (39) and let the photon be an (n + 1) particle. Because of
the photon zero mass our formula simplifies and we get

1 (M?— M}
(2m)3 M?

dLips,1(P) = |dMZd cos 0d¢8 )] X dLips,(p — k1...ky). (43)

Now, we can change variables, and instead of M, use the photon energy £, defined in the
rest frame of the all (n+1) particles. From energy-momentum conservation, we find that
in this frame the space-like components of momenta p and ¢ = k., have to have the same

value but opposite signs. That is why p° = VEE+ M?2. From the energy conservation we

find
by + k2 + M? = M, (44)

and we can calculate easily

M2 _ M2
Ro= A0
oM
dM? = 2Mdk,. (45)
Now we get:
dLipSn-l-l(P) =
{2Mdk Q—Mdcosem#} X dLipsn(p — ky...ky)
y M 8(27r)3 IPSp\P 1...Kp
| |
— {kvdkvdcos Gdgbm} X dLipsn(p — k1...kn), (46)
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If we have more than one photon, let us say [ photons and n other particles, then the
factor in brackets will become iterated (we can repeat the reasoning presented before [-
times to convince ourselves) and the statistical factor S = —, will have to be introduced.
We will obtain:

l

. 1 .
dLips,+i(P) x S = o] H [k k., dcos0; dqﬁz X dLips,(p — ky...ky). (47)

1
2(2m)?
One can see that, in the limit of all photons having small energies, one starts to obtain
something like the [—th element of exponent expansion. Note that p = p(P, ky,, ..., ky,).

This property, which we will use later in explaining how the exponentiation can be obtained, is not
as easy to apply as it seems here. The reason is very simple: for each photon, the energy k; and the
angular variables 6;, ¢; are defined in a different frame separated by a boost. Nevertheless the calculation

presented here is performed without any approximations.

5.3 Do it easily and fast!

A question is in order now: Is it really necessary to perform such a complicated reasoning
to obtain the soft photon limit of formula (47)7 If we assume that the momenta of all
photons are negligibly small with respect to those of all other particles, and we therefore
drop them from the arguments of the ¢*; function we can rewrite formula (4) in the
following form:

dLips,(P) x S =

1 d?’]gw1 03 kw By &k, l

T . 2 54 k I{I

1129, (2m)3 77 2K0, (2m) 2k (2m)3 7 2K9 (2 77 27) (P Z ; )

1 1 1
= l’ 2( ) ———d cos 971 d¢71 /{)01 dk?n ﬂd COS 071 d¢~” k’?’l dkgl

Ak A3k,
: (2m)*t (P k. 1

kD (2m) 22 ) m's!(P Z i) (48)

Here we have used again the spherical coordinates d*k, = (k9)d cos fdé.

Even though we have obtained intuitively the same result as in the previous chapter,
its quality is much lower. In particular the obtained formula would not be valid beyond
the soft photon limit.

6 FACTORIZATION OF THE
REAL SOFT PHOTON

Now, having prepared the phase space, we will turn our attention to the matrix element.
In this chapter we will concentrate on one of the classes of diagrams, that is real brems-
strahlung. We recommend that the reader should glance through any Born level calculation of any
cross section from Feynman rules® before recalculating this chapter. We will show that in the soft

5For instance your own notes from physics classes or from the exercises to Prof. Bilenky lectures.
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a) Incoming electron b) Incoming positron

Figure 3: Feynman diagrams for photon emission in initial state respectively from electron
and positron. Dots represent all other fields entering amplitude (initial or final). Note
that in case of positron arrow points in opposite direction, even though it is also initial
state particle.

photon limit this matrix element can be represented as a product of the lower-order ma-
trix element times the soft photon factor, which turns out to be independent from the
properties of the particular Born process under consideration.

6.1 Bremsstrahlung from the incoming electron

Let us start with the amplitude where bremsstrahlung occurs from the incoming electron.
Using the Feynman rules collected in section 3, we find that the amplitude for our process
(see Fig. 3) reads:

M = . iSp(p —k)(—tey,)u(p, s) *

= .. v _i_)2%_+m?+ —e Zu(p, s). (49)

In this formula * denotes the photon polarization vector. We can simplify formula (49)
further as (p — k)? = p? — 2pk + k* = m? — 2pk, and get

P ftm

M= —2pk

e fu(p,s). (50)
Note that we have omitted the infinitesimally small i€ term, which is important only for
the virtual corrections. At the next step we will neglect ¥, because it is small (in the soft
photon limit) with respect to other terms in the numerator of the propagator; later, we
will commute p and ¢ using formula (9) and the Dirac Equation (10):

—€

M = T ($+m) gu(p,s)
_ Q_ij o (20t #(— #+m))ulp, s)
_ ;ch .. (2p)u(p, s)
- e‘p_f . u(p, )
_ _%MB, (51)
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where, assuming that the Born level amplitude was only weakly dependent on the differ-
ence between p and p — k, we have replaced ...u(p, s) by Mpg. We can write finally:

M = —e;—ZMB +O(k). (52)

The phenomenological consequence of this last formula is important. We have obtained
that the bremsstrahlung matrix element in the soft photon limit, can be represented as a
product of the Born amplitude multiplied by the universal soft photon factor (including
the electric charge).

This result can be refined substantially. In particular the terms we neglected, which we write to be

at most proportional to the photon energy, deserve much more attention than given to them here!

6.2 Bremsstrahlung from the incoming positron

The calculation is in this case nearly identical. The difference is that the fermion line has
the opposite orientation and that instead of a u spinor and the Dirac Equation we will
have a ¥ spinor and the Dirac Equation in the form (12) (see also Fig. 3):

M = v(p,s)(—iey,)iSp(~(p — k)) ... &

= 0(p,s)e g/(p__(]]:); f{)n;njle

= —(p,s) #((¥— B —m) ..

2pk
o(p, s)(2ep — ($+m) 7) .

e

—7

2pk
ep

= eﬁv(p, s) ...

= LMy (53)

Let us note that if the process we study is, for instance, from colliding ete™ beams
we can simply add the contributions from the emission from electron and positron, and
obtain e -

2 1 &
Ma = (=) (22 = L) My = My x S.(p1,pa, ). (54)
p2k pik

6.3 Bremsstrahlung from the outgoing electron and positron

We suggest that the reader reproduce the calculation for this case. If this turns out to be
too difficult, we recommend going back to the previous two sections.

