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lear Physi
s, Krak�ow, ul. Kawiory 26a, PolandandTH Division,CERN, Geneva, SwitzerlandAbstra
tWhat one should understand as a 
entral point in the subje
t of radiative 
orre
tions is amatter of debate. Theoreti
ally oriented physi
ist would say that proof of the �eld theoryrenormalizability should be 
onsidered as a fo
using point in the domain of radiative
orre
tions. On the other hand, one 
an think of radiative 
orre
tions in a very pra
ti
alsense, that is, as theoreti
al 
orre
tions that must be in
luded in the data analysis. Inthese le
tures we will try to explain radiative 
orre
tions in this se
ond pra
ti
al 
ontext.In parti
ular we will try to explain the meaning of the following keywords: \fa
torization",\in
lusive and ex
lusive exponentiation", \soft photon fa
tor", \leading logarithms". Wewill also dis
uss brie
y the de�nition of the te
hni
al and physi
al pre
ision of theoreti
alpredi
tions and their relevan
e to the quality of experimental data and thus, possibly, toeveryday experimental work.The aim of my le
tures is to explain the relation between the 
on
epts listed aboveand the predi
tion of the perturbative Quantum Field Theory. We will limit ourself tothe Quantum Ele
trodynami
s pro
ess e+e� ! 
� (Z�) + initial-state bremsstrahlung,
� (Z�)! anything, but some of the results are similar in the 
ase of QCD. We will relyheavily on the expli
it example 
al
ulations that we present throughout the text. A step-by-step re
al
ulation of the presented material is strongly re
ommended for understandingthese le
tures. Some information on how to read them is given in the summary.Over the years 2004 and 2005 signi�
ant 
hanges were introdu
ed. At present LEPera appli
ations are be
oming less interesting. Material 
on
erning explanation of relationbetween matrix element 
al
ulations, formalism of �xed body �nal states, exponentiationand formulation of parton showers using as an intermediate example PHOTOS; algorithmfor generation of bremsstrahlung in de
ays, is slowly expanding, but the new shape is notyet visible. The old outdated parts of 1993 le
tures are not removed.Written on the basis of le
turesgiven at the 1993 European S
hool of High Energy Physi
s,Zakopane, Poland, 12{25 September, 1993.Changes for le
tures in Cra
ow Poland, Louvain-la-neuve Belgiumand Melbourne Australia introdu
ed in 2004/2005 are in
luded.CERN-TH 7154/94January 1994-August 2005



1 INTRODUCTIONOver the last twenty years the pre
ision and 
omplexity of high-energy e+e� experimentshas in
reased signi�
antly. Testing the theory by a dire
t 
omparison of measured 
rossse
tions and 
al
ulated quantities has be
ome only an idealized pi
ture.The most obvious reason why it 
an only be an idealization is due to experimentalineÆ
ien
ies su
h as the la
k of hermeti
ity of the dete
tors or existen
e of the regionsof the phase spa
e whi
h are strongly 
ontaminated by the ba
kground, to be ex
ludedby means of 
uts. It is sometimes very diÆ
ult or just impossible to impose su
h 
uts onthe theoreti
al predi
tions represented in the form of analyti
al 
al
ulations [1℄. The useof Monte Carlo simulations thus be
omes imperative.Let us use a symboli
, algebrai
-like notation. If x̂ denotes a physi
al event as it reallyhappens, then the response of the dete
tor 
an be symboli
ally noted as an a
tion of theoperator B on x̂. The expression B
 x̂ should thus be understood as an ele
troni
 re-sponse of the dete
tor. Su
h a signal is then analysed and �nally an event ŷ = A
B
 x̂is re
onstru
ted { here A represents the sele
tion and analysis of the data. A di�eren
e� = ŷ � x̂ represents an essential ingredient of the systemati
 error. A study of thiserror also requires a Monte Carlo for the physi
s pro
esses under 
onsideration. Withthe help of the MC one 
an generate a series of events fxig and later, relying on thedetailed knowledge of the dete
tor 
omponents, generate a series of dete
tor responsesf�B
 xig. Su
h a simulation represents a perfe
t testing environment in whi
h study theproperties of A. For idealized theoreti
al events xi, the di�eren
e � = yi � xi 
an beexpli
itly 
al
ulated for every generated event. It is obvious that imperfe
tions in ourknowledge of B will introdu
e a systemati
 bias in A. However an inappropriate 
hoi
e ofthe theoreti
al sample fxig, due to missing topologies of �nal states and, to some extent,to 
rude approximations in the theoreti
al di�erential distribution, will also indire
tlya�e
t the analysis A and 
ontribute to the total systemati
 error. For 
harged parti
les,due to properties of QED radiative 
orre
tions, to obtain physi
ally meaningful resultsone has to perform summation over �nal states with a di�erent number (zero to in�nity)of additional outgoing real photons.This is the motivation for studying radiative 
orre
tions for somebody a
tive (or plan-ning to be) in the �eld of high-pre
ision high-energy data analysis. That is also whywe will 
on
entrate on real photon emission 
orre
tions, whi
h introdu
e experimentallysigni�
ant e�e
ts. We will not go however into a dis
ussion of the details of Monte Carloimplementations of these 
al
ulations.In fa
t, it is only in a very spe
ial 
ase of QED and/or ele
troweak perturbative
al
ulation that the question of the theoreti
al systemati
 error 
an be addressed in afully satisfa
tory way. In other 
ases, where hadroni
 low-energy intera
tions play animportant role, the situation is mu
h less satisfa
tory.On the other hand, Monte Carlo is also used in de�ning sele
tion 
riteria, experimental
ut-o�s, et
. In this way the systemati
 error of the Monte Carlo will also enter theexperimental data in an irreversible way.
1



2 CALCULATIONS FROM FIELD THEORYFor the ele
troweak intera
tions one tends to use \QED-subtra
ted data", whi
h exhibitsolely the properties of hard pro
esses, with QED bremsstrahlung and related dete
tor-dependent e�e
ts removed. In su
h an approa
h, one �nally 
onfronts theory and ex-periment in the following (indire
t) way. On one side there are \data", whi
h in fa
tin
lude impli
itly some theoreti
al e�e
ts due to QED subtra
tion, and on the other sidetheoreti
al predi
tions, 
al
ulated in a subset of the Standard Model without QED brems-strahlung.At �rst, the above s
enario looks awkward be
ause \theory" is involved in both sidesof the Equation \data" = \theory". The 
on
ept of \QED-subtra
ted data" is howevera very useful one be
ause su
h 
orre
ted data are free of all dete
tor-dependent e�e
ts.It should be stressed that the dependen
e of the QED 
orre
tions on parti
ular experi-mental 
uts is the major argument for subtra
ting them from the data. In pra
ti
e QEDsubtra
tion is done simultaneously with removing the a

eptan
e of the dete
tor. On theother hand \QED-subtra
ted theoreti
al predi
tions" are also easier to 
al
ulate than the
omplete results.The above QED (dete
tor a

eptan
e) subtra
tion approa
h brings a new kind ofexperimental error owing to un
ertainty in the theoreti
al 
al
ulations used in the dataanalysis. The means of 
al
ulating this \theoreti
al" 
omponent of the experimentalsystemati
 error should thus be provided with the theoreti
al 
al
ulation to be used inthe data analysis. Is it possible?It is well known that QED is a �eld theory of well-de�ned perturbation expansion andin prin
iple any physi
al predi
tion 
an be 
al
ulated with pra
ti
ally in�nite pre
ision, upto, perhaps, the Dyson limit [2℄. That is also why, in prin
iple, there exists a standard wayof 
al
ulating the systemati
 errors of QED predi
tions as well. The idea is quite simple;one should 
al
ulate predi
tions for a given observable P at di�erent orders of perturbationexpansion P0, P1, P2, ..., and the 
al
ulation should be 
ontinued until the di�eren
e�n = Pn � Pn�1 is smaller, by a safe fa
tor (usually 3), than the expe
ted experimentalerror for the observable P . This analysis has to be performed for every observable andevery new set of 
uts, whi
h may eventually 
hange the size of the 
orre
tions. There areserious, although not fundamental, diÆ
ulties in applying the above s
heme in pra
ti
e.If the Born predi
tions for a given pro
ess 
an be 
al
ulated within days, the 
al
ulationof O(�) 
orre
tions already may require up to one year. It is only in a very spe
ial 
aseof the Z line-shape 
al
ulation for LEP [3℄ that the 
omplete O(�2) QED results areavailable. Even, this is true only for idealized 
uts and only for initial-state radiation 1.Owing to these pra
ti
al limitations, it is rather 
lear that the above s
heme of 
al-
ulating QED systemati
 errors 
annot be applied dire
tly. Having at our disposal onlyBorn and O(�) results it is rather obvious that the smallness of the di�eren
e 
an bejust a simple numeri
al a

ident. In fa
t, the situation is quite often the opposite, andthe di�eren
e �1 is signi�
antly larger than the experimental error, indi
ating that thehigher orders should be in
luded.On the other hand, we should not forget that the ele
tromagneti
 
oupling 
onstant is1In addition, starting at O(�2), QED 
orre
tions 
annot be separated from 
omplete ele
troweak
orre
tions. Genuine O(�2) ele
troweak 
orre
tions (whi
h are not yet 
al
ulated) 
an be numeri
ally ofthe same order as QED O(�2) terms. At this level, the pro
edure of subtra
ting QED 
orre
tions 
annotbe de�ned, and 
omplete ele
troweak 
orre
tions and dete
tor e�e
ts have to be analysed simultaneously.2



O(�2)prag1�L ��2L2 �2L �2�3L3 �3L2 �3L �3�4L4 �4L3 �4L2 �4L1 �4... ... ...(a)
O(�3)prag1�L ��2L2 �2L �2�3L3 �3L2 �3L �3�4L4 �4L3 �4L2 �4L1 �4... ... ...(b)Figure 1: QED perturbative leading and subleading 
orre
tions. The rows represent 
or-re
tions in 
onse
utive perturbative orders { the �rst row is the Born 
ontribution. The�rst 
olumn represents the leading logarithmi
 (LL) approximation and the se
ond 
ol-umn depi
ts the next-to-leading (NLL) approximation. In the Figure, terms sele
ted for(a) se
ond and (b) third order pragmati
 expansion (for photon emission from the ele
tronat LEP energies) are limited with the help of an additional line.rather small, of the order of 1% and one would thus expe
t the O(�2) terms to be typi
ally10�4 and therefore 
ompletely negligible. Corre
tions are however larger due to variousenhan
ement fa
tors present in the QED results. The sour
e of these enhan
ements iswell understood and governed by the stru
ture of QED singularities; ultraviolet, infraredand 
ollinear. Be
ause the stru
ture of QED singularities is mu
h simpler than that ofthe full theory, a multitude of te
hniques (su
h as stru
ture fun
tions, exponentiationand running 
oupling 
onstants) was developed to 
ontrol these enhan
ed terms. Usingthese te
hniques it is possible either to 
al
ulate higher-order leading terms (whi
h arevery often the only higher-order interesting terms) in a relatively easy way or to improvethe 
onvergen
e of the perturbation expansion, by the appropriate rede�nition and/orreordering of the expansion.It is important to realize that in order to improve the pre
ision of QED predi
tions, thestri
t approa
h of the order-by-order 
al
ulation is in most 
ases not the optimal one. Tounderstand this point it is 
onvenient to 
onsider the 
ontributions to a 
ertain observable(for instan
e total 
ross se
tion or asymmetry), of any perturbation order, separated intoleading logarithmi
 terms, next-to-leading logarithmi
 terms, et
. (see Fig. 1). There Lstands for the leading log and � for the 
oupling 
onstant. If our 
al
ulation is limited, letus say to order n, then we may omit all 
ontributions that are smaller than �n+1Ln+1, thatis all terms proportional to �iLi�j < �n+1Ln+1, without weakening the total pre
ision ofour 
al
ulations. We will 
all it \pragmati
" n th order.For the typi
al LEP appli
ations L ' 24 (ele
tron in the initial state), and is notso mu
h smaller for the other leptons. In
lusion of 
omplete order-�2 non-leading termsdoes not improve on the pre
ision, even if we work in \pragmati
" third order (see Fig.1), be
ause fourth-order (leading logarithmi
) terms are expe
ted to be larger2.In dis
ussing the systemati
 error of QED predi
tions one should not forget that large
omputer programs 
an be prone to simple programming bugs, ma
hine rounding errorsand other numeri
al problems, whi
h we 
all 
olle
tively te
hni
al errors. They form the2It should be stressed here that, unlike in QCD where there is always a 
ertain un
ertainty due to,e.g., the non-perturbative 
ontent of the stru
ture fun
tions, in QED the answers are unique, on
e theframework of 
al
ulation is de�ned. 3



