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Outline

+ pQCD
»  QCD Lagrangian, parton model.
»  Renormalization, asymptotic freedom
»  Parton distribution functions
»  Event shapes in et+e- cross sections, IR and collinear divergences, KLN theorem.
»  Drell-Yan: NLO calculation, factorization.

» IR analysis: pinch surfaces, Landau equations

+ Resummation
»  Basics of resummation. Eikonal approximation, webs.
»  Resummation, dQCD and SCET approach

»  Some applications: Heavy quark production, Higgs production, at finite order and resummation



Probing the proton

/
+ Inthe late sixties, early seventies, deep-inelastic scattering experiments (SLAC-MIT) were dO}/ k
+ Relation of cross section to “inelastic form factors” of proton F1, F2, F3: k—> x
d20 \7 8ra®ME (1+(1 -y, ., ., P, M—> kLLL;<’: W
(dazdy) e { e )
HL = 9)[F (2,Q7) — 227 (2,Q7)] — 5y (2, Q%) ) s
2F momentum fraction

of struck quark
+ Qutcome: F2 can depend on x and Q2, but seemed to only depend on x

y=(1-E’/E) is
r 6 0 18 fractional energy
08 r e zet loss of electron

» “Scaling’

of bpeere oy

UW: I

0! b x 025

G’ GeVi¢?



Parton model

Feynman, Paschos

+  Solution: the Parton model

+ Wonderfully elegant idea, still at the basis of our

predictions for the LHC. ,\QQ

+ The scene: an electron at high energy hitting a proton <_Ql
(sitting inside a fixed target, or approaching from
colliding beam). lQ

+ From the electron point of view, two relativistic effects ( ,//\
occur P, . { =
»  The proton is length contracted, looks like a disk Py

»  The internal proton dynamics is slowed down, due to
time dilation

»  Assume interactions beween constituent “partons” are
absent (rather wild assumption at the time)

+ Introduce now the parton distribution function @if(¢), (ddz )7 — 8”0‘22]\? s 92)2 ! SEG 50, (@)
and integrate over all allowed momentum fractions & "7 (@) i

+ This explains the scaling.



Deep-inelastic scattering

But in better measurements: no scaling anymore
» “violation” mild: logarithmic

Notice: steeper slopes for smaller x

Data are large x earlier cannot reach high Q?

» QCD can explain all this

Data take in 90’s and early naughties at fixed
target experiments, and at the HERA ep collider
in DESY, Hamburg
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Universality of parton model, and paradox

+ |deas generalizes to hadron-hadron scattering.

»  Brings predictive power, if the PDF’s are the O - —E <0
same all processes .

v This is an assumption in the parton model
Ol = 4

+ In QCD this can be proven. Such proofs, though Y

formal, are important' Catani, de Florian, Rodrigo; Forshaw, é

Seymour, Siodmok, ..
»  They don’t work for every case : ‘:QO O -
0—

+ The succes of the parton model presented a

great paradox however ’

How can quark be both strongly bound into hadrons, and act as free “partons”
inideep-inelasticscattering??



Towards a solution of the paradox

0.5 ¢
+ To solve this paradox, the coupling would have to - g
behave like this 5 o
0.4 -\ e
» Atlow Q coupling is strong s
Ne 5 %
A " A £ el (o) o —~
» For increasing Q, the coupling 0.3 e i e
B o + o \CD/
decreases SEnEie R e e
+ But: how does a coupling become Q dependent Dizes ' et
in the first place. In the Lagrangian it is just a : e >
number “g”? B ""::::~|~5.I.::;;:::. :.'..::::::::.:.: ........
el [
+ For this we need to consider the effect of - el R
renormalization. f | |
O | ! ! ! [ ! ! ! | [
1 10 100



Loops and regularization

In fact, quantum effects do lead to a scale-dependent coupling, through renormalization.

Computing any Green function at higher orders in a coupling leads to loops.