6.4 Double bremsstrahlung

Let us have a short look at the case of double bremsstrahlung from the incoming electron.
There are two diagrams (Fig. 4) that contribute in this case and, using the Feynman
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Figure 4: Feynman diagrams for double photon emission in the initial state from electron.
Dots represent all other fields entering amplitude (initial or final).

diagrams from section 3, their contributions can be written as follows:
My = . iSp(p — k1 — k2)(—iev,)iSr(p — k1) (—iey,)u(p, s) ehel
My = . iSp(p — k1 — k2)(—iev,)iSk(p — k2)(—iey,)u(p, s) eley. (55)

For the time being, we will concentrate on M;. After a short manipulation we get, as
in the previous cases:

, —1 -1
M; = e T T T (#— o= fa +m) fo(P— fr +m) fru(p,s)
S B - (B4 m) fa(B+m) frulp,s). (56)

2k1p 2kip + 2kop — 2k1ko
Again we commute ¢, and p to obtain, with the help of the Dirac Equation:
-1 -1
2k1p 2kip + 2kop — 2k ko
After performing the same trick again for ¢,, we finally obtain:
-1 -1
2kip 2kip + 2kop — 2k1koy

M1:€2

~(B+m) doulp,s) 2erp. (57)

M1:€2

~u(p,s) 2e1p 2e9p. (58)

After some simple reorganization, and neglecting the kiks term, which is small with
respect to kip + kop, we get
—& —£
Ml _ 62 1p 2D )
kip  kip + kap
Summing M, M, contributions we obtain

—&1p —&9p —&9p —€1p
M= M+ My = (=L +e—e Jm
! 2 kip  kip+ kop kop kip+kop)T

—&1p —&2p
(e ]ﬁp )(e kgp >MB (60)

Similarly, if there were to be photon emission from two different fermion lines, we
would also get just the Born spin amplitude times the corresponding soft photon factors
(we recommend the reader to do this calculation):

€1P2 €11 €22 €21
M (o0 oy (o), o
(/ﬁpz k1p1) (k2p2 k2p1) b ( )

—51196 —&9p
kip kip+ kop

. u(p,s)=e Mg. (59)
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In complete analogy, one can obtain’ for [ photons:

M= My ﬁ(e(&'m B 5ip1>>‘ (62)

i\ Nkipe o kip

7 REAL PHOTON EXPONENT

In this step we will combine our formula for the [ soft photons matrix element (62) with the
corresponding phase space dLips, ., (47), thus obtaining the expression for the production
of n particles accompanied by [ soft photons (we will sum over their polarization states
¢); bremsstrahlung in the initial state:

|M|*dLips,+(P) x S

1
— o x ij dbid cos g

T }szpsn(P = q1---qn)

2(27)°
X |MB|2H(€2Z(%_ 6ip1)2>

i=1 €i iP2 kzpl

14 €iP2  &iP1\2
= l' {k dk; d(:osﬁdgzﬁZ 3Z< ( . — kip1) >]
X |MB| dLips, (P — ql...qn). (63)

Due to our approximations, this expression is valid only for the soft photons of energies that are small
with respect to any dynamical scale in the process. It is possible to write it in a more elaborate way,
including all those omitted by us, in the phase space, terms due to photons effects on four-momentum
conservation [6, 7, 8] (see also section 10). Then, differential distributions can be corrected, order by
order in perturbation expansion, by appropriate replacement of soft photon factors with bremsstrahlung
matrix element. Unfortunately, in this case the formalism becomes less friendly for intuition, and it
requires much more time to be understood.

Now we can obtain an exponent for the first time. If we sum the cross sections for the
configurations with 0, 1, 2, ..., photons we obtain:

do(p1,p2 — ql,. -y qn, and photons)

1 1
= me 0|MB| dLips,(p = q1---qn)
€iP2 EiP1\?2
Fudkd cos o _ ] 64
_ U{ b 32 ( kipa k'ip1) ( )

Finally, in short-hand notation:

do(p1,p2 — 1, -, G, and photons) =

"By mathematical induction. Another point is here to recall. Namelly if we divide phase space into
sections, wher for example k;p; << k;+1p1, then in such korners of phase-space only one of diagrams like
M dominate. The factorization property would not require then to sum all diagrams. Such simplification
is not necessary for QED, but is at the heart of design of many parton shower algorithms for QCD, it is
known there under name of py ordering. Several variants are in use.
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Figure 5: Feynman diagram for the vertez-like correction in initial state in e™, e~ collision.
Dots represent all final state fields.

111 , o
_— dLips,, e,
or — e 2 2] 12 oD )
1 2(ED2 eP1 2]
X exp kdkdcosﬁdqﬁQ(Qﬁ)g;e (kpg kpl) ) (65)

It is an important and nearly complete result of our presentation of exclusive expo-
nentiation. Unfortunately we face infrared catastrophe. As can be seen with the help of
explicit integration of the soft photon factors over the phase space (see below), our result
leads to an infinitely large prediction for the total cross section. It is unphysical. We will
discuss how to resolve this later. Here, let us introduce the fictitious photon mass A and in
this way replace the k;dk; factors of integration over the photon energy by better behaving
in the soft limit term: k?dk; / \/k? + A\2. This is called a regularization procedure.

We will use the same trick, in fact for the same purpose, in discussing the virtual
corrections in the next chapters.

8 FACTORIZATION OF THE
VIRTUAL SOFT PHOTON

Now, we will study the factorization of the virtual corrections. First, we will take a
vertex-type amplitude My (see Fig. 5, see also e.g. [9]) for eTe™ scattering. Using the
Feynman rules defined in section 3, it can be written as:

d*k O
My = /(27r)4(_lk2iie)

—(ht J)+m ; (ot f) +m
p1+ k)2 —m?+ie  (p2+ k)2 —m?+ie

€ / 41{1 @(p ) u_(¢1+ %) +m (¢2+ k) +m
(2m)* k2 +ie T 2k 4+ k2 4ie T 2pok + k2 + ie

@(pl)(—iefy“)i( (—iev”)u(p2)

2

= i

Yuu(p2). (66)

Since we are interested, as in the real bremsstrahlung case, only in the contribution
of the soft photons k* =~ 0 region, we will neglect the ¥ terms in the numerators of the
propagators and assume that the remaining part of the diagram, noted by us as ..., does
not depend on the virtual photon momentum as well.
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In this way we are free also of the ultraviolet infinity, which, depending on the particular form of the
Born interaction, may also be present in our diagram.