te
hni
al 
omponent of the total pre
ision/error and have to be 
al
ulated �rst, beforeany attempt at dis
ussing the physi
al pre
ision 
an be made. A solution to this problemis to 
al
ulate a 
ertain observable using di�erent methods and obtain numeri
ally thesame answer. The optimal solution is to 
al
ulate the predi
tion for a 
ertain observableanalyti
ally and to 
ompare this result with the Monte Carlo simulation obtained withidenti
al 
uts and identi
al physi
al input.The aim of these le
tures is to present relatively simple 
al
ulations (with only minorand expli
itly listed simpli�
ations), whi
h are useful in understanding physi
s of radiative
orre
tions. Cal
ulations are presented at length so that the experimental physi
ist ishelped to 
omprehend theoreti
al te
hniques. Parts of the text whi
h may disturb thereader at �rst reading, are written in smaller, footnote-size 
hara
ters.3 BASIC DEFINITIONSIn the following, we will re
all 
onventions for spinors normalization, Feynman rules forQED et
. as de�ned in ref. [4℄. Following these 
onventions we will use the speed of light
 = 1, and all energies and momenta as well as masses will be given in units of GeV.We assume that the reader will browse qui
kly through this se
tion �rst, and later will
ome ba
k for de�nitions whenever ne
essary. A
tually there is nothing more than a listof de�nitions in this se
tion.3.1 Phase Spa
e, De
ay Rate, Cross Se
tionWe will start with a de�nition of the di�erential 
ross se
tion:d� = 1jv1 � v2j 12p01 12p02 jMj2 d3k12k01(2�)3 ::: d3kn2k0n(2�)3 (2�)4Æ4�p1 + p2 � nX1 ki�� S (1)and the di�erential de
ay rate of parti
le with mass M (and four-momentum P ) as:d! = 12M jMj2 d3k12k01(2�)3 ::: d3kn2k0n(2�)3 (2�)4Æ4(P � nX1 ki)� S: (2)In these two formulas one 
an �nd (i) a kinemati
al fa
tor, (ii) a matrix elementsquared, and (iii) the phase spa
e for the �nal-state parti
les. Let us elaborate on thesethree ingredients of the 
ross se
tion in more detail:(i) In the 
ase of the de
ay, the kinemati
al fa
tor is just 12 of the inverse de
ayingparti
le mass. For the s
attering pro
ess, the expression is slightly more 
ompli
ated:1jv1 � v2j 12p01 12p02 ; (3)here v1; v2 denote velo
ities of 
olliding parti
les and p1; p2 their four-momenta. Zero-th
omponents of four-momenta denote energies.(ii) All dynami
al information (whi
h may be 
al
ulated from QED for example) isin
luded in the matrix element M. As parti
les of non-zero spin (or 
arrying 
olour,for instan
e) may parti
ipate in the rea
tion, jMj2 should read as a 
ontra
tion of the4




orresponding density matri
es [5℄ of the initial and �nal states with spin amplitude Mand its Hermitian 
onjugate My. If one is not interested in spin-dependent e�e
ts, asummation over all possible �nal-state spin states and an average over initial-state spinstates should be performed. TheM is a fun
tion of all momenta of in
oming and outgoingparti
les.(iii) The phase spa
edLipsn(P )� S = d3k12k01(2�)3 ::: d3kn2k0n(2�)3 (2�)4Æ4�P � nX1 ki�� S (4)
onsists of a four-dimensional Æ4 fun
tion enfor
ing four-momentum 
onservation and,for ea
h parti
le in the �nal-state, a Lorentz-invariant integration element over parti
lemomenta3 d3ki2k0i (2�)3 . In addition if there are mi identi
al parti
les of type i in the �nalstate, then the statisti
al fa
tor reads: S = Qi 1m! . Depending on the 
onvention for thespinor normalization in use, a fa
tor mp0i may need to repla
e fa
tor 12ki for the �nal-stateand initial-state parti
les. In 
ase of s
attering: P = p1 + p2.3.2 Dira
 Equation, gamma matri
es andsome of their relationsLet me start with the four-dimensional 
� matri
es (� = 0, 1, 2, 3). Their most importantrelation, from our point of view, is the anti 
ommutation relation:
�
� + 
�
� = 2g��1; (7)where 1 stands for the four-dimensional unit matrix (it will usually be omitted in ourformulas). The Lorentz metri
 tensor is g00 = �g11 = �g22 = �g33 = 1 and otherwisezero; also, g�� = g��. We use the following short-hand notations:pq = p�q� = p�q�g�� = P3�=0P3�=0 p�q�g��6p = p�
� = p�
� = P3�=0P3�=0 p�
�g�� : (8)It is now straightforward to realize46p 6q = � 6q 6p+ 2pq6p 6p = p2: (9)3Note that d3ki2k0i = d4kiÆ(k2i �m2)�(k0i ): (5)This relation 
an be easily obtained by simple integration of the Æ fun
tion over the zero-th 
omponentof k, using the following mathemati
al formula:Z g(x)Æ(f(x) � a)dx = g(x) 1jf 0(x)j ���x=f�1(a) (6)Convin
e yourself!4Do it! 5



The spinors u(p; s) and v(p; s), for parti
les and anti parti
les, are four-
omponent
omplex ve
tor-like obje
ts, but of di�erent Lorentz transformation properties with re-spe
t to usual ve
tors. If their momentum and spin are denoted as p and s, they satisfythe Dira
 Equation: ( 6p�m)u(p; s) = 0( 6p+m)v(p; s) = 0: (10)We will use also adjoint spinors �u = uy
0�v = vy
0: (11)For adjoint spinors, the Dira
 Equation reads5�u(p; s)(6p+m) = 0�v(p; s)(6p�m) = 0: (12)The normalization 
ondition for spinors reads as follows�u(p; s)u(p; s) = 1�v(p; s)v(p; s) = �1: (13)The following relations (proje
tion operators) will turn out to be very useful in 
al
ulatingthe squares of matrix elements:u(p; s)�u(p; s) = � 6p+m2m � 1 + 
5 6s2 �v(p; s)�v(p; s) = �� 6p�m2m � 1 + 
5 6s2 �
5 = 
5 = i
0
1
2
3: (14)Summing over the spin simpli�es proje
tion operators; they take a formX�s u(p; s)�u(p; s) = � 6p+m2m �X�s v(p; s)�v(p; s) = �� 6p�m2m �: (15)3.3 Feynman rulesIn the following, let us list those of the Feynman rules of QED that will be used in ourle
tures for 
al
ulatingM.1. For ea
h internal fermion line (i.e. 
onne
ting two verti
es) 
arrying momentum pthere is a fermion propagator iSF (p) = i(6p+m)p2�m2+i� . See Fig. 2. Note that the fermionline is oriented and p is the momentum 
arried in the diagram along fermion lineorientation.5It 
an be obtained from the previous two Equations.6



>iSF (p) = i(6p+m)p2�m2+i� ������������������������������������iDF (q)�� = � ig��q2+i�
�������������������� >�ie
�Figure 2: Graphi
 representation for Feynman rules, respe
tively for fermion and photonpropagators, and for ele
tromagneti
 
oupling.2. For ea
h internal photon line there is a photon propagator iDF (q)�� = � ig��q2+i� . SeeFig. 2.3. For the photon 
oupling to fermion line the vertex is: �ie
�. See Fig. 2.4. For ea
h external fermion line entering a graph there is a fa
tor (s
attering parti
lewave fun
tion) u(p; s) or v(p; s) a

ording to whether it enters in the initial or �nalstate. Similarly for the fermion line leaving the diagram in the initial and �nal statefa
tor: �u(p; s) or �v(p; s).5. For every external photon line, a fa
tor "� (photon polarization) has to be intro-du
ed.6. For ea
h internal momentum l not �xed by momentum 
onservation at verti
es thereis a fa
tor R d4l(2�)4 .7. For ea
h 
losed fermion loop there is a fa
tor �1.For 
ompleteness, let us note that � = e24� : (16)3.4 Ele
tron-Muon S
attering e+e� ! �+��(�)During le
tures in a year 2004, it turned out that at this point it is interesting, andpossible to 
al
ulate amplitude and later 
ross se
tion for the pro
ess: e+e� ! �+��.This se
tion was written by Bartlomiej Biedro�n on the basis on my improvised le
ture.Let us start with the amplitudeM for our pro
ess. Following the Feynman's rules forQED M =�v(p2)
�(�ie)u(p1) ig��(p1 + p2)2 + i� �u(q2)
�(ie)v(q1) (17)Averaging over initial (fa
tor 14) and summing over �nal spins we getMMy = 14 Xs1;s2;s01;s02 �v(p2; s2)
�(�ie)u(p1; s1) ig��(p1 + p2)2 + i� �u(q2; s02)
�(ie)v(q1; s01)�u(p1; s1)
�0(ie)v(p2; s2) �ig�0�0(p1 + p2)2 � i��v(q1; s01)
�0(�ie)u(q2; s02) (18)7



At this point all variables are still de�ned in the frame independent wayMMy = 14 " e2(p1 + p2)2#2 Xspin �v(p2; s2)
�u(p1; s1)�u(p1; s1)
�0v(p2; s2)�u(q2; s02)
�v(q1; s01)�v(q1; s01)
�0u(q2; s02) (19)Let us use now formula (15), thenMMy = 14 " e2(p1 + p2)2#2 Tr "� ( /p2 �m)2m 
�( /p1 +m)2m 
�0#Tr "�( /q2 �m0)2m0 
� /(q1 +m0)2m0 
�0#= 14 " e2(p1 + p2)2#2 14m24(m0)2Tr h /p1
� /p2
�0iTr h /q1
� /q2
�0i (20)Next we will use the following identity whi
h 
an be obtained from the anti
omutationproperty of 
 matri
esTr(
�
�
�
�) = 4(g��g�� + g��g�� � g��g��) (21)We negle
t all masses, that is we will work in ultrarelativisti
 limit. The square of theinvariant amplitude now be
omesMMy = 14 " e2(p1 + p2)2#2 116m2(m0)2 4 h(p2)�(p1)�0 + (p2)�0(p1)� � g�0�p1p2i4 [(q2)�(q1)�0 + (q2)�0(q1)� � g��0q1q2℄ (22)Using also equation s = (p1 + p2)2 = (q1 + q2)2 ' 2p1p2 ' 2q1q2 (23)we 
al
ulate MMy = 14 e4s2 1m2(m0)2 �(p1)�(p2)�0 + (p1)�0(p2)� � g�0� s2��(q1)�(q2)�0 + (q1)�0(q2)� � g��0 s2� (24)Let us 
hoose now, the expli
it 
oordinate frame, where w = 
os�; l = sin �: � denotesthe angle between the axises of in
oming and outgoing parti
les. In this 
entre-of-masssystem, we have p1 = (E; 0; 0; E))p2 = (E; 0; 0;�E)q1 = (E; 0; lE; wE)q2 = (E; 0;�lE;�wE) (25)8