Some loop integrals are divergent, and need to be regularized before being able to “handle” them

1 4 0 3 o0
[an RS s
12 — m?][(I +p)? — m?] (1%)? 4 l

One can put a cut-off on the | integral, but everyone uses dimensional regularization: 4— 4-2¢

) [1+2¢ e Ve

Very elegant. So loop integral results are would-be divergent. How to get rid of this? Renormalize



Renormalization

+ We focus on the key point. Write in this case
e=Z. (é eR(u)> er (1)

1l
Z = 1+ () (415 + 1) + O(eh)

+ S0 beside the loop integrals, there is now a second source of 1/¢: the renormalization of the coupling e in
the tree-level graph.

»  Choose now the number z''! such that the 1/ from the loops is cancelled.
»  You might say | could cancel any 1/¢ divergence in that way

»  BUT: the magic of renormalizable theories is that fixing z"" in this way, will fix this type of 1/¢ divergence in any
other one-loop diagram in this theory.

» | can renormalize a finite number of quantities: couplings, fields and masses. | can fix the Z-factors in a few
calculations, but they must then work also in all other situations.

+ Observe that on the right hand side a scale y appears, in both Z-factor and renormalized coupling er. The
product does not depend on it. This is the renormalization scale. Sketchwise:

(1—1—6%11&(%) +<9(e;§)) X <1+e§gln(%) +O(e§é)> = 1+6%1n(%) + O(eR)

9



Beta-function

A very useful reminder when using dimensional regularization: é ( % ) e [5 5 < g )

8 -
A £
(1+51n(§>) s—Hn(Q

In analogy to er, now for as = g4/4m ~
Q35 Za (éaQS,ROi)) as,R(N)

as r(1) 11CA—2nf1+C L O®2 )
c o s,R

M | =

Lo =1+

We derive from this A 3
d = d 1 o _6(048,1%(:“)
M@ In Oés,R(:“) 553 _M@ 2%, (gac“s,R(M)> 7 as,R(M)

The QCD beta function is known to 4th order, with the Sth order being computed. Keeping only the

first term gives the differential equation

d aZ(p) (11C4 — 2ny Crres

»  Observe already that an increase in i leads to decrease in a. But for higher u the decrease decreases..

»  Solution e 47/ Bo




(QCD and asymptotic freedom

The QCD couplings is asymptotically free in the

UV, and very strong in the IR 05—
Crucial was the minus sign in front of . o(Q) o
N
. . . 0.4 B\ B 5 :
» higher order terms in 3 do not spoil e
this 2T et =
05 N D e e e
In the 70’s lots of theories were examined, but T e s O
only this strange non-abelian gauge theory N e
yielded a negative beta-function e ' |2 3 e
Nobelprize 2004: Gross, Wilczek, Politzer | el L
el = R
[ ——— %(M)=0.118+0.003
0 I | TR S W | \

1 10




(QCD Feynman Rules (not all)

Oé,i ﬁa]

1, a

ka? My kb’ v, b

+ Rules involves Lorentz

=B e (vector, spinor) and SU(3)
{2l pe s (fundamental, adjoint)
parts

)4

Not directly linked

Omitted 4-gluon vertex,
and ghost rules

=
N
DO
3 | =
b g
T
(@)
'QM%
PN N
23
o
8
N
=
|
al
N
N——"
=)
ESER NS
\U)
=
SN
v

1(27'(')454(p1 7 Q)(_g>[Ta]2] (/V,u)ozﬁ
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(QCD and UV divergences

When computing loop integrals, and UV divergences result from them, not all of them can be cancelled by
renormalization of just the QCD coupling

= (é,aS,R(MO as k(1)

CVS,R<,LL> (110A e an 1

Lo =1+ 77 3 »y ‘|_ C@) 5 O(@i’pb)

In fact, in general, all the fields, couplings and parameters get their Z-factors.
e s e e e e e el e e
o e Tt o A (U e o DY

As a consequence

,C%,C—I—AE ALZ—(Z¢—1)@E$w—m(ZmZ¢—1)1Ew

+ 9(Zy Zy Zi)? — 1) WEPpyPtath + . ..