In the first step of our calculation, we will commute v* matrices with p; and po;
Y = 2p — Biv*, v B2 = 2(p2)u— Yoy, and later use Dirac Equation (10,12):

My =

e / b 1 1 1
(2m)4 (k2 +1i€) (2pik + k2 +ie) (2pok + k2 + ie)

v(p)y" (= #1 +m) ... (P2 +m)y,u(pa)

e b 1 1 1

o) / (2 +ie) (2pik + K2 + i€) (2pak + K2 + ie€)

o(p) (=20 + (B +m)7") oo (22)u + vu(= Fo+m))ulp2)
e b 1 1 1

- (2m)4 / (k% +ie) (2p1k + k2 +i€) (2pok + k2% + ie)
0(p1)(=2)pY - 2(p2)u(p2)

>, ¢’ / gy —4p1p2
(2m)* (k2 +i€) (2p1k + k2 + i€) (2pok + k2 + ie

. 2« 4 Ap1p2
= . 67
! (2m)3 / (k2 4+ i€)(2p1k + k2 +i€) (2p2k + k2 + i€) Mz (67)

)@(pl) - u(p2)

The important result of our calculation is that the contribution from the soft photons
in our diagram can be contained in a factor B’, which is independent of the Born level
amplitude

M = MBXB,

d*k i Ap1p2
B = 2 . 68
“ (k2 +ie) (2m)% (2p1k + k2 + i€) (2p2k + k2 + te) (68)

It is interesting for us, that the real part of our function B’ is infinitely negative! We can

reqularize it, as in the real photon case, using the photon mass A and replacing % by
4k

(k2—X2+ie) "
In Yennie-Frautchi-Suura theory [6], instead of our function B’ one introduces the gauge-invariant

d'k i 2p —k 2ps — k 2
B=2 _
a%/ (k2 + ie) (2m)? <2p1k TR tic Zpok+ K2+ i(—:) : (69)

which differs from our result only by terms non-leading in powers of k.

It would be instructive to recalculate our correction in the case of final-state brems-
strahlung and interference (additional photon line connecting charged lines from the initial
and final states), we encourage the reader to repeat the calculation in these cases as well.

9 VIRTUAL PHOTON EXPONENT

In the previous section we have shown that the amplitude M, of first-order vertex-
like correction in the soft photon approximation equals Mg x B’ (or B) (68). Here we
should sketch how the soft photon exponent is forming. We think, however, that it is
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Figure 6: Feynman diagrams for the vertex-like correction in initial state in e™, e~ colli-
ston, second order. Dots represent all final state fields.

too complicated and not sufficiently explanatory to perform this discussion. We will just
quote the result: the second-order vertex amplitude (see Fig. 6) My, reads:

1
My, = Mp x 5B2 (70)
and similarly for the n-th order
1
MVn = MB X EB” (71)

Summing all these soft photon vertex-like corrections we again obtain an exponent
o0 1 "
My,,, = Mp X z;g HB = Mp X exp(B). (72)

As we have already mentioned in the previous section, B is negative-infinite if the
regulator (photon mass A) goes to zero. This is quite the opposite to the effect of the real
soft, photon effect described in the section 6.

There following technical points complicate the picture of how the virtual photon exponent forms. We
must understand where = 1 comes from. Finally one may want to understand how ultraviolet subtractions
mix the soft photon structure of the calculations. We refer the motivated reader to [6, 10].

Let us point out that mixed, real-bremsstrahlung vertex-like amplitudes (see Fig. 7)
lead to the following result in the soft photon limit:

Myig, = Mp x B x S.(p1,p2, k) (73)

and, if we sum over all diagrams for j virtual photon lines and [ real, we get (again in the
soft photon limit!)

l

MVJ-R, Mp x —BJ H w (P12, ko). (74)

Again, as in the case of higher-order vertex corrections, we omit proof or any other
discussion on why this factorization holds. We address the determined reader to [6].
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u(p2) / u(ps) //

v(p1)
a) My, g, b) My,r,

Figure 7: Feynman diagrams for the mized real-bremsstrahlung vertex-like correction in
initial state in et, e~ collision, second order, emission from electron (diagrams for emis-
sion from positron are similar but dropped here). Dots represent all final state fields.

10 EXCLUSIVE EXPONENTIATION,
ZEROTH ORDER

In some sense, this section is the keystone of our lectures. We will combine here the
virtual photon exponent developed in section 8 with the real photon exponent developed
in section 6. Now, we are finally ready to obtain an exclusive exponentiation formula: To
this end we substitute Mp in formula (65) with My, of (72) obtaining:

do(p1,p2 = q1, .-, qn, and photons) =

. Q £ ep1\?
M exp(B) P Lips(p = -.t) exp ik cos 0 zg:(k%z - k%) } (75)

This expression would be badly defined (of the 0 - oo type) if the photon mass A —
regulator of the infrared singularity — was put to zero. Let us keep it thus non-zero for a
while.

A discussion on the physics is here in place. If one notices that final states with
additional, extremely soft photons are indistinguishable, by any method, from the ones
where they are absent, we can say that they are physically identical and, as a principle,
do not request theory to bring meaningful answers to non-physical questions requiring
separation of these states. (The theory of coherent states is an appropriate framework in which to
discuss this problem in a mathematically exhaustive way). Let us assume that k,,;, is an energy
of the photon, which is well below any experimental accessibility of our detectors. We can
divide our photons into two groups, of energy larger and smaller than k,,;,; the latter we
may safely omit from our kinematical consideration and integrate over their directions®:

do(p1,p2 = 1, -, Gn, and photons) =

8 We simplify again: we do not discuss the situation when the energy of every omitted from kinematical
considerations photon would happen to be smaller than k,,;,, but their sum significantly larger. This
obstacle can be easily overcome in exact treatment [8], vy can be introduced as a boundary set on the
sum of energies of all photons with neglected kinematics.