The spin average square of the invariant amplitude 
an be written asMMy = 14 e4s2 1m2(m0)2 �2p1q1p2q2 + 2p1q2p2q1 � sp1p2 � sq1q2 + s2�= e4s2 1m2(m0)2 2 (p1q1p2q2 + p1q2p2q1)= e4s2 1m2(m0)2 2E4 [(1� w)(1� w) + (1 + w)(1 + w)℄ (26)We �nally get for the matrix element averaged over the spinMMy = e4s4 1m2(m0)2E4(1 + 
os2 �) (27)MMy = e4s4 1m2(m0)2E4(1 + 
os2 �) (28)In the next step we 
an use phase spa
e parametrization (from the next Se
tion) andde�nition of the 
ross se
tion from Se
tion 3.1 (36) Note repla
ement in this formula (1)due to in
oming and outgoing fermioni
 �elds. They are de�ned in the text, not in theformulas. They give fa
tor (2m)2(2m0)2.d�d 
os �d� = 1jv1�v2j 12p01 12p02 � e4s2 1m2(m0)2E4(1 + 
os2 �)� 1(2�)2 18 � 12 (M2;m21;m22)M2 � (2m)2(2m0)2 (29)after simpli�
ationsd�d 
os �d� = 1jv1 � v2j 12p01 12p02 e4s2 s2(1 + 
os2 �) 1(2�)2 18 � 12 (M2; m21; m22)M2 (30)or (in ultrarelativisti
 limit � 12 (M2; m21; m22) = M2)d�d 
os �d� = 1jv1 � v2j 1s e48(2�)2 (1 + 
os2 �) (31)and �nally, if one use de�nition of �, ultrarelativisti
 limit and natural units where v1 �v2 = 2
 = 2 we get:d�d 
os �d� = 12jv1 � v2j 1s �2(1 + 
os2 �) = �24 1s (1 + 
os2 �) (32)After integration over angles: �tot = �24 1s 2�83 = 4�3 �2s (33)We are ready to sear
h for missing fa
tors of 2 � et
 et
.(*) End of part 
olle
ted by Bartlomiej Biedron9



4 PHASE SPACEThe di�erential 
ross se
tion is the produ
t of the phase spa
e and the matrix element.To explain properties of fa
torization, we shall dis
uss them �rst independently and later
ombine them.The plan of this 
hapter is to �rst present a 
al
ulation of the two-body phase spa
eas an example of the method. In the se
ond step we will present the relation betweenn�body and the (n+1)-body phase spa
e, initially in a general form and later in a formsuitable for exponentiation. Finally, we will obtain the same result in an intuitive, easybut oversimpli�ed way.5 Two-body phase spa
eIn the 
ase of a two-body �nal state, the phase spa
e (4) 
an be written, with the help of(5), in the following form,dLips2(P ) =d3k12k01(2�)3 d3k22k02(2�)3 (2�)4Æ4(P � k1 � k2)= 1(2�)2 d3k12k01 d3k22k02 Æ4(P � k1 � k2)= 1(2�)2d4k1Æ(k21 �m21)�(k01)d4k2Æ(k22 �m22)�(k02)Æ4(P � k1 � k2); (34)where m1, m2 denote the masses of the two parti
les in the �nal state. We integratefour-dimensional Æ4 with the d4k2, and in the next step Æ(k21 �m22) with dk01. We get thefollowing expression:dLips2(P ) =1(2�)2d4k1Æ(k21 �m21)Æ�(P � k1)2 �m22��(k01)�(P 0 � k01)= 1(2�)2 d3k12k01 Æ�(P � k1)2 �m22�: (35)At this moment we are left with the three-dimensional integration and a one-dimensionalÆ. We represent a three-dimensional volume in spheri
al 
oordinates d3k1 = k2dkd 
os �d�.Here k denotes a module of the three-ve
tor part of k�1 ; k = q(k11)2 + (k21)2 + (k31)2 angularvariables � and � 
an be de�ned in any 
oordinate frame, provided that its de�nition isindependent from the four-ve
tor k1� k2. In the �nal step of our 
al
ulation, we will �rst
hange the variables for Lorentz-dependent ones and later use formula (6):dLips2(P ) =1(2�)2d 
os �d�dk k22qk2 +m21 Æ�M2 � 2Mqk2 +m21 +m21 �m22�= 1(2�)2d 
os �d� 18 � 12 (M2; m21; m22)M2 : (36)10



Here for the �rst time we use the � fun
tion�(a; b; 
) = a2 + b2 + 
2 � 2ab� 2a
� 2b
; (37)whi
h is very 
ommon in any 
al
ulation of the phase spa
e with massive parti
le kine-mati
s. Finally M2 = P 2.5.1 (n+ 1)! n-body phase spa
eNow, having gained some experien
e, let us browse through the 
ase of the n{body phasespa
e. We will try to 
al
ulate the relation expressing (n+1){body phase spa
e as a
onvolution of n{body phase spa
e with single parti
le variables. By iteration we will getan expli
it phase-spa
e parametrization valid for any number of �nal-state parti
les.Let us start again with formula (4) and rewrite it for (n + 1) di�erent parti
les. Wede�ne q = kn+1 and p = Pn1 ki; p2 = M21 , mn+1 = m. We then havedLipsn+1(P ) =d3k12k01(2�)3 ::: d3kn2k0n(2�)3 d3q2q0(2�)3 (2�)4Æ4�P � nX1 ki � q�= d4pÆ4(P � p� q) d3q2q0(2�)3 d3k12k01(2�)3 ::: d3kn2k0n(2�)3 (2�)4Æ4�p� nX1 ki�= d4pÆ4(P � p� q) d3q2q0(2�)3dLipsn(p! k1:::kn): (38)We have found a relation between (n+1)-body phase spa
e and n-body phase spa
e. Letus rewrite it in a more 
onvenient way. To this end we introdu
e another integration overM21 i.e. the mass of p:dLipsn+1(P ) =dM21�d4pÆ(p2 �M21 )�(p0)Æ4(P � p� q) d3q2q0(2�)3�dLipsn(p! k1:::kn)= dM21 (2�)�1� d3p2p0(2�)3 (2�)4Æ4(P � p� q) d3q2q0(2�)3�dLipsn(p! k1:::kn)= dM21 (2�)�1dLips2(P ! p q)� dLipsn(p! k1:::kn)= dM21 (2�)�1� 1(2�)2d 
os �d�18 � 12 (M2;M21 ; m2)M2 �� dLipsn(p! k1:::kn)= �dM21d 
os �d� 18(2�)3 � 12 (M2;M21 ; m2)M2 �� dLipsn(p! k1:::kn): (39)Let us now re
all the two most interesting forms of the (n + 1)-body phase spa
e:dLipsn+1(P ) =dM21(2�)dLips2(P ! p q)� dLipsn(p! k1:::kn)= dM21 �d 
os �d� 18(2�)3 � 12 (M2;M21 ; m2)M2 �� dLipsn(p! k1:::kn): (40)11



The �rst one exhibits the iterative relation between n+ 1-, n- and two-body phase spa
eas in the 
as
ade de
ay. The se
ond one will be used later in our le
tures. Note thatangles � and � de�ne the dire
tion of the p or q in the P rest frame. As in the 
ase oftwo-body phase spa
e these angles 
an be de�ned with respe
t to any frame, under thesole 
ondition that it is independent from the (p � q) four-ve
tor. It may depend on allother kinemati
al variables!It is rather easy to realize that formula (39) 
an be iterated to give expli
it parametrization of n-bodyphase spa
e using invariant masses Mk of (n � k) parti
le systems and �k, �k angles de�ning (n � k)parti
le orientation in the Mk restframe.dLipsn(P ) = n�2Yi=1�dM2i d 
os �id�i 18(2�)3 � 12 (M2i�1;M2i ;m2n�i+1)M2i�1 �� � 18(2�)3 d 
os �n�1d�n�1 � 12 (M2n�2;m21;m22)M2n�2 �; (41)where M2i = �n�iXl=1 kl�2; M0 =M: (42)5.2 Phase Spa
e in form for ExponentiationLet us now go ba
k to formula (39) and let the photon be an (n+ 1) parti
le. Be
ause ofthe photon zero mass our formula simpli�es and we getdLipsn+1(P ) = �dM21d 
os �d� 18(2�)3 (M2 �M21 )M2 �� dLipsn(p! k1:::kn): (43)Now, we 
an 
hange variables, and instead of M1, use the photon energy k
 de�ned in therest frame of the all (n+1) parti
les. From energy{momentum 
onservation, we �nd thatin this frame the spa
e-like 
omponents of momenta p and q = k
 have to have the samevalue but opposite signs. That is why p0 = qk2
 +M21 . From the energy 
onservation we�nd k
 +qk2
 +M21 = M; (44)and we 
an 
al
ulate easily k
 = M2 �M212MdM21 = 2Mdk
: (45)Now we get: dLipsn+1(P ) =�2Mdk
 2k
M d 
os �d� 18(2�)3�� dLipsn(p! k1:::kn)= �k
dk
d 
os �d� 12(2�)3 �� dLipsn(p! k1:::kn); (46)12



If we have more than one photon, let us say l photons and n other parti
les, then thefa
tor in bra
kets will be
ome iterated (we 
an repeat the reasoning presented before l-times to 
onvin
e ourselves) and the statisti
al fa
tor S = 1l! will have to be introdu
ed.We will obtain:dLipsn+l(P )� S = 1l! lYi=1�k
idk
id 
os �id�i 12(2�)3�� dLipsn(p! k1:::kn): (47)One 
an see that, in the limit of all photons having small energies, one starts to obtainsomething like the l�th element of exponent expansion. Note that p = p(P; k
1; :::; k
l).This property, whi
h we will use later in explaining how the exponentiation 
an be obtained, is notas easy to apply as it seems here. The reason is very simple: for ea
h photon, the energy ki and theangular variables �i, �i are de�ned in a di�erent frame separated by a boost. Nevertheless the 
al
ulationpresented here is performed without any approximations.5.3 Do it easily and fast!A question is in order now: Is it really ne
essary to perform su
h a 
ompli
ated reasoningto obtain the soft photon limit of formula (47)? If we assume that the momenta of allphotons are negligibly small with respe
t to those of all other parti
les, and we thereforedrop them from the arguments of the Æ4; fun
tion we 
an rewrite formula (4) in thefollowing form:dLipsn+l(P )� S =1l! d3k
12k0
1(2�)3 ::: d3k
l2k0
l(2�)3 d3k12k01(2�)3 ::: d3kn2k0n(2�)3 (2�)4Æ4�P � nX1 ki � lX1 k
i�= 1l! 12(2�)3d 
os �
1d�
1k0
1dk0
1 ::: 12(2�)3d 
os �
ld�
lk0
ldk0
l� d3k12k01(2�)3 ::: d3kn2k0n(2�)3 (2�)4Æ4�P � nX1 ki�: (48)Here we have used again the spheri
al 
oordinates d3k
 = (k0
)2d 
os �d�.Even though we have obtained intuitively the same result as in the previous 
hapter,its quality is mu
h lower. In parti
ular the obtained formula would not be valid beyondthe soft photon limit.6 FACTORIZATION OF THEREAL SOFT PHOTONNow, having prepared the phase spa
e, we will turn our attention to the matrix element.In this 
hapter we will 
on
entrate on one of the 
lasses of diagrams, that is real brems-strahlung. We re
ommend that the reader should glan
e through any Born level 
al
ulation of any
ross se
tion from Feynman rules6 before re
al
ulating this 
hapter. We will show that in the soft6For instan
e your own notes from physi
s 
lasses or from the exer
ises to Prof. Bilenky le
tures.13