From one-loop calculations = L [N Gal®) $25 - 30x(0) (13 - 337)] + O(),
e 9 Lo [Nfcz(R e s BRO
Zy—14% AT+ 0(g"),

8

3 1
P g“ E GHR A= @i

2l : 11
z,=1- L2 2 [N Go(B) 428 - 220,(G)] + 0%,

G e

25 cum 8 - 10w 1195

13



4

Renormalizability of QCD

In fact, with these Z-factors, every UV divergence in any one-loop QCD amplitude is cancelled.
But if it goes wrong at higher orders, all is for naught..

This was a key worry in the early 70’s. Renormalizability of QED was known, and of numerous scalar,
Yukawa and other field theories. Non-abelian gauge seemed too hard.

This was the problem that Gerard 't Hooft tackled as a PhD student, together with his advisor Martinus
Veltman

The solution was presented by 't Hooft at a EPS meeting in Amsterdam in 1971, leaving most participants
stunned. He and Veltman proved that no new Z-factors are needed to any order. One just needs to
determine the same set of Z-factors to higher order.

They used clever diagrammatic techniques. More modern is the use of BRST symmetry, but the proof was
there.

»  Only then was QCD, and in fact the Standard Model, taken more seriously, since it now was a legitimate theory.

Our problem will be mostly other types of divergences.

14



Blackboard: RG resummation



(QCD in practice, simplified
- Ouwpu

MassSes

PDF’s

Cross sections

s

Distributions

\ Events

CKM

16



How to use QCD in practice, less simplified

Global NLO DIS
Analysis theory

e+e- data
\ NLO PDF's
NLO e+e- )( NLO as >
theory
NLO LHC
calculation

Data more precise than theory \

DIS data

1174



LO and higher order amplitudes

/ e
LO 5(0) Calculate all this
et in D=4-2¢ dimensions
q
(GO0 ’b\{
NLO o W >W< /m<

I Ioop | extra parton

o i s

| S e R S

2 loop | loop + 2 extra partons
| extra parton

18



General structure of LO, NLO... cross sections

—

dapp—)X

dgp il d?)pn

oo dxldx2¢a/p xla:uF)¢b/p(x2muF)
a,b

A2
><<7a,b(pa+pb %PX,OAS(/LR) MR,MF +C’)

A | h

Renormalization and Factorization scale

For NNLO, add “N” in front of every occurrence of “NLO”..

19



KLN, Drell-Yan and its lessons

Drell-Yan
process




Parton distribution functons

Before concentrating on the computing the partonic cross sections, let us discuss the PDF’s. In the parton
model they only depend on the momentum fraction. But we had seen that structure function depend
logarithmically on Q, so we expect that PDF’s might also. Indeed that is the case, as we’'ll see. How does one

determine them?

Crucial at hadron colliders, must be known very accurately. But they cannot be computed from first principles.

Answer: use their universality, as follows.
»  We need to determine 11 PDF (5 quarks + antiquarks + gluon), and their uncertainties

»  Choose with care a set of measurements/observables [e.g. DIS structure functions, or hadron collider cross
sections] Each is described as a PDF ® partonic cross sections. We then have the set of equations

(O, £ AO,)P = zfj e G e B

»  From the comparison one fits the @yr(X,u). e

v Various groups, employing slightly different approaches
MSTW, CTEQ, NNPDF, GJR, HERAPDF, ABKM...

»  If the partonic calculation is LO, NLO, NNLO etc, then the PDF thus fitted are also labelled LO, NLO etc.
v NLO PDF’s must be used with NLO calculations. NNLO also ok, LO not

2



Aside: PDF’s as operator matrix elements

+ Although they cannot yet be fully computed from first principles, one can give a precise definition of
PDF’s, in terms of operators. Essentially, these are counting operators (cf ata in QM)

1 o P T L e s - -
Pa/p(&) = 7= / dy~e 7Y (p|g(0,y~,0r)y" 4(0,0,07)|p) b
2 t t V2
Rroton state Sauark field p-q= _p-|-q— XK p—q+ 1 p1qL 4 Pago
» In a certain gauge. The non-perturbative part sits in the hadronic state in which this counting operator is
Inserted.