21



1 11
vy — va] 219 23

2
< exp RO ki, — Bidcosti 5 37 (122 - 1)

X |Mp|?dLips,(p — qi...qn) X exp(2B)

kpy  kp:
2
X exp [kdk@(k ~ knin ) cos 00 5y Z(Z’f - ;%) } (76)
2 1
We can now define
_ epa ep1\?].
Y = 2B + |kdkO (ki — k)d cos edqs E Z o) | (77)
P2 P1

after standard (but not so short) calculation, we ﬁnd, that in the A — 0 limit:

2k min
Y = ’}/1117 +5YFS

Vv 2p1p2

1 a, 1 7
5YFS - 174‘—(—54—?)
N 2p1po
v = 2;(ln - —1). (78)

The exact form of dy pg is beyond the pedagogical level of our calculation, in the next step, we will keep
it or drop it depending on the quality of the other terms. With this, we can write our final result
for the zeroth order exponentiated exclusive cross section:

do(p1,p2 = q1, -, Gn, and photons) =

111 ,
o1 — o] 290 208 | M|*dLipsn(p = q1...qn) X exp(Y)
2
exp | kdkO(k — kynin)d cos Odp—— v ﬂ) Z(% _ %) } (79)
2 1

or in an explicit way:

do(p1,p2 — q1, ...y qn, and photons) =

1 1
7| ol 202 0 |MB| dLipsp(p = q1...qn) x exp(Y)
1
« P2 €1P1 2]
— kidk,© (k) — kpin)d 0,d — . 80
;“ lnl[ ARG~ )05 Bl gzl(m ) (80)

Note that the deficiencies in this formula are due to a neglect of the phase-space constraint
on the photon energies. Let us limit the integration over photon energy from above, by
hand, by introducing the maximum photon energy cut? O (kpez — k1), kmaz = %\/m
We get our exponentiation result:

do(p1,p2 — 1, -, G, and photons) =
1 1 1
|'l}1 — 'l}2| 2])(1) 2 9

o0 7 2
> % TT [ Fndta® (it = Finia)© (e — i)l o5 0o 5 Z(W? - 2B gs)
=0 7" (=1

kips  Eipy

X |MB|2dLipsn(p = 1) X exp(Y)

9We can get this limit, e.g. from the first-order calculation.
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Note that kinematical variables of every additional photon accompanying our ¢y, ..., q,
final state is explicitly included and not integrated. The cross section is fully differential
and therefore we call it exclusively exponentiated.

11 EXCLUSIVE EXPONENTIATION AND
PERTURBATION EXPANSION

We will start this section with a long passage in smaller font-size, on the exclusive expo-
nentiation formula, equivalent to our formula (81), but written for the ¢-channel process.
We suggest to the reader that he drop this passage at first reading. In fact it is not
even connected to the rest of our lectures through the conventions of notations, but it
contains a complete presentation of the O(«) exponentiated cross section (multi photon
bremsstrahlung both in the initial and final state) for the process eTe™ — eTe™ at small
angles. In fact it is chapter 2.1 of Ref. [11].

Note, however, that there is a passage at the end of this section that need not be
omitted at first reading.

11.1 Realistic example

The complete master formula for the O(a') exponentiated total cross section for the process e (p;) +
e (q1) = et (p2) + €7 (g2) + ny(k;) + n'y (k) as actually implemented in the BHLUMI 2.01 Monte Carlo
program is the same as in Ref. [14] and it reads as follows'®

U_ZZi'nll' dqz dp25(4)<p1+q1 P2 — Q2 — Zk_2k>

n=0n'= i'=1

exp (Y(Ql,pl,pz) + Y(QZ;Q1;QZ)>

!

S(p1, o, ki) (1 - O(S; /Hk,o (1,02, k) (1 — O(:K)

j=1

(5(()1)(62,131,1)2,111,(12) + ZBF)(Q,M,IJ%%,%,ki)/g(phpmki)

i=1

+Zﬁ Q P1,P2,4q1,42, j)/S(q17qZ7k])> EMC(piaqiakhk;n); (82)

where S(py,p2, k) = —(a/4n?) ((pl/kpl) - (pg/kpg))2 is the real photon infra-red factor and

Y(Qp1,p2) = 2aé(ﬂap1ap2) + 2aRB(p1,p2)
1 d*k o o\’
= —2a Ok — - =
70 O )<kp1 kp2>
i 2p1 — k 20—k \?
2 - —
- 0‘%/ K2 (27 <2kp1—k2 2kp2—k2> (83)

is the standard Yennie-Frautschi-Suura form factor [6]. It is infra-red-finite and ©(Q;k) = 1 for k € Q
and O for k& € Q. The infra-red (2 region includes the k& = 0 infra-red point and its definition may implicitly

10Note that taking only n +n' = 0,1 and expanding the form factor exp(Y (1) + Y (Q2)) one recovers
the ordinary non-exponentiated O(a') expression for the differential cross sections. For instance, defining
O 2 by k° < £4/5/2 in the laboratory frame one recovers exactly Eq. (1) of Ref. [13].
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involve the dependence on the fermion four-momenta p; and g¢; [6]. None of the physically sensible results
depends on the choice of Q! The Q domain is typically defined through the k° < Ep;, condition in a
certain reference frame. (In fact, the program features two types of 2 but only one of them is in use,
see later in this section.) We shall define € » and give the corresponding explicit formula for the form

factors later, while describing the Monte Carlo algorithm. B
The perturbative O(«) QED matrix element is located in the 3’s, which are!!

_(()1)(Q7p171)27q17q2) = _(()O)(Q:plapQ:(h:‘JQ)(l+250+57+5Z): (84)
‘ )1 o (1 1Q
(50 = 2§RF1(Q2) - 2§RB(Q2) = iﬂt, ﬁt = 2; (hl m—g - , (85)

20 (t)? (52 +u? + 52 +u?)

3(0) . — 86
0 (Q;plaplaqlan) 4tptq ) ( )
_ ar(t)? «
§1)(Q>p1>p2;fh;fh;ki) = %S)H Dgl)(Qaplap%ql;qZ;ki)
_g(p17p27k) 780)((9:131:132:(11:‘12): (87)
_ ar(t)? a
§})(Q>P1>P2;Q1;QZ>I€;’) = "'2(8) ﬁ DS)(Qaplap%ql;qZ;k;)
_S(qlaq%k;’) B[()O)(Qaplap27q17q2)7 (88)
D§1)(Qap17p27q17q27k) =
1 2 2 2 2 2 2 2 2
5% +uj (1_ m; @>+sl+u <1_ m2 @) , (89)
(kp1)(kp2) | Itql ltq| kp: ltql ltq| kp1
D§’1)(Q7p17p27q17q27k) =
1 2 2 2 2 2 2 2 2
5% +uj <1_ m; @)_{_slﬁ-u (1_ m; @) , (90)
(kqu)(ka2) | [ty ltp| kg2 |ty ltp| kau

2
n

t=0Q*= <p2 +) ki —p1> s tp = —2pip2, tg = —2q1¢2,
i1

$=2p1q1, $1 = 2p2q2, u = —2p1q2, U1 = —2q1p2.