> '&$%����........XXXX������������ ?u(p) k, "a) In
oming ele
tron < '&$%����........XXXX������������ ?�v(p) k, "b) In
oming positronFigure 3: Feynman diagrams for photon emission in initial state respe
tively from ele
tronand positron. Dots represent all other �elds entering amplitude (initial or �nal). Notethat in 
ase of positron arrow points in opposite dire
tion, even though it is also initialstate parti
le.photon limit this matrix element 
an be represented as a produ
t of the lower-order ma-trix element times the soft photon fa
tor, whi
h turns out to be independent from theproperties of the parti
ular Born pro
ess under 
onsideration.6.1 Bremsstrahlung from the in
oming ele
tronLet us start with the amplitude where bremsstrahlung o

urs from the in
oming ele
tron.Using the Feynman rules 
olle
ted in se
tion 3, we �nd that the amplitude for our pro
ess(see Fig. 3) reads: M = ::: iSF (p� k)(�ie
�)u(p; s) "�= ::: 6p� 6k +m(p� k)2 �m2 + i�e 6"u(p; s): (49)In this formula "� denotes the photon polarization ve
tor. We 
an simplify formula (49)further as (p� k)2 = p2 � 2pk + k2 = m2 � 2pk, and getM = ::: 6p� 6k +m�2pk e 6"u(p; s): (50)Note that we have omitted the in�nitesimally small i� term, whi
h is important only forthe virtual 
orre
tions. At the next step we will negle
t 6k, be
ause it is small (in the softphoton limit) with respe
t to other terms in the numerator of the propagator; later, wewill 
ommute 6p and 6" using formula (9) and the Dira
 Equation (10):M = �e2pk ::: ( 6p+m) 6"u(p; s)= �e2pk ::: �2p"+ 6"(� 6p+m)�u(p; s)= �e2pk ::: (2p")u(p; s)= e�"ppk ::: u(p; s)= �e "ppkMB; (51)14



where, assuming that the Born level amplitude was only weakly dependent on the di�er-en
e between p and p� k, we have repla
ed :::u(p; s) by MB. We 
an write �nally:M = �e "ppkMB +O(k): (52)The phenomenologi
al 
onsequen
e of this last formula is important. We have obtainedthat the bremsstrahlung matrix element in the soft photon limit, 
an be represented as aprodu
t of the Born amplitude multiplied by the universal soft photon fa
tor (in
ludingthe ele
tri
 
harge).This result 
an be re�ned substantially. In parti
ular the terms we negle
ted, whi
h we write to beat most proportional to the photon energy, deserve mu
h more attention than given to them here!6.2 Bremsstrahlung from the in
oming positronThe 
al
ulation is in this 
ase nearly identi
al. The di�eren
e is that the fermion line hasthe opposite orientation and that instead of a u spinor and the Dira
 Equation we willhave a �v spinor and the Dira
 Equation in the form (12) (see also Fig. 3):M = �v(p; s)(�ie
�)iSF��(p� k)� ::: "�= �v(p; s)e 6" �( 6p� 6k) +m(p� k)2 �m2 + i� :::= e2pk �v(p; s) 6"�( 6p� 6k)�m� :::= e2pk �v(p; s)�2"p� ( 6p+m) 6"� :::= e "ppkv(p; s) :::= e "ppkMB: (53)Let us note that if the pro
ess we study is, for instan
e, from 
olliding e+e� beamswe 
an simply add the 
ontributions from the emission from ele
tron and positron, andobtain MR = (�e)� "p2p2k � "p1p1k�MB =MB � ~S"(p1; p2; k): (54)6.3 Bremsstrahlung from the outgoing ele
tron and positronWe suggest that the reader reprodu
e the 
al
ulation for this 
ase. If this turns out to betoo diÆ
ult, we re
ommend going ba
k to the previous two se
tions.6.4 Double bremsstrahlungLet us have a short look at the 
ase of double bremsstrahlung from the in
oming ele
tron.There are two diagrams (Fig. 4) that 
ontribute in this 
ase and, using the Feynman15



> '&$%����........XXXX������������ ?u(p) k1, "1������������k2, "2a) > '&$%����........XXXX������������ ?u(p) k2, "2������������k1, "1b)Figure 4: Feynman diagrams for double photon emission in the initial state from ele
tron.Dots represent all other �elds entering amplitude (initial or �nal).diagrams from se
tion 3, their 
ontributions 
an be written as follows:M1 = ::: iSF (p� k1 � k2)(�ie
�)iSF (p� k1)(�ie
�)u(p; s) "�2"�1M2 = ::: iSF (p� k1 � k2)(�ie
�)iSF (p� k2)(�ie
�)u(p; s) "�1"�2: (55)For the time being, we will 
on
entrate onM1. After a short manipulation we get, asin the previous 
ases:M1 = e2 �12k1p �12k1p + 2k2p� 2k1k2 ::: ( 6p� 6k1� 6k2 +m) 6"2( 6p� 6k1 +m) 6"1u(p; s)= e2 �12k1p �12k1p + 2k2p� 2k1k2 ::: ( 6p+m) 6"2( 6p+m) 6"1u(p; s): (56)Again we 
ommute 6"1 and 6p to obtain, with the help of the Dira
 Equation:M1 = e2 �12k1p �12k1p+ 2k2p� 2k1k2 ::: ( 6p+m) 6"2u(p; s) 2"1p: (57)After performing the same tri
k again for 6"2, we �nally obtain:M1 = e2 �12k1p �12k1p+ 2k2p� 2k1k2 ::: u(p; s) 2"1p 2"2p: (58)After some simple reorganization, and negle
ting the k1k2 term, whi
h is small withrespe
t to k1p+ k2p, we getM1 = e2�"1pk1p �"2pk1p+ k2p ::: u(p; s) = e�"1pk1p e �"2pk1p+ k2pMB: (59)SummingM1, M2 
ontributions we obtainM =M1 +M2 = �e�"1pk1p e �"2pk1p+ k2p + e�"2pk2p e �"1pk1p+ k2p�MB= �e�"1pk1p ��e�"2pk2p �MB: (60)Similarly, if there were to be photon emission from two di�erent fermion lines, wewould also get just the Born spin amplitude times the 
orresponding soft photon fa
tors(we re
ommend the reader to do this 
al
ulation):M = �e�"1p2k1p2 � "1p1k1p1���e�"2p2k2p2 � "2p1k2p1��MB: (61)16



In 
omplete analogy, one 
an obtain7 for l photons:M =MB lYi=1�e�"ip2kip2 � "ip1kip1��: (62)7 REAL PHOTON EXPONENTIn this step we will 
ombine our formula for the l soft photons matrix element (62) with the
orresponding phase spa
e dLipsn+l (47), thus obtaining the expression for the produ
tionof n parti
les a

ompanied by l soft photons (we will sum over their polarization states"); bremsstrahlung in the initial state:jMj2dLipsn+l(P )� S= 1l! � lYi=1�kidkid 
os �id�i 12(2�)3�dLipsn(P ! q1:::qn)� jMBj2 lYi=1�e2X"i �"ip2kip2 � "ip1kip1�2�= 1l! lYi=1�kidkid 
os �id�i 12(2�)3 X"i �e2�"ip2kip2 � "ip1kip1�2��� jMBj2dLipsn(P ! q1:::qn): (63)Due to our approximations, this expression is valid only for the soft photons of energies that are smallwith respe
t to any dynami
al s
ale in the pro
ess. It is possible to write it in a more elaborate way,in
luding all those omitted by us, in the phase spa
e, terms due to photons e�e
ts on four-momentum
onservation [6, 7, 8℄ (see also se
tion 10). Then, di�erential distributions 
an be 
orre
ted, order byorder in perturbation expansion, by appropriate repla
ement of soft photon fa
tors with bremsstrahlungmatrix element. Unfortunately, in this 
ase the formalism be
omes less friendly for intuition, and itrequires mu
h more time to be understood.Now we 
an obtain an exponent for the �rst time. If we sum the 
ross se
tions for the
on�gurations with 0, 1, 2, ..., photons we obtain:d�(p1; p2 ! q1; :::; qn; and photons)= 1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� 1Xl=0 1l! lYi=1�kidkid 
os �id�i 12(2�)3 X"i e2�"ip2kip2 � "ip1kip1�2�: (64)Finally, in short-hand notation:d�(p1; p2 ! q1; :::; qn; and photons) =7By mathemati
al indu
tion. Another point is here to re
all. Namelly if we divide phase spa
e intose
tions, wher for example kip1 << ki+1p1, then in su
h korners of phase-spa
e only one of diagrams likeM1 dominate. The fa
torization property would not require then to sum all diagrams. Su
h simpli�
ationis not ne
essary for QED, but is at the heart of design of many parton shower algorithms for QCD, it isknown there under name of pT ordering. Several variants are in use.17



>< '&$%����........XXXX?u(p2)�v(p1) ��������������������MVFigure 5: Feynman diagram for the vertex-like 
orre
tion in initial state in e+, e� 
ollision.Dots represent all �nal state �elds.1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� exp�kdkd 
os �d� 12(2�)3 X" e2� "p2kp2 � "p1kp1�2�: (65)It is an important and nearly 
omplete result of our presentation of ex
lusive expo-nentiation. Unfortunately we fa
e infrared 
atastrophe. As 
an be seen with the help ofexpli
it integration of the soft photon fa
tors over the phase spa
e (see below), our resultleads to an in�nitely large predi
tion for the total 
ross se
tion. It is unphysi
al. We willdis
uss how to resolve this later. Here, let us introdu
e the �
titious photon mass � and inthis way repla
e the kidki fa
tors of integration over the photon energy by better behavingin the soft limit term: k2i dki = qk2i + �2. This is 
alled a regularization pro
edure.We will use the same tri
k, in fa
t for the same purpose, in dis
ussing the virtual
orre
tions in the next 
hapters.8 FACTORIZATION OF THEVIRTUAL SOFT PHOTONNow, we will study the fa
torization of the virtual 
orre
tions. First, we will take avertex-type amplitude MV (see Fig. 5, see also e.g. [9℄) for e+e� s
attering. Using theFeynman rules de�ned in se
tion 3, it 
an be written as:MV = Z d4k(2�)4��i g��k2 + i���v(p1)(�ie
�)i �( 6p1+ 6k) +m(p1 + k)2 �m2 + i� ::: i ( 6p2+ 6k) +m(p2 + k)2 �m2 + i�(�ie
�)u(p2)= �i e2(2�)4 Z d4k 1k2 + i��v(p1)
��( 6p1+ 6k) +m2p1k + k2 + i� ::: ( 6p2+ 6k) +m2p2k + k2 + i�
�u(p2): (66)Sin
e we are interested, as in the real bremsstrahlung 
ase, only in the 
ontributionof the soft photons k� ' 0 region, we will negle
t the 6k terms in the numerators of thepropagators and assume that the remaining part of the diagram, noted by us as :::, doesnot depend on the virtual photon momentum as well.18