»  Benefit: once you have an operator, one can compute its renormalization, and derive an RG equation for it (just
like for the coupling constant). This is in fact the DGLAP equation

v There are other ways of deriving it. We will see another method later.

v

To do so, just replace the proton states with quark states (and keep the operator). At lowest order this is just
0(1—¢)

quark-to-quark

At next order it has the form G <1 i 52) / splitting function!
Gl g

v

+

- Plus distribution:




Parton distribution functons

The logic is thus very similar to running coupling, we now have “running functions”:
d S
U@¢i/H($7ﬂ) = /x ?Zpij(zaa’s(:u)) Dj/H (;M) [E Pi; ® ¢j/H} (z, p)

»  DGLAP equations. Pj are the splitting functions, aka parton evolution kernels. They are now known to NNLO
(3rd order)

»  Logic: determine the PDF’s at some scale Q, then compute them at all other scales by solving the DGLAP
equations.

Note:
»  for LO PDF’s, use one-loop splitting and beta-function
»  for NLO PDF’s use two-loop splitting and beta-function, etc.

» in 2004 the three-loop splitting functions [Moch, Vermaseren, Vogt] were computed, so also NNLO sets are now
available (NNLO partonic cross sections for DIS, Drell-Yan etc were already available).

To determine the PDF’s from the equation

iy
(O =A% G 06, 00

=

one must choose the data on the Ihs well.

25



Form of PDF’s

1.2 T T IIIIIII T T IIIIIII T T IIIIIII T T T TTTTT 1'2 T T 1 TTT III
Q%=10 GeV? i Q?=10*GeV?
g 7P MSTWO0S8 at two
: values of Q2

0.8 08
& g, |
x 0.6 s 0.6 -
R S Bl

0.4 04

0.2 02

00 11 11111 1 11 11111 1 11 1 1111 0'0 1 11 11111 1 11 11111 1 11 1 1111 1

10- 4 1073 1072 1077 1 1074 1073 1072 107! 1
X X

+ Notice how evolving the sets to high scale narrows the uncertainty.

» and how all PDF’s grow towards small x: driven by the gluon density in the evolution
+  Only u and d still show some bumps: a memory of them being partly valence quarks

+ For hadronic collisions one often makes out of the two PDF’s the parton luminosity [for “simple enough” cross sections]

m(s, M?) = Z/ —Eaba:MQ) (;,MQ,CES(MQ)) S

d
'Cab(va2) :/ Z¢a/p(z M >¢b/p< M2)

24



PDF input data

See e.g. Forte, Watt ‘13

+ What data to choose as inputs to fit to?
»  Those that single out particular parton distributions

v DIS structure functions most sensitive to valence (u- etc) quarks. Prompt photon production sensitive to

gluon density etc.

»  Those that provide extra information in certain x ranges (e.g. jet production gives large-x gluon information)

Process Subprocess Partons X range %

Gas v — g 7,78 x 20.01 \ >
En/p —> =X v*d/u — d/u d/u G Ol

pp—> utu X wii, dd — y* q (DSONESES v i3 "6
pn/pp —> utu” X (ud) /(uis) — y* d /il SIS e 025

vW)N - u (uhH) X W+*qg — q' q,q WO e 5

DANE ) o GG = 5 (ORINEE e M/’/L_’_(
PN - utu— X W*s — ¢ § 0.01 <x <0.2 |
efp— et X V' = g 2.4.7 0.0001 <x <0.1 / ﬁ )

et p—>vX Wd,s} — {u,c) d,s x 2 0.01

eTp - etei X y*c —> ¢, y*g —> ¢¢ ¢, g OGO =rr= == (il

etp —jet+ X v e — qq g (DRSS S—

D= et DO TN gl ] g,q GOS0 —

pp—> WE > F)X ud - W, ad — W u,d,i,d i o URS

pp—>(Z—> 07X uu, dd — 7 d 25 AU
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Comparing NNLO PDF sets