We implement vacuum polarization through the QED running coupling constant a.(t) = a/|1+ II(¢)| at
the proper Q% =t scale. This takes into account the vacuum polarization correction in the O(a?L?), as
was pointed out in Ref. [15]. The correction d, = t/s is due to s-channel v exchange and the correction
0z represents here'? the interference of the t-channel photon with the s-channel Z:

02 = Z((g <§> % (1+ 5)3 (v* +a7) %<s yyp iz‘sr/M>’ (01)

where a = —1/(4sinfy cosfyw ), v = a(l — 4sin?fy), M and T are the usual coupling constants, mass
and width of Z. We use sin® 6y = 0.2306, M = 91.161 GeV and I' = 2.534 GeV, and these values are

already precise enough for the purpose of luminosity measurement. In the above two corrections we keep

terms that are necessary for the precision < 10~* for angles ¥ < 10°.

The main difference in the above QED matrix element with respect to BHLUMI 1.xx is the neglect of
up—down interference. This contribution was found in Ref. [13] to be very small in small-angle Bhabha’s,
for ¥ < 6° it is generally below 0.02%. In any case, for the purpose of the discussion of the physical

error the OLDBIS sub-generator will provide the value of this contribution for any cut or acceptance.

1Note that in the analogous formula in Ref. [14] the expression for Bgl) was distorted and the factor
2 in front of §p was omitted. The formula in the program was always correct, so this does not have any
consequences for the numerical results in this paper.

12For the present-day (1993) precision, it is necessary to include also QED corrections to §.
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Dropping up—down interference allows us to consider bremsstrahlung from upper et and lower e~ fermion
lines independently, and to simplify the multiphoton bremsstrahlung matrix element considerably. In the
process of writing the O(a) multiphoton matrix element in the YFS exponentiation it is necessary to
extend (extrapolate) the single bremsstrahlung matrix element beyond the three-body phase space.'3
Instead of doing it by means of manipulating four-momenta arguments in the corresponding expressions,
as in Refs. [8, 12] (the so-called reduction procedure), we rather extrapolate the single bremsstrahlung
matrix element expressed in terms of Mandelstam variables, see Eq. (82). This method gives almost
the same numerical result, while it leads to more compact and explicit expressions, which are faster and
numerically more stable in the computer evaluation. It should be stressed, however, that reinstalling
up—down interference in the present program is possible and it would be rather straightforward — the
basic Monte Carlo algorithm is already prepared for this, see later in this section. We did not do it

because in the small-angle Bhabha we regard up—down interference as an unnecessary complication!
The function

Emc(Pi; ¢i, ki) = Ot — [tmin )0 ([tmax| — [2]) (92)
defines phase space for events generated in the Monte Carlo run. The user’s own experimental trigger
Eexper. 1S imposed later by the usual rejection method, see section 4.4 (of Ref. [11]) for discussion of the
practical choice of tyin,max. Cross sections and distributions obtained with Zexper, do not and should
not depend on the particular values of ¢min,max. Note also that transfer ¢ has physical meaning only
if up—down interference is neglected and/or in the leading logarithm approximation. Otherwise it is
an intermediate parameter in the Monte Carlo generation, being a complicated function of the photon
momenta, dependent on details of the Monte Carlo generation algorithm.

11.2 n-photon probability

Let us now turn back to our simple formula (81). It tells us that the process p;,p, —
q1, ---, qn, because of the soft photon structure of QED has to be calculated and discussed
simultaneously with other processes, where in addition to ¢y, ..., g, there is an undefined
number of soft photons, but of differential distribution, at the zero level of approximation,
completely independent from the particular hard process under consideration. In addition,
this differential distribution can be improved order by order in perturbation expansion!
Note that higher-order corrections will not introduce new kinematical configurations (i.e.
more complicated phase space), but only improve distributions.

We will calculate here, what the probability is of having n photons accompanying
our final state. In this way we will make the first step into the direction of inclusive
exponentiation. As we can see in (81), every photon distribution is independent from the
other ones, it will thus be rather simple to integrate over its angles:

(2;;‘)22<@ . @ﬂ. (93)

kp, kp,

kma

/Skkdkdcosﬁdqﬁ:/ ’ kdk/dcos@/dqﬁ
k

In the centre-of-mass system, we have
Py = E(1,0,0,5)

plZL = E(IJOJOJ_/B)
k* = k(1,sinfsin ¢,sin 6 cos ¢, cos f)

13This extrapolation is inherent in any kind of exponentiation and due to the fact that infra-red
singularities were subtracted and summed up to infinite order; see Refs. [6, 16] for more comments.
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g1 = (0,cos ¢, —sing,0)

g9 = (0,cos@sin ¢, cosf cos ¢, —sinh)

B = J1-m/P? (94)

and we find

a [dk  4sin®0
| Sikdkdcosodg = 5 [ = cogrgteostas
o kmaa: 2p1p2
= Rxlnk_mmx(ln . —1) x 2w
V2 2 2
— In P1P2 —a(ln P1P2 —1)
kmin T m?2
V2
=yl R (95)

where we have used the definition of v in (78). We introduce this into (81) and obtain

do(p1,p2 = qu, ..., ¢n, and photons) =

1 1 1 ) > 1 \/2p1p2 !
— | MygPdLips,(p = qi...q,) X exp(Y —< In ) . (96
|U1—UQ|2p[1]2p8| B| P (p qi---q ) p( )gl' v ( )

kmin
We can now neglect dy g in Y (it is not proportional to the logarithm of the photon
energy and is thus negligible in our approximation) and get ¥ ~ ~In —V,fp?p?. This leads

to a Poissonian distribution in the number of photons accompanying our final state, of
energy bigger than £,,;,,

Py (kmin) = exp<_7m J/@) % <’yln JM)

min min

S P o= L (97)

As expected, the average multiplicity of the photons depends on £,,;, and tends logarith-
mically to infinity with k,,;, — 0.