In this way we are free also of the ultraviolet in�nity, whi
h, depending on the parti
ular form of theBorn intera
tion, may also be present in our diagram.In the �rst step of our 
al
ulation, we will 
ommute 
� matri
es with 6 p1 and 6 p2;
� 6p1 = 2p�1� 6p1
�, 
� 6p2 = 2(p2)�� 6p2
� and later use Dira
 Equation (10,12):MV = �i e2(2�)4 Z d4k 1(k2 + i�) 1(2p1k + k2 + i�) 1(2p2k + k2 + i�)�v(p1)
�(� 6p1 +m) ::: ( 6p2 +m)
�u(p2)= �i e2(2�)4 Z d4k 1(k2 + i�) 1(2p1k + k2 + i�) 1(2p2k + k2 + i�)�v(p1)��2(p1)� + ( 6p1 +m)
�� ::: �2(p2)� + 
�(� 6p2 +m)�u(p2)= �i e2(2�)4 Z d4k 1(k2 + i�) 1(2p1k + k2 + i�) 1(2p2k + k2 + i�)�v(p1)(�2)p�1 ::: 2(p2)�u(p2)= �i e2(2�)4 Z d4k �4p1p2(k2 + i�)(2p1k + k2 + i�)(2p2k + k2 + i�) �v(p1) ::: u(p2)= i 2�(2�)3 Z d4k 4p1p2(k2 + i�)(2p1k + k2 + i�)(2p2k + k2 + i�)MB: (67)The important result of our 
al
ulation is that the 
ontribution from the soft photonsin our diagram 
an be 
ontained in a fa
tor B0, whi
h is independent of the Born levelamplitude M = MB � B0B0 = 2� Z d4k(k2 + i�) i(2�)3 4p1p2(2p1k + k2 + i�)(2p2k + k2 + i�) : (68)It is interesting for us, that the real part of our fun
tion B0 is in�nitely negative! We 
anregularize it, as in the real photon 
ase, using the photon mass � and repla
ing d4k(k2+i�) byd4k(k2��2+i�) .In Yennie{Fraut
hi{Suura theory [6℄, instead of our fun
tion B0 one introdu
es the gauge-invariantB = 2�< Z d4k(k2 + i�) i(2�)3� 2p1 � k2p1k + k2 + i� � 2p2 � k2p2k + k2 + i��2; (69)whi
h di�ers from our result only by terms non-leading in powers of k.It would be instru
tive to re
al
ulate our 
orre
tion in the 
ase of �nal-state brems-strahlung and interferen
e (additional photon line 
onne
ting 
harged lines from the initialand �nal states), we en
ourage the reader to repeat the 
al
ulation in these 
ases as well.9 VIRTUAL PHOTON EXPONENTIn the previous se
tion we have shown that the amplitude MV of �rst-order vertex-like 
orre
tion in the soft photon approximation equals MB � B0 (or B) (68). Here weshould sket
h how the soft photon exponent is forming. We think, however, that it is19



>< '&$%����........XXXX?u(p2)�v(p1) ����������������������������������������a) M0V2
>< '&$%����........XXXX?u(p2)�v(p1) ����������������������������������������������������b) M00V2Figure 6: Feynman diagrams for the vertex-like 
orre
tion in initial state in e+, e� 
olli-sion, se
ond order. Dots represent all �nal state �elds.too 
ompli
ated and not suÆ
iently explanatory to perform this dis
ussion. We will justquote the result: the se
ond-order vertex amplitude (see Fig. 6) MV2 reads:MV2 =MB � 12!B2; (70)and similarly for the n-th order MVn =MB � 1n!Bn: (71)Summing all these soft photon vertex-like 
orre
tions we again obtain an exponentMVexp =MB � 1Xn=0 1n!Bn =MB � exp(B): (72)As we have already mentioned in the previous se
tion, B is negative-in�nite if theregulator (photon mass �) goes to zero. This is quite the opposite to the e�e
t of the realsoft photon e�e
t des
ribed in the se
tion 6.There following te
hni
al points 
ompli
ate the pi
ture of how the virtual photon exponent forms. Wemust understand where 1n! 
omes from. Finally one may want to understand how ultraviolet subtra
tionsmix the soft photon stru
ture of the 
al
ulations. We refer the motivated reader to [6, 10℄.Let us point out that mixed, real-bremsstrahlung vertex-like amplitudes (see Fig. 7)lead to the following result in the soft photon limit:MV1R1 =MB � B � ~S"(p1; p2; k) (73)and, if we sum over all diagrams for j virtual photon lines and l real, we get (again in thesoft photon limit!) MVjRl =MB � 1j!Bj � lYm=1 ~S"m(p1; p2; km): (74)Again, as in the 
ase of higher-order vertex 
orre
tions, we omit proof or any otherdis
ussion on why this fa
torization holds. We address the determined reader to [6℄.
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>< '&$%����........XXXX?u(p2)�v(p1) ���������������������������������a) MV1R1 >< '&$%����........XXXX?u(p2)�v(p1) �������������������� �������������b) MV1R1Figure 7: Feynman diagrams for the mixed real-bremsstrahlung vertex-like 
orre
tion ininitial state in e+, e� 
ollision, se
ond order, emission from ele
tron (diagrams for emis-sion from positron are similar but dropped here). Dots represent all �nal state �elds.10 EXCLUSIVE EXPONENTIATION,ZEROTH ORDERIn some sense, this se
tion is the keystone of our le
tures. We will 
ombine here thevirtual photon exponent developed in se
tion 8 with the real photon exponent developedin se
tion 6. Now, we are �nally ready to obtain an ex
lusive exponentiation formula: Tothis end we substitute MB in formula (65) with MVexp of (72) obtaining:d�(p1; p2 ! q1; :::; qn; and photons) = 1jv1 � v2j 12p01 12p02 �jMB exp(B)j2dLipsn(p! q1:::qn) exp�kdkd 
os �d� �(2�)2 X" � "p2kp2 � "p1kp1�2�: (75)This expression would be badly de�ned (of the 0 � 1 type) if the photon mass � {regulator of the infrared singularity { was put to zero. Let us keep it thus non-zero for awhile.A dis
ussion on the physi
s is here in pla
e. If one noti
es that �nal states withadditional, extremely soft photons are indistinguishable, by any method, from the oneswhere they are absent, we 
an say that they are physi
ally identi
al and, as a prin
iple,do not request theory to bring meaningful answers to non-physi
al questions requiringseparation of these states. (The theory of 
oherent states is an appropriate framework in whi
h todis
uss this problem in a mathemati
ally exhaustive way). Let us assume that kmin is an energyof the photon, whi
h is well below any experimental a

essibility of our dete
tors. We 
andivide our photons into two groups, of energy larger and smaller than kmin; the latter wemay safely omit from our kinemati
al 
onsideration and integrate over their dire
tions8:d�(p1; p2 ! q1; :::; qn; and photons) =8We simplify again: we do not dis
uss the situation when the energy of every omitted from kinemati
al
onsiderations photon would happen to be smaller than kmin, but their sum signi�
antly larger. Thisobsta
le 
an be easily over
ome in exa
t treatment [8℄, vmin 
an be introdu
ed as a boundary set on thesum of energies of all photons with negle
ted kinemati
s.21



1jv1 � v2j 12p01 12p02 � jMBj2dLipsn(p! q1:::qn)� exp(2B)� exp�kdk�(kmin � k)d 
os �d� �(2�)2 X" � "p2kp2 � "p1kp1�2�� exp�kdk�(k � kmin)d 
os �d� �(2�)2 X" � "p2kp2 � "p1kp1�2�: (76)We 
an now de�neY = 2B + �kdk�(kmin � k)d 
os �d� �(2�)2 X" � "p2kp2 � "p1kp1�2�; (77)after standard (but not so short) 
al
ulation, we �nd, that in the �! 0 limit:Y = 
 ln 2kminp2p1p2 + ÆY FSÆY FS = 14
 + �� (�12 + �23 )
 = 2���ln 2p1p2m2e � 1�: (78)The exa
t form of ÆY FS is beyond the pedagogi
al level of our 
al
ulation, in the next step, we will keepit or drop it depending on the quality of the other terms. With this, we 
an write our �nal resultfor the zeroth order exponentiated ex
lusive 
ross se
tion:d�(p1; p2 ! q1; :::; qn; and photons) =1jv1 � v2j 12p01 12p02 � jMBj2dLipsn(p! q1:::qn)� exp(Y )exp�kdk�(k � kmin)d 
os �d� �(2�)2 X" � "p2kp2 � "p1kp1�2� (79)or in an expli
it way:d�(p1; p2 ! q1; :::; qn; and photons) =1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� exp(Y )1Xi=0 1l! iYl=1�kldkl�(kl � kmin)d 
os �ld�l �(2�)2 X"l �"lp2klp2 � "lp1klp1�2�: (80)Note that the de�
ien
ies in this formula are due to a negle
t of the phase-spa
e 
onstrainton the photon energies. Let us limit the integration over photon energy from above, byhand, by introdu
ing the maximum photon energy 
ut9 �(kmax � kl), kmax = 12p2p1p2.We get our exponentiation result:d�(p1; p2 ! q1; :::; qn; and photons) =1jv1 � v2j 12p01 12p02 � jMBj2dLipsn(p! q1:::qn)� exp(Y )1Xi=0 1l! iYl=1�kldkl�(kl � kmin)�(kmax � kl)d 
os �ld�l �(2�)2 X"l �"lp2klp2 � "lp1klp1�2�: (81)9We 
an get this limit, e.g. from the �rst-order 
al
ulation.22