Finally let us point to different games with the phase space limits here. We were
ignoring phase space constraints in calculation of P, (k) and each of the photon phase
space limits was left unaffected by the presence of the other ones. See figures in draft of
new Section 14

12 INCLUSIVE EXPONENTIATION

With the help of formula (97) and Py, we can answer the question of what is the cross sec-
tion for our process p1, P2 — qi, ..., G, and photons

where the energy carried away by photons is not larger than v\/2pips = ki (again we
cross the weak point of our pedagogical approximation by replacing the minimal energy
of one photon k,,;, by the limit v on sum of the energies of all photons; we also introduce
back our dypg factor). We obtain
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do(p1,p2 — (h,- o qn, and photons) =

1 1 .
o 1
1 1

= me 20 0|MB| dLips,(p — q1.-.qn) X exp(dyps)v” (98)
o 1

It is now a question of simple differentiation to get the differential cross section in the
final state and the scaled electromagnetic energy v:

da(pl,pz — q1, ---;Qnav) _

dv
1 1 p
WQPO 259 |MB| dLips,(p — qu.--qn) X exp(dyrs) dv{exp <7 In U)}
1 1 1 _ i
= WQPO 29 |MB|2dLZp8n(p — q1...qy) X exp(dyps)yv” L (99)

If we are interested in the total cross section, we may integrate over dLips,(p —
(h---Qn)- (We take not only the phase space at a reduced centre-of-mass energy due to photons, but also
the matrix element M p; this can be understood by inspection of the exact matrix element calculation

presented later in this section or by the leading logarithm factorization of the next section.) We get
(s =2pip2):

Tonp = exp(dyrs) / doyv™ 10?( (1— v)). (100)

In our calculation (mainly due to our having neglected the difference in the definition of
kmin and v,,:,) we have missed the normalization constant. In fact our formula should

read:
tot e ! y—1 _tot
o = it exp(éypg)/o dvyv" o (5(1 - v)), (101)
where ¢ = 0.57721... is the Euler constant.
The form of this result is very similar to the result of the complete O(a) calculation

(see e.g. [9]), where we get

Utoot(a) _ /dvp tot (l—v))

PP w) = 5(1;){1 +ylnwvy + %'y+ %(—% + %2)}
+ O(v-— 00)7% (1 — (1l - %U)) (102)

We will now rewrite p©(®(v) in a form suitable for comparison with our exponentiated
formula (101)

1
pO(a)(v) = 6(1}){1+71nvo+5YFs+(55}+@(v—v0)7;(1+6H(v))

1
5, = =
27
1

op(v) = —v(l—iv). (103)
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a) Real bremsstrahlung: electron b) Real bremsstrahlung: positron

Figure 8: Feynman diagrams for photon emission in initial state respectively from electron
and positron. Case of ete™ collision.

Now we can realize that the O(a) expansion'® of the v spectrum from formula (101)

coincides with this result, except in the dg and 0y terms. It is useful to realize that our
function p®® (v) is right at first order, whereas the exponentiated spectrum has some
(at least v for small v) terms right for higher orders in «. We may interpolate between
formulae (101) and (102) and get:

1
o = [ dvplv)oy!(s(1—v)
e*C

%l
PP (y) = me‘swswﬂ’l (1 +ds + 5H(v)). (104)

This recipe of inclusive exponentiation is not the only one; there is generally a certain freedom of
choice as to how to obtain formula (101) and, related with it, an uncontrollable uncertainty of the result.
First of all, integrating over soft photon phase space we lost control over the photons configuration. This
would of course be cured up to the O(a) with the help of interpolation to the exact result calculated
at this order (even including effects of cuts). As one could see, we were able to keep in our
reasoning the differential distribution over final-state phase space dLips,(p) to the end.
This shows that it would be straightforward to extend our exponentiation procedure to
other, less inclusive observables, such as asymmetries etc. However, one should have in
mind that the less inclusive the observables the larger are uncontrolled uncertainties.

As a final remark let us point out that a consistency check of any inclusive exponen-
tiation formula is an expansion to fixed order and a comparison with the exact analytical
result calculated at this order (or leading-log terms to fixed order with the leading-log
results).

13 FACTORISATION OF THE
LEADING LOG KERNEL

As one could see from our previous discussion on exponentiation, the typical size of
coefficient enhancing the size of radiative correction was v ~ 2 In 27;;#. The origin of this
€

logarithm (see the calculation in formula (95)) is an integration over an angle 6 between

4 Before the expansion, we have to introduce vy into (99); to this end we integrate this spectrum up
to v and multiply the result by §(v).

28



a fermion and a photon directions . In the following, we will try to extract such leading
terms from the diagrams of Figs. 8 and 5.

13.1 Real bremsstrahlung

To begin with, we will take the contribution of the photon emission from the electron
(Fig. 8a) only. Here, contrary to the soft photon factor calculation, we will start from the
calculation of 3, . MM and, from the beginning, we will assume that m is negligibly
small with respect to p; — ps. In the following we will omit the subscript 1 in p;. From
the Feynman rules of section 3 (see also formula (49)) we get

EY MM =T Y S i syates) e 0s)

Neglecting the electron mass terms and using the projection operators (15), we obtain:

SE MM = o LS K76 B (106)

and later, if we choose € to be real,

SIS MM =

e T (5 B2 4= 57 7) 5 B
ez 1

o o (P 02 A= 0+ (= ) B ;4))

(kp

2

Il

W

[T
M

‘ -

( 2p(h= ) A6~ )+ (5= K) B B) -

p)? 2m
2

Il

W

[
M

—_

G 2 (@0 K =22 = B~ K+ KB E) -

2
(kp)2 2m <

Il

W

[
M

- (¢
=
(¢
(¢

I
M

2ep)*(P— K) + 4ep pk ¢+2kpk>

(107)

We will now estimate which of these terms may bring contributions of the logarith-
mic type. For this purpose we will use a parametrization of the phase space (46). For
convenience we introduce the following short-hand notation:

cp = cosb, sg = sinf,

Cp = COSOQ, 54 = sing. (108)

15T will omit here another class of leading-logarithm corrections due to photon vacuum polarization
correction or, in other words, due to the evolution of the electromagnetic coupling constant from the
m. energy scale to v/2p;p.. Note that, for the inclusive quantities such as total cross sections and QED
corrections in the final state, the corrections we will discuss here cancel out completely. This cancellation,
which is also present in QCD, enables concept of the structure-function Evolution Equations.
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In parametrizing the phase space, we will replace k£ by the dimensionless variable x. Now
we can write

2
= Ex(1, 5984, 50C4, Cp)

g1 = (0,ce, —54,0)

ga = (0,cps4,Cocs, —Sp)- (109)

With this notation we find, again neglecting mass terms wherever possible:

kp = E%z(1 — Bcy)

e1p = 0
gap = FEsy. (110)
By inspecting formula (107), we may notice that the term e9p pk ~ sy(1 — Bcp) and
thus overcomes the m singularity in the denominators of the fermion propagators

(kp)?, and that it does not contribute to the logarithmic term, so that we may drop it.
We realize that, to the logarithmic () terms contribute only those configurations where
the directions of k£ and p nearly coincide, at our approximation level; we will thus write
¥ =z p. We get

22 MM
2

= Z@% ...<(25p)2(1 —x) p+2kpa ]5)

e? 1

=Y W%«%p)?(l — )+ 2kp a:) . !

1 e?

- Y Tor (@)1= 2)+ 2hp ) 3= Mp(p— WM (p — K)(111)

P —x) ..

Our result tells us that the part of bremsstrahlung matrix element that leads to the
leading logarithms can be written as a product of the Born amplitude squared, with
incoming fermion momentum p — k times a universal function ﬁF:

2

F(E,z,0) = ;@((2@)2(1 1)+ 2kp x) (112)

We will now rewrite F' in x, f and ¢, introduce our matrix element squared into phase
space (46), and integrate over angles.

2

500 = (i s
2
- E2x2(16_ Beg)? ((1 - :L')SZ +(1- CQ)xZ)- (113)
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Let us now write the complete formula for the cross section:

1 1
do=——— T{kdkd d } dLips,(py — k ).
0 = |U1—U2|2p1 OZZMM Co ¢ ( )3 X tps (pl yP2 — q1.-.4 )

(114)

Substituting our expression for the matrix element squared (111), we get

1 1 1
do = ——— EYM(p— k
7T - vl2h 2 1—xZM” Molp =
e 1

1 a)st+ (1— Z[kdkddi

E?32(1 — Pcey)? (( w5+ (1= o)z ) K ¢2(27T)3
X dLips,(p1 — k,p2 = q1..-qn) (115)

or using relations p{(1 — z) = p? — k%
1 1
— f L —
do o oal 207 — 1) 2] OZMBp EYMY(p — k) x dLips,(p1 — k,p2 — q1.--Gn)
o2
1= 2)52 + (1 — cp)a” [k;dkd d 7]
(1= e (L~ 9 (L= co)a”) [dkdeodo
- daborn(pl - k7p2 — qIQn)
1 e? 9 9

xdmdced¢2(2ﬂ)3 0= o) ((1 —2)syg+ (1 —co)x ) (116)

After integration over ¢ and €, and neglecting the non-logarithmic components of inte-
gration over dcy, this leads to

do = daborn(pl - k7p2 — q1Qn)

e dx 1 )
2(2m)? s (1 — Bey)? ((1 —z)(L —cp)(L+¢p) + (1 — cp) >d60

e?  dx E? E?
~ d —k wQp) - —((1—=2)2In— In —
op(p1 —k,p2 = q1..-qn) 20n) 1 <( x) no + 2 nm2>
e?  dx 9 E?
= dUB(pl - k7p2 - q1Qn) : 2(271_)2?((1 - l‘)2 +tx )lnﬁg
dxl N, E?

This is the basic formula of the leading logs. We see that we can describe the emission
of the photons from the electron in the initial state as a convolution of the well-defined
kernel 1+ (1 — z)? with the Born level cross section, where instead of first beam, we take
effectively its four-momentum reduced by the fraction x carried away by the photon. The
case of the initial-state positron is identical, owing to the neglect of the mass terms in our
approximations.

It is a matter of exercise to convince oneself that the interference between the amplitudes of Figs. 8a

and 8b does not give any terms proportional to In E?/m?.

13.2 Inclusion of virtual corrections

In principle we could repeat here a calculation similar to that in section 7 for the vertex
correction amplitude of Fig. 5, but this time in the leading-log approximation. I do not
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think however that it is sufficiently instructive to justify its presentation here. I leave it
as an exercise for the very dedicated reader. Let us only mention that in this calculation there
are two regions in d*k integration over virtual photon four-momentum. They correspond
respectively to the photon direction close to p; and p,. We can separate (in leading logs)
the vertex correction into two parts. We get (see also formula (102) from which we take
virtual and soft correction as “half” of the complete O(«) result) the complete result,
including virtual corrections:

do(pi,p2 = Gi-qn,®) = doporn(p1 — k,p2 = q1...qn) - da f ()
f@) = 8()+Pla)
o, E? 3a. E?
P(zx) = 5(x)<;lnﬁglnx0+1;lnﬁg>
a, E*11 )
+ @(Jc—xo);lnﬁggi(l—i—(l—x) ). (118)

The result we obtain for the photon emission from the positron is identical. It is interesting
to note that [J f(z)dr = 1. This is a consequence of the Kinoshita Lee Nauenberg
theorem [17].

13.3 ITERATION: LL TO ALL ORDERS

Terms which produce leading logarithms in QED factorize also in higher orders. One can find that,

£ (x) 6(x)+P(:c)+%{P®P}(x)++%{P®P®P}(:c)+...,
{P®P}(m) = /0 dml/o dz2d(x1 + 2 — 109 — ) P(x1)P(22). (119)

We omit here the discussion of how to obtain this result. We would like to mention that it turns out not
to be so easy to improve this picture order by order in perturbation theory. The practical applications
are limited to the next-to-leading-log approximation.