Note that kinemati
al variables of every additional photon a

ompanying our q1; :::; qn�nal state is expli
itly in
luded and not integrated. The 
ross se
tion is fully di�erentialand therefore we 
all it ex
lusively exponentiated.11 EXCLUSIVE EXPONENTIATION ANDPERTURBATION EXPANSIONWe will start this se
tion with a long passage in smaller font-size, on the ex
lusive expo-nentiation formula, equivalent to our formula (81), but written for the t-
hannel pro
ess.We suggest to the reader that he drop this passage at �rst reading. In fa
t it is noteven 
onne
ted to the rest of our le
tures through the 
onventions of notations, but it
ontains a 
omplete presentation of the O(�) exponentiated 
ross se
tion (multi photonbremsstrahlung both in the initial and �nal state) for the pro
ess e+e� ! e+e� at smallangles. In fa
t it is 
hapter 2.1 of Ref. [11℄.Note, however, that there is a passage at the end of this se
tion that need not beomitted at �rst reading.11.1 Realisti
 exampleThe 
omplete master formula for the O(�1) exponentiated total 
ross se
tion for the pro
ess e+(p1) +e�(q1)! e+(p2)+ e�(q2) +n
(ki)+n0
(k0i0) as a
tually implemented in the BHLUMI 2.01 Monte Carloprogram is the same as in Ref. [14℄ and it reads as follows10:� = 1Xn=0 1Xn0=0 1n! 1n0! Z d3q2q02 d3p2p02 Æ(4)�p1 + q1 � p2 � q2 � nXi=1 ki � n0Xi0=1 k0i0�exp�Y (
1; p1; p2) + Y (
2; q1; q2)�Z nYi=1 d3kik0i ~S(p1; p2; ki)(1��(
1; ki)) Z n0Yj=1 d3k0jk00j ~S(q1; q2; k0j)(1��(
2; k0j))���(1)0 (Q; p1; p2; q1; q2) + nXi=1 ��(1)1 (Q; p1; p2; q1; q2; ki)= ~S(p1; p2; ki)+ n0Xj=1 ��(1)10 (Q; p1; p2; q1; q2; k0j)= ~S(q1; q2; k0j)� �MC(pi; qi; kl; k0m); (82)where ~S(p1; p2; k) = �(�=4�2)�(p1=kp1)� (p2=kp2)�2 is the real photon infra-red fa
tor andY (
; p1; p2) = 2� ~B(
; p1; p2) + 2�<B(p1; p2)= �2� 18�2 Z d3kk0 �(
; k)� p1kp1 � p2kp2�2+2�< Z d4kk2 i(2�)3� 2p1 � k2kp1 � k2 � 2p2 � k2kp2 � k2�2 (83)is the standard Yennie{Frauts
hi{Suura form fa
tor [6℄. It is infra-red-�nite and �(
; k) = 1 for k 2 
and 0 for k 62 
. The infra-red 
 region in
ludes the k = 0 infra-red point and its de�nition may impli
itly10Note that taking only n+n0 = 0; 1 and expanding the form fa
tor exp(Y (
1) + Y (
2)) one re
oversthe ordinary non-exponentiated O(�1) expression for the di�erential 
ross se
tions. For instan
e, de�ning
1;2 by k0 < "ps=2 in the laboratory frame one re
overs exa
tly Eq. (1) of Ref. [13℄.23



involve the dependen
e on the fermion four-momenta pi and qi [6℄. None of the physi
ally sensible resultsdepends on the 
hoi
e of 
! The 
 domain is typi
ally de�ned through the k0 < Emin 
ondition in a
ertain referen
e frame. (In fa
t, the program features two types of 
 but only one of them is in use,see later in this se
tion.) We shall de�ne 
1;2 and give the 
orresponding expli
it formula for the formfa
tors later, while des
ribing the Monte Carlo algorithm.The perturbative O(�) QED matrix element is lo
ated in the ��'s, whi
h are11��(1)0 (Q; p1; p2; q1; q2) = ��(0)0 (Q; p1; p2; q1; q2)(1 + 2Æ0 + Æ
 + ÆZ); (84)Æ0 = 2<F1(Q2)� 2<B(Q2) = 12�t; �t = 2�� �ln jQ2jm2e � 1� ; (85)��(0)0 (Q; p1; p2; q1; q2) = 2�r(t)2s (s2 + u2 + s21 + u21)4tptq ; (86)��(1)1 (Q; p1; p2; q1; q2; ki) = �r(t)22s �4�2 D(1)1 (Q; p1; p2; q1; q2; ki)� ~S(p1; p2; k) ��(0)0 (Q; p1; p2; q1; q2); (87)��(1)10 (Q; p1; p2; q1; q2; k0j) = �r(t)22s �4�2 D(1)10 (Q; p1; p2; q1; q2; k0j)� ~S(q1; q2; k0j) ��(0)0 (Q; p1; p2; q1; q2); (88)D(1)1 (Q; p1; p2; q1; q2; k) =1(kp1)(kp2)(s2 + u21jtq j �1� 2m2ejtqj kp1kp2�+ s21 + u2jtq j �1� 2m2ejtq j kp2kp1�); (89)D(1)10 (Q; p1; p2; q1; q2; k) =1(kq1)(kq2)(s2 + u21jtpj �1� 2m2ejtpj kq1kq2�+ s21 + u2jtpj �1� 2m2ejtpj kq2kq1�); (90)t = Q2 =  p2 + nXi=1 ki � p1!2 ; tp = �2p1p2; tq = �2q1q2;s = 2p1q1; s1 = 2p2q2; u = �2p1q2; u1 = �2q1p2:We implement va
uum polarization through the QED running 
oupling 
onstant �r(t) = �=j1+�(t)j atthe proper Q2 = t s
ale. This takes into a

ount the va
uum polarization 
orre
tion in the O(�2L2), aswas pointed out in Ref. [15℄. The 
orre
tion Æ
 = t=s is due to s-
hannel 
 ex
hange and the 
orre
tionÆZ represents here12 the interferen
e of the t-
hannel photon with the s-
hannel Z:ÆZ = �r(s)�r(t) � ts� 2s2s2 + (t+ s)2 �1 + ts�3 (v2 + a2) <� ss�M2 + is�=M�; (91)where a = �1=(4 sin �W 
os �W ); v = a(1� 4 sin2 �W ); M and � are the usual 
oupling 
onstants, massand width of Z. We use sin2 �W = 0:2306;M = 91:161 GeV and � = 2:534 GeV, and these values arealready pre
ise enough for the purpose of luminosity measurement. In the above two 
orre
tions we keepterms that are ne
essary for the pre
ision < 10�4 for angles # < 10Æ.The main di�eren
e in the above QED matrix element with respe
t to BHLUMI 1.xx is the negle
t ofup{down interferen
e. This 
ontribution was found in Ref. [13℄ to be very small in small-angle Bhabha's,for # < 6Æ it is generally below 0.02%. In any 
ase, for the purpose of the dis
ussion of the physi
alerror the OLDBIS sub-generator will provide the value of this 
ontribution for any 
ut or a

eptan
e.11Note that in the analogous formula in Ref. [14℄ the expression for ~�(1)1 was distorted and the fa
tor2 in front of Æ0 was omitted. The formula in the program was always 
orre
t, so this does not have any
onsequen
es for the numeri
al results in this paper.12For the present-day (1993) pre
ision, it is ne
essary to in
lude also QED 
orre
tions to ÆZ .24



Dropping up{down interferen
e allows us to 
onsider bremsstrahlung from upper e+ and lower e� fermionlines independently, and to simplify the multiphoton bremsstrahlung matrix element 
onsiderably. In thepro
ess of writing the O(�) multiphoton matrix element in the YFS exponentiation it is ne
essary toextend (extrapolate) the single bremsstrahlung matrix element beyond the three-body phase spa
e.13Instead of doing it by means of manipulating four-momenta arguments in the 
orresponding expressions,as in Refs. [8, 12℄ (the so-
alled redu
tion pro
edure), we rather extrapolate the single bremsstrahlungmatrix element expressed in terms of Mandelstam variables, see Eq. (82). This method gives almostthe same numeri
al result, while it leads to more 
ompa
t and expli
it expressions, whi
h are faster andnumeri
ally more stable in the 
omputer evaluation. It should be stressed, however, that reinstallingup{down interferen
e in the present program is possible and it would be rather straightforward { thebasi
 Monte Carlo algorithm is already prepared for this, see later in this se
tion. We did not do itbe
ause in the small-angle Bhabha we regard up{down interferen
e as an unne
essary 
ompli
ation!The fun
tion �MC(pi; qi; kj) = �(jtj � jtminj)�(jtmaxj � jtj) (92)de�nes phase spa
e for events generated in the Monte Carlo run. The user's own experimental trigger�exper: is imposed later by the usual reje
tion method, see se
tion 4.4 (of Ref. [11℄) for dis
ussion of thepra
ti
al 
hoi
e of tmin;max. Cross se
tions and distributions obtained with �exper: do not and shouldnot depend on the parti
ular values of tmin;max. Note also that transfer t has physi
al meaning onlyif up{down interferen
e is negle
ted and/or in the leading logarithm approximation. Otherwise it isan intermediate parameter in the Monte Carlo generation, being a 
ompli
ated fun
tion of the photonmomenta, dependent on details of the Monte Carlo generation algorithm.11.2 n-photon probabilityLet us now turn ba
k to our simple formula (81). It tells us that the pro
ess p1; p2 !q1; :::; qn, be
ause of the soft photon stru
ture of QED has to be 
al
ulated and dis
ussedsimultaneously with other pro
esses, where in addition to q1; :::; qn there is an unde�nednumber of soft photons, but of di�erential distribution, at the zero level of approximation,
ompletely independent from the parti
ular hard pro
ess under 
onsideration. In addition,this di�erential distribution 
an be improved order by order in perturbation expansion!Note that higher-order 
orre
tions will not introdu
e new kinemati
al 
on�gurations (i.e.more 
ompli
ated phase spa
e), but only improve distributions.We will 
al
ulate here, what the probability is of having n photons a

ompanyingour �nal state. In this way we will make the �rst step into the dire
tion of in
lusiveexponentiation. As we 
an see in (81), every photon distribution is independent from theother ones, it will thus be rather simple to integrate over its angles:Z Skkdkd 
os �d� = Z kmaxkmin kdk Z d 
os � Z d�� �(2�)2 X" � "p2kp2 � "p1kp1�2�: (93)In the 
entre-of-mass system, we havep�1 = E(1; 0; 0; �)p�2 = E(1; 0; 0;��)k� = k(1; sin � sin�; sin � 
os�; 
os �)13This extrapolation is inherent in any kind of exponentiation and due to the fa
t that infra-redsingularities were subtra
ted and summed up to in�nite order; see Refs. [6, 16℄ for more 
omments.25



"1 = (0; 
os�;� sin�; 0)"2 = (0; 
os � sin�; 
os � 
os�;� sin �)� = q1�m2e=E2 (94)and we �nd Z Skkdkd 
os �d� = �4�2 Z dkk 4 sin2 �(1� �2 
os2 �)2d 
os �d�= �4�2 � ln kmaxkmin � (ln 2p1p2m2e � 1)� 2�= ln p2p1p2kmin 2�� (ln 2p1p2m2e � 1)= 
 ln p2p1p2kmin ; (95)where we have used the de�nition of 
 in (78). We introdu
e this into (81) and obtaind�(p1; p2 ! q1; :::; qn; and photons) =1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� exp(Y ) 1Xl=0 1l!�
 ln p2p1p2kmin �l: (96)We 
an now negle
t ÆY FS in Y (it is not proportional to the logarithm of the photonenergy and is thus negligible in our approximation) and get Y ' 
 ln p2p1p2kmin . This leadsto a Poissonian distribution in the number of photons a

ompanying our �nal state, ofenergy bigger than kmin,Pn(kmin) = exp��
 ln p2p1p2kmin � 1n!�
 ln p2p1p2kmin �n1Xn=0Pn = 1: (97)As expe
ted, the average multipli
ity of the photons depends on kmin and tends logarith-mi
ally to in�nity with kmin ! 0.Finally let us point to di�erent games with the phase spa
e limits here. We wereignoring phase spa
e 
onstraints in 
al
ulation of Pn(kmin) and ea
h of the photon phasespa
e limits was left una�e
ted by the presen
e of the other ones. See �gures in draft ofnew Se
tion 1412 INCLUSIVE EXPONENTIATIONWith the help of formula (97) and P0, we 
an answer the question of what is the 
ross se
-tion for our pro
ess p1; p2 ! q1; :::; qn; and photonswhere the energy 
arried away by photons is not larger than vp2p1p2 = kmin (again we
ross the weak point of our pedagogi
al approximation by repla
ing the minimal energyof one photon kmin by the limit v on sum of the energies of all photons; we also introdu
eba
k our ÆY FS fa
tor). We obtain 26



d�(p1; p2 ! q1; :::; qn; and photons) =1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� exp(ÆY FS) exp��
 ln 1v�= 1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� exp(ÆY FS)v
: (98)It is now a question of simple di�erentiation to get the di�erential 
ross se
tion in the�nal state and the s
aled ele
tromagneti
 energy v:d�(p1; p2 ! q1; :::; qn; v)dv =1jv1 � v2j 12p01 12p02 jMBj2dLipsn(p! q1:::qn)� exp(ÆY FS) ddv�exp�
 ln v��= 1jv1 � v2j 12p01 12p02 � jMBj2dLipsn(p! q1:::qn)� exp(ÆY FS)
v
�1: (99)If we are interested in the total 
ross se
tion, we may integrate over dLipsn(p !q1:::qn). (We take not only the phase spa
e at a redu
ed 
entre-of-mass energy due to photons, but alsothe matrix element MB ; this 
an be understood by inspe
tion of the exa
t matrix element 
al
ulationpresented later in this se
tion or by the leading logarithm fa
torization of the next se
tion.) We get(s = 2p1p2): �totexp ' exp(ÆY FS) Z 10 dv
v
�1�totB �s(1� v)�: (100)In our 
al
ulation (mainly due to our having negle
ted the di�eren
e in the de�nition ofkmin and vmin) we have missed the normalization 
onstant. In fa
t our formula shouldread: �totexp = e�

�(1 + 
) exp(ÆY FS) Z 10 dv
v
�1�totB �s(1� v)�; (101)where 
 = 0:57721::: is the Euler 
onstant.The form of this result is very similar to the result of the 
omplete O(�) 
al
ulation(see e.g. [9℄), where we get�O(�)tot = Z 10 dv�(v)�totB �s(1� v)��O(�)(v) = Æ(v)�1 + 
 ln v0 + 34
 + �� (�12 + �23 )�+ �(v � v0)
 1v�1� v(1� 12v)�: (102)We will now rewrite �O(�)(v) in a form suitable for 
omparison with our exponentiatedformula (101)�O(�)(v) = Æ(v)�1 + 
 ln v0 + ÆY FS + ÆS�+�(v � v0)
 1v�1 + ÆH(v)�Æs = 12
ÆH(v) = �v�1� 12v�: (103)27



>< '&$%����........XXXX������������ ?u(p)�v(p2) k, "
a) Real bremsstrahlung: ele
tron >< '&$%����........XXXX������������ ?u(p)�v(p2) k, "b) Real bremsstrahlung: positronFigure 8: Feynman diagrams for photon emission in initial state respe
tively from ele
tronand positron. Case of e+e� 
ollision.Now we 
an realize that the O(�) expansion14 of the v spe
trum from formula (101)
oin
ides with this result, ex
ept in the ÆS and ÆH terms. It is useful to realize that ourfun
tion �O(�)(v) is right at �rst order, whereas the exponentiated spe
trum has some(at least v
 for small v) terms right for higher orders in �. We may interpolate betweenformulae (101) and (102) and get:�exp(�)tot = Z 10 dv�(v)�totB �s(1� v)��exp(�)(v) = e�

�(1 + 
)eÆY FS
v
�1�1 + ÆS + ÆH(v)�: (104)This re
ipe of in
lusive exponentiation is not the only one; there is generally a 
ertain freedom of
hoi
e as to how to obtain formula (101) and, related with it, an un
ontrollable un
ertainty of the result.First of all, integrating over soft photon phase spa
e we lost 
ontrol over the photons 
on�guration. Thiswould of 
ourse be 
ured up to the O(�) with the help of interpolation to the exa
t result 
al
ulatedat this order (even in
luding e�e
ts of 
uts). As one 
ould see, we were able to keep in ourreasoning the di�erential distribution over �nal-state phase spa
e dLipsn(p) to the end.This shows that it would be straightforward to extend our exponentiation pro
edure toother, less in
lusive observables, su
h as asymmetries et
. However, one should have inmind that the less in
lusive the observables the larger are un
ontrolled un
ertainties.As a �nal remark let us point out that a 
onsisten
y 
he
k of any in
lusive exponen-tiation formula is an expansion to �xed order and a 
omparison with the exa
t analyti
alresult 
al
ulated at this order (or leading-log terms to �xed order with the leading-logresults).13 FACTORISATION OF THELEADING LOG KERNELAs one 
ould see from our previous dis
ussion on exponentiation, the typi
al size of
oeÆ
ient enhan
ing the size of radiative 
orre
tion was 
 ' �� ln 2p1p2m2e . The origin of thislogarithm (see the 
al
ulation in formula (95)) is an integration over an angle � between14Before the expansion, we have to introdu
e v0 into (99); to this end we integrate this spe
trum upto v0 and multiply the result by Æ(v). 28



a fermion and a photon dire
tions 15. In the following, we will try to extra
t su
h leadingterms from the diagrams of Figs. 8 and 5.13.1 Real bremsstrahlungTo begin with, we will take the 
ontribution of the photon emission from the ele
tron(Fig. 8a) only. Here, 
ontrary to the soft photon fa
tor 
al
ulation, we will start from the
al
ulation of PsP"MMy and, from the beginning, we will assume that m is negligiblysmall with respe
t to p1 � p2. In the following we will omit the subs
ript 1 in p1. Fromthe Feynman rules of se
tion 3 (see also formula (49)) we getXs X" MMy =Xs X" ::: 6p� 6k +m(p� k)2 �m2 e 6"u(p; s)�u(p; s) 6"�e 6p� 6k +m(p� k)2 �m2 ::: (105)Negle
ting the ele
tron mass terms and using the proje
tion operators (15), we obtain:Xs X" MMy = e24(kp)2 12mX" ::: ( 6p� 6k) 6" 6p 6"�( 6p� 6k) ::: (106)and later, if we 
hoose " to be real,Xs X" MMy =e24(kp)2 12mX" ::: ( 6p� 6k)�2"p 6"� 6p 6" 6"�( 6p� 6k) :::= e24(kp)2 12mX" ::: �( 6p� 6k)2"p 6"( 6p� 6k) + ( 6p� 6k) 6p( 6p� 6k)� :::= e24(kp)2 12mX" ::: �2"p( 6p� 6k) 6"( 6p� 6k) + ( 6p� 6k) 6p( 6p� 6k)� :::= e24(kp)2 12mX" ::: �(2"p)2( 6p� 6k)� 2"p 6"( 6p� 6k)(6p� 6k)+ 6k 6p 6k� :::= e24(kp)2 12mX" ::: �(2"p)2( 6p� 6k) + 4"p pk 6"+ 2kp 6k� ::: (107)We will now estimate whi
h of these terms may bring 
ontributions of the logarith-mi
 type. For this purpose we will use a parametrization of the phase spa
e (46). For
onvenien
e we introdu
e the following short-hand notation:
� = 
os �; s� = sin �;
� = 
os�; s� = sin�: (108)15I will omit here another 
lass of leading-logarithm 
orre
tions due to photon va
uum polarization
orre
tion or, in other words, due to the evolution of the ele
tromagneti
 
oupling 
onstant from theme energy s
ale to p2p1p2. Note that, for the in
lusive quantities su
h as total 
ross se
tions and QED
orre
tions in the �nal state, the 
orre
tions we will dis
uss here 
an
el out 
ompletely. This 
an
ellation,whi
h is also present in QCD, enables 
on
ept of the stru
ture-fun
tion Evolution Equations.29



In parametrizing the phase spa
e, we will repla
e k by the dimensionless variable x. Nowwe 
an write p = E(1; 0; 0; �)� = s1� m2eE2k = Ex(1; s�s�; s�
�; 
�)"1 = (0; 
�;�s�; 0)"2 = (0; 
�s�; 
�
�;�s�): (109)With this notation we �nd, again negle
ting mass terms wherever possible:kp = E2x(1� �
�)"1p = 0"2p = Es�: (110)By inspe
ting formula (107), we may noti
e that the term "2p pk � s�(1 � �
�) andthus over
omes the 1(1��
�)2 singularity in the denominators of the fermion propagators(kp)2, and that it does not 
ontribute to the logarithmi
 term, so that we may drop it.We realize that, to the logarithmi
 (
) terms 
ontribute only those 
on�gurations wherethe dire
tions of k and p nearly 
oin
ide, at our approximation level; we will thus write6k = x 6p. We getXs X" MMyjLL= X" e24(kp)2 12m :::�(2"p)2(1� x) 6p+ 2kp x 6p� :::= X" e24(kp)2 12m�(2"p)2(1� x) + 2kp x� 11� x ::: 6p(1� x) :::= X" 11� x e24(kp)2�(2"p)2(1� x) + 2kp x� Xs MB(p� k)MyB(p� k):(111)Our result tells us that the part of bremsstrahlung matrix element that leads to theleading logarithms 
an be written as a produ
t of the Born amplitude squared, within
oming fermion momentum p� k times a universal fun
tion 11�xF :F (E; x; �) =X" e24(kp)2�(2"p)2(1� x) + 2kp x�: (112)We will now rewrite F in x, � and �, introdu
e our matrix element squared into phasespa
e (46), and integrate over angles.F (E; x; �; �) = e24E4x2(1� �
�)2�4(1� x)E2s2� + 4(1� �
�)x2E2�= e2E2x2(1� �
�)2�(1� x)s2� + (1� 
�)x2�: (113)30



Let us now write the 
omplete formula for the 
ross se
tion:d� = 1jv1 � v2j 12p01 12p02 Xs X" MMy�kdkd
�d� 12(2�)3�� dLipsn(p1 � k; p2 ! q1:::qn):(114)Substituting our expression for the matrix element squared (111), we getd� = 1jv1 � v2j 12p01 12p02 11� xXs MB(p� k)MyB(p� k)e2E2x2(1� �
�)2�(1� x)s2� + (1� 
�)x2��kdkd
�d� 12(2�)3�� dLipsn(p1 � k; p2 ! q1:::qn) (115)or using relations p01(1� x) = p01 � k0:d� = 1jv1 � v2j 12(p01 � k0) 12p02 Xs MB(p� k)MyB(p� k)� dLipsn(p1 � k; p2 ! q1:::qn)e2E2x2(1� �
�)2�(1� x)s2� + (1� 
�)x2��kdkd
�d� 12(2�)3�= d�born(p1 � k; p2 ! q1:::qn)xdxd
�d� 12(2�)3 e2x2(1� �
�)2�(1� x)s2� + (1� 
�)x2�: (116)After integration over � and �, and negle
ting the non-logarithmi
 
omponents of inte-gration over d
�, this leads tod� = d�born(p1 � k; p2 ! q1:::qn)e22(2�)2 dxx 1(1� �
�)2�(1� x)(1� 
�)(1 + 
�) + (1� 
�)x2�d
�' d�B(p1 � k; p2 ! q1:::qn) � e22(2�)2 dxx �(1� x)2 ln E2m2e + x2 ln E2m2e�= d�B(p1 � k; p2 ! q1:::qn) � e22(2�)2 dxx �(1� x)2 + x2� ln E2m2e= d�B(p1 � k; p2 ! q1:::qn) � dxx 12�1 + (1� x)2��� ln E2m2e : (117)This is the basi
 formula of the leading logs. We see that we 
an des
ribe the emissionof the photons from the ele
tron in the initial state as a 
onvolution of the well-de�nedkernel 1 + (1� x)2 with the Born level 
ross se
tion, where instead of �rst beam, we takee�e
tively its four-momentum redu
ed by the fra
tion x 
arried away by the photon. The
ase of the initial-state positron is identi
al, owing to the negle
t of the mass terms in ourapproximations.It is a matter of exer
ise to 
onvin
e oneself that the interferen
e between the amplitudes of Figs. 8aand 8b does not give any terms proportional to lnE2=m2e.13.2 In
lusion of virtual 
orre
tionsIn prin
iple we 
ould repeat here a 
al
ulation similar to that in se
tion 7 for the vertex
orre
tion amplitude of Fig. 5, but this time in the leading-log approximation. I do not31



think however that it is suÆ
iently instru
tive to justify its presentation here. I leave itas an exer
ise for the very dedi
ated reader. Let us only mention that in this 
al
ulation thereare two regions in d4k integration over virtual photon four-momentum. They 
orrespondrespe
tively to the photon dire
tion 
lose to p1 and p2. We 
an separate (in leading logs)the vertex 
orre
tion into two parts. We get (see also formula (102) from whi
h we takevirtual and soft 
orre
tion as \half" of the 
omplete O(�) result) the 
omplete result,in
luding virtual 
orre
tions:d�(p1; p2 ! q1:::qn; x) = d�born(p1 � k; p2 ! q1:::qn) � dxf(x)f(x) = Æ(x) + P (x)P (x) = Æ(x)��� ln E2m2e lnx0 + 34 �� ln E2m2e�+ �(x� x0)�� ln E2m2e 1x 12�1 + (1� x)2)�: (118)The result we obtain for the photon emission from the positron is identi
al. It is interestingto note that R 10 f(x)dx = 1. This is a 
onsequen
e of the Kinoshita{Lee{Nauenbergtheorem [17℄.13.3 ITERATION: LL TO ALL ORDERSTerms whi
h produ
e leading logarithms in QED fa
torize also in higher orders. One 
an �nd that,f1(x) = Æ(x) + P (x) + 12!nP 
 Po(x) + + 13!nP 
 P 
 Po(x) + :::;nP 
 Po(x) = Z 10 dx1 Z 10 dx2Æ(x1 + x2 � x1x2 � x)P (x1)P (x2): (119)We omit here the dis
ussion of how to obtain this result. We would like to mention that it turns out notto be so easy to improve this pi
ture order by order in perturbation theory. The pra
ti
al appli
ationsare limited to the next-to-leading-log approximation.14 EXPONENTIATION AND LANGUAGEOF TAN-GENT SPACES
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Figure 9: Symboli
 presentation of manifolds:1) for n-body phase spa
e (red point)2) for n-body plus extra parti
le (green lines)3) for n-body plus two extra parti
les (hemisphere)

Figure 10: Symboli
 presentation of manifolds:1) for n-body phase spa
e (red point)2) for n-body plus extra parti
le (green lines)3) for n-body plus two extra parti
les (hemisphere)plus tangent spa
e at intfrared point 33



Figure 11: Symboli
 presentation of manifolds:1) for n-body phase spa
e (red point)2) for n-body plus extra parti
le (green lines)3) for n-body plus two extra parti
les (hemisphere)plus tangent spa
e for se
ond extra parti
le15 SUMMARY,INVITATION TO FURTHER READINGAs 
an be seen from Fig. 21, these le
tures are divided into four parts. The �rst onein
ludes the introdu
tion, gives the motivation for the subje
t, et
, and it is not ne
essaryto understand the rest of the le
tures. The main goal of these le
tures was to presentthose aspe
ts of radiative 
orre
tions that are of dire
t phenomenologi
al 
onsequen
e forthe high energy experiments, with spe
ial emphasis on e�e
ts that be
ause of the 
uts
annot be separated from data analysis. This leads to our dis
ussion of exponentiationand leading-logarithms approximation. The infrared stru
ture of QED was presented.In parti
ular we have visualized that to obtain physi
ally meaningful results one has toperform summation over �nal states with a di�erent number (zero to in�nity) of additionaloutgoing real photons.We have 
ompletely negle
ted those parts of radiative 
orre
tion dis
ussions (su
has: regularization, renormalization, renormalization group equation, running 
oupling
onstant, et
.), whi
h are usually presented in detail in any �eld theory textbooks. Ourle
tures are 
omplementary in this respe
t to Prof. Bilenky's le
tures.We pre
ede our dis
ussion by a detailed presentation of notations (this usually isan appendix in �eld theory le
tures) and of phase-spa
e parametrization. This latteris espe
ially important as we want to stress that all our te
hniques are well rooted inthe Relativisti
 Quantum Me
hani
s and perturbation expansion of QED and, as su
h,34



Figure 12: Symboli
 presentation of manifolds:1) for n-body phase spa
e (red point)2) for n-body plus extra parti
le (green lines)3) for n-body plus two extra parti
les (hemisphere)alternatively tangent spa
e is for �rst extra parti
leprovide a well-de�ned method of dis
ussing un
ertainties 
oming with the results.Finally, we have de
ided to skip the examples se
tion. An ex
ellent sour
e of appli-
ation examples, based on LEP I physi
s 
an be taken in Ref. [18℄. We re
ommend thereader to s
an through the Pro
eedings of \Physi
s at ..." workshop of the experimentsof her/his interest.In notes su
h as these, 
orre
tness and 
onsisten
y of all formulas is very importantfor the readers. If misprints are to be dete
ted later on, a posts
ript �le ZAKOPANE PSA1 (to be taken) of updated notes will be stored on the WASM disk at CERNVM. If youdete
t the misprints yourself, please send a message to WASM at CERNVM.ACKNOWLEDGEMENTSI should like to thank the organizers for the invitation to the 1993 European S
hoolof Physi
s. I gratefully a
knowledge the help of S. Jada
h and E. Ri
hter-W�as in prepar-ing the manus
ript. Work supported in part by the Polish Government grants KBN-203809101 and KBN-223729102. Finally I would like to thank students and postdo
s atUnivesity Louvain who helped me to �x some mispints in a
ademi
 year 2003/2004.Referen
es[1℄ F. Dydak et al., `Ele
troweak radiative 
orre
tions at LEP energies', CERN 87-0835



Figure 13: Symboli
 presentation of manifolds:1) for n-body phase spa
e (red point)2) for n-body plus extra parti
le (green lines)3) for n-body plus two extra parti
les (hemisphere)after two steps tangent spa
e 
oin
ide with the manifolds for n- (n+1)- and (n+2)-phase-spa
es
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Figure 14: Symboli
 presentation of manifolds:1) for n-body phase spa
e (red point)2) for n-body plus extra parti
le (green lines)3) for n-body plus two extra parti
les (hemisphere)Regulators are needed to make this pi
ture realizable. Minimum eneriges (or sometrhingintrodu
ed)
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Figure 15: Symboli
 presentation of manifolds:1) for n-body phase spa
e (red point)2) for n-body plus extra parti
le (green lines)3) for n-body plus two extra parti
les (hemisphere)Do not get atta
hed to sphere, equally well it 
an be rotated gaussian and tangent spa
es
an be deformed as well. This 
an be useful, 
ase of ISR exponentiation for example.From prin
iple point of view it is just question of measure rede�nition. In one system wehave hemi-sphere in another it looks like a bell. But in reality it is the same. Also notethat these plots are in at least 8 dimensions ...
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Figure 16: Symboli
 presentation of manifolds:1) for n-body phase spa
e (red point)2) for n-body plus extra parti
le (green lines)3) for n-body plus two extra parti
les (hemisphere)Tangent spa
e is 
at, lines along whi
h dominant 
ontribution di�er, but nonethelessrepla
ing main manifold with square 
an give a pi
ture where formula 99 
ould be 
al
u-lated. By looking at di�eren
es in shapes even size of the domninant missing term 
ouldbe obtained.
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Figure 17: Symboli
 presentation of manifolds:1) for n-body phase spa
e (red point)2) for n-body plus extra parti
le (green lines)3) for n-body plus two extra parti
les (hemisphere)Tangent spa
e is 
ylindri
, one of the lines along whi
h dominant 
ontribution di�erbetween tangent spa
e and prin
ipal manifold, Repla
ing main manifold with square 
angive a pi
ture where formula 99 
ould be improved, but only slightly better.
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Figure 18: Symboli
 presentation of manifolds:1) for n-body phase spa
e (red point)2) for n-body plus extra parti
le (green lines)3) for n-body plus two extra parti
les (hemisphere)Tangent spa
e is interse
tion of two 
ylinders now, both lines along whi
h dominant 
on-tribution forms 
oin
ide in tangent spa
e and prin
ipal manifold, Repla
ing main manifoldwith that �gure 
an give a pi
ture where formula 99 
an be repla
ed by the one with 
om-plete LL 
ontent. Pri
e paid is dis
ontinuity in tangent spa
e, extra bene�t is that tangentspa
e 
an be understood as sum of two identi
al pie
es. That is prin
iple of both pT -likeorderings and also exponentiation with �1 terms in
luded only.
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Figure 19: Symboli
 presentation of manifolds:1) for n-body phase spa
e (red point)2) for n-body plus extra parti
le (green lines)3) for n-body plus two extra parti
les (hemisphere)Tangent spa
e is interse
tion of two 
ylinders now, both lines along whi
h dominant 
on-tribution forms 
oin
ide in tangent spa
e and prin
ipal manifold, Repla
ing main manifoldwith that �gure 
an give a pi
ture where formula 99 
an be repla
ed by the one with 
om-plete LL 
ontent. Pri
e paid is dis
ontinuity in tangent spa
e, extra bene�t is that tangentspa
e 
an be understood as sum of two identi
al pie
es. That is prin
iple of both pT -likeorderings and also exponentiation with �1 terms in
luded only. The thin green lines ofprevious plot 
an easily be understood as broad zone, if we think the size of manifold ele-ments not in a language of phase-spa
e volume, but rather in
lude matrix element as well.

42



Figure 20: Symboli
 presentation of manifolds:1) for n-body phase spa
e (red point)2) for n-body plus extra parti
le (green lines)3) for n-body plus two extra parti
les (hemisphere)Tangent spa
e is interse
tion of two 
ylinders now, both lines along whi
h dominant 
on-tribution forms 
oin
ide in tangent spa
e and prin
ipal manifold, Repla
ing main manifoldwith that �gure 
an give a pi
ture where formula 99 
an be repla
ed by the one with 
om-plete LL 
ontent. Pri
e paid is dis
ontinuity in tangent spa
e, extra bene�t is that tangentspa
e 
an be understood as sum of two identi
al pie
es. That is prin
iple of both pT -likeorderings and also exponentiation with �1 terms in
luded only. The thin green lines ofprevious plot 
an easily be understood as broad zone, if we think the size of manifold el-ements not in a language of phase-spa
e volume, but rather in
lude matrix element aswell. In 
ontrary to what is done in �g 19 we expli
itely 
ut out thoze zones of phasespa
es where 
an
ellations are expli
itely performed. But physi
swise present �gure and�gs 18,19 represent exa
tly the same physi
al 
on�guration. In 
ase of perturbative part ofQCD predi
tions they 
an not be thinner than what is in
orporated into non-perturbativezone of 
ondensates hadronization, stru
ture fun
tion.
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