14 EXPONENTIATION AND LANGUAGE OF TAN-
GENT SPACES
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Figure 9: Symbolic presentation of manifolds:

1) for n-body phase space (red point)

2) for n-body plus extra particle (green lines)

3) for n-body plus two extra particles (hemisphere)

Figure 10: Symbolic presentation of manifolds:

1) for n-body phase space (red point)

2) for n-body plus extra particle (green lines)

3) for n-body plus two extra particles (hemisphere)
plus tangent space at intfrared point
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Figure 11: Symbolic presentation of manifolds:

1) for n-body phase space (red point)

2) for n-body plus extra particle (green lines)

3) for n-body plus two extra particles (hemisphere)
plus tangent space for second extra particle

15 SUMMARY,
INVITATION TO FURTHER READING

As can be seen from Fig. 21, these lectures are divided into four parts. The first one
includes the introduction, gives the motivation for the subject, etc, and it is not necessary
to understand the rest of the lectures. The main goal of these lectures was to present
those aspects of radiative corrections that are of direct phenomenological consequence for
the high energy experiments, with special emphasis on effects that because of the cuts
cannot be separated from data analysis. This leads to our discussion of exponentiation
and leading-logarithms approximation. The infrared structure of QED was presented.
In particular we have visualized that to obtain physically meaningful results one has to
perform summation over final states with a different number (zero to infinity) of additional
outgoing real photons.

We have completely neglected those parts of radiative correction discussions (such
as: regularization, renormalization, renormalization group equation, running coupling
constant, etc.), which are usually presented in detail in any field theory textbooks. Our
lectures are complementary in this respect to Prof. Bilenky’s lectures.

We precede our discussion by a detailed presentation of notations (this usually is
an appendix in field theory lectures) and of phase-space parametrization. This latter
is especially important as we want to stress that all our techniques are well rooted in
the Relativistic Quantum Mechanics and perturbation expansion of QED and, as such,
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Figure 12: Symbolic presentation of manifolds:

1) for n-body phase space (red point)

2) for n-body plus extra particle (green lines)

3) for n-body plus two extra particles (hemisphere)
alternatively tangent space is for first extra particle

provide a well-defined method of discussing uncertainties coming with the results.

Finally, we have decided to skip the examples section. An excellent source of appli-
cation examples, based on LEP I physics can be taken in Ref. [18]. We recommend the
reader to scan through the Proceedings of “Physics at ...” workshop of the experiments
of her/his interest.

In notes such as these, correctness and consistency of all formulas is very important
for the readers. If misprints are to be detected later on, a postscript file ZAKOPANE PS
A1 (to be taken) of updated notes will be stored on the WASM disk at CERNVM. If you
detect the misprints yourself, please send a message to WASM at CERNVM.
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Figure 13: Symbolic presentation of manifolds:

1) for n-body phase space (red point)

2) for n-body plus extra particle (green lines)

3) for n-body plus two extra particles (hemisphere)

after two steps tangent space coincide with the manifolds for n- (n+1)- and (n+2)-phase-
spaces
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Figure 14: Symbolic presentation of manifolds:

1) for n-body phase space (red point)

2) for n-body plus extra particle (green lines)

3) for n-body plus two extra particles (hemisphere)

Regulators are needed to make this picture realizable. Minimum eneriges (or sometrhing
introduced)
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Figure 15: Symbolic presentation of manifolds:

1) for n-body phase space (red point)

2) for n-body plus extra particle (green lines)

3) for n-body plus two extra particles (hemisphere)

Do not get attached to sphere, equally well it can be rotated gaussian and tangent spaces
can be deformed as well. This can be useful, case of ISR exponentiation for example.
From principle point of view it is just question of measure redefinition. In one system we
have hemi-sphere in another it looks like a bell. But in reality it is the same. Also note
that these plots are in at least 8 dimensions ...
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Figure 16: Symbolic presentation of manifolds:

1) for n-body phase space (red point)

2) for n-body plus extra particle (green lines)

3) for n-body plus two extra particles (hemisphere)

Tangent space is flat, lines along which dominant contribution differ, but nonetheless
replacing main manifold with square can give a picture where formula 99 could be calcu-

lated. By looking at differences in shapes even size of the domninant missing term could
be obtained.
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Figure 17: Symbolic presentation of manifolds:

1) for n-body phase space (red point)

2) for n-body plus extra particle (green lines)

3) for n-body plus two extra particles (hemisphere)

Tangent space s cylindric, one of the lines along which dominant contribution differ
between tangent space and principal manifold, Replacing main manifold with square can
give a picture where formula 99 could be improved, but only slightly better.
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Figure 18: Symbolic presentation of manifolds:

1) for n-body phase space (red point)

2) for n-body plus extra particle (green lines)

3) for n-body plus two extra particles (hemisphere)

Tangent space 1s intersection of two cylinders now, both lines along which dominant con-
tribution forms coincide in tangent space and principal manifold, Replacing main manifold
with that figure can give a picture where formula 99 can be replaced by the one with com-
plete LL content. Price paid is discontinuity in tangent space, extra benefit is that tangent
space can be understood as sum of two identical pieces. That is principle of both pr-like
orderings and also exponentiation with [y terms included only.
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Figure 19: Symbolic presentation of manifolds:

1) for n-body phase space (red point)

2) for n-body plus extra particle (green lines)

3) for n-body plus two extra particles (hemisphere)

Tangent space 1s intersection of two cylinders now, both lines along which dominant con-
tribution forms coincide in tangent space and principal manifold, Replacing main manifold
with that figure can give a picture where formula 99 can be replaced by the one with com-
plete LL content. Price paid is discontinuity in tangent space, extra benefit is that tangent
space can be understood as sum of two identical pieces. That is principle of both pr-like
orderings and also exponentiation with By terms included only. The thin green lines of
previous plot can easily be understood as broad zone, if we think the size of manifold ele-
ments not in a language of phase-space volume, but rather include matrixz element as well.

42



Figure 20: Symbolic presentation of manifolds:

1) for n-body phase space (red point)

2) for n-body plus extra particle (green lines)

3) for n-body plus two extra particles (hemisphere)

Tangent space 1s intersection of two cylinders now, both lines along which dominant con-
tribution forms coincide in tangent space and principal manifold, Replacing main manifold
with that figure can give a picture where formula 99 can be replaced by the one with com-
plete LL content. Price paid is discontinuity in tangent space, extra benefit is that tangent
space can be understood as sum of two identical pieces. That is principle of both pr-like
orderings and also exponentiation with By terms included only. The thin green lines of
previous plot can easily be understood as broad zone, if we think the size of manifold el-
ements not in a language of phase-space volume, but rather include matriz element as
well. In contrary to what is done in fig 19 we explicitely cut out thoze zones of phase
spaces where cancellations are explicitely performed. But physicswise present figure and
figs 18,19 represent exactly the same physical configuration. In case of perturbative part of
QCD predictions they can not be thinner than what is incorporated into non-perturbative
zone of condensates hadronization, structure function.
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