68%-CL PDF
MSTWO08

> H

CT10
NNPDF2.3noLHC
NNPDF2.3
HERAPDF1.5
ABM11
JRO9

o values

in NNLO sets

PDG
|+| 2012 g
I0.1I05I : IO.1I1OI o I0.1I15I = I0.1I20I 9 IO.1I25I % I0.1I30
as(Mzz)
d NNLO gg —H at the LHC (/s = 8 TeV)
for M,, = 126 GeV
220 .
21.5 — —
21.05— --------------------- &------—f
el z
R e e s E
6 200F =
105 et NS i a1 | ek S S A B =
19.0 F =
- ggh@nnlo (v1.4.1), u, = u=M,/2 ]
185 L .
MSTWO0S8 CT10 NNPDEF2.3

gg luminosities

at 8 TeV, relative to
MSTWO08

Impact from LHC

26

Ratio to MSTWO08 (68% CL)

Ratio to MSTWO08 (68% CL)

1.00

0.95

0.90

T L L) T 4
—— MSTWo8 i
+H CT10 i i N
4444 NNPDF2.3 noLHC ! 0 i
NN NNPDF2.3 I ]

n LA i '
L i %
: ; Yannras
M, 2m,
! o i o |
10 100 1,000
Vs (GeV)

= HERAPDF1.5

4444 ABM11
3323 JR0O9

10

Vs (GeV)



()CD and e"e collisions

+ But before turning to hadronic collisions in more details, let us review what QCD does in a simpler setting.

+ The cleanest place to study and test QCD is at a e*e” collider, where QCD is only active in the final state.
We saw already the importance of the R ratio in establishing the number of colors.

+ But the R ratio just involves a total cross section: nothing is asked of the final state. It often has an
interesting structure, possibly reflecting certain diagrams.

D1 ko

b3

+ Two classes of observables do take structure into account
» Jet cross sections (more on these later)

»  Event shapes

L



Event shapes - Thrust

+ There are many. A famous one is Thrust (maximum directed momentum)

TR sij = — (i +pj)°
e e
> |Pil ;= FEi/E
- Exercise: show that T=1/2 for spherical final states, and T=1 for two very narrow jets. T1 + T + 13 = 2

»  Reaction
e (k1) + e (k2) = v(q) = q(p1) + @(p2) + g(p3)

»  Phase space measure

d°p1 [ dPp2 [ d’ps 1
= dsy3dso3ded sin Od

e g2 Le1at823d¢d S ax

»  Squaring the two diagrams and integrating over ¢ and ¥
d’o a? a 5 5 1
s =T 2 + cos? 0
d813d823d81n(9 8 q2 ( ; : ) ( ) 513523
»  Integrating over 0
D e o S % T3 + 12 AT e
°T Gridze 31 ° (1—2z1)(1 —x2)’ ZErTn

v Notice divergences near x1 or x2 near 1.

28



Divergences

The formula for the 3-parton (qgq) final state

d?o 2 T2 + T2
=0T g
dll?ldllfg 3T (1 =7 331)(1 = 332)

If we wish to compute the NLO QCD correction to the total cross section, we must integrate this over x;
and x2 (=E4/E, E2/E).

»  but there is an obvious problem if these x’s are near 1.

»  x1=1 means that the quark takes half the cm energy, leaving only half the anti-quark plus gluon. It would work
out well if the gluon wasn't there. The gluon can imitate “not being there” by having either zero energy and
momentum (infrared), or by being perfectly collinear with the massless antiquark

p3=0,p3=0, (p2+p3)° =2pp-p3=0 iff pf=2p}
»  Clearly these are divergent situations
v Infrared divergence (p3*—0) and collinear divergence (ps*—zp2¥)

Let us see how the occur in practice. We regularized UV divergence using dimensional regularization

v

DimReg can also be used for IR and COL divergences

D, 4

29



Final state IR and COL divergences

To use DimReg, we should really have written the final state phase space measure also in n=4-2¢
dimensions

/ d>p1 d>py d®p3 i / TR P ety 1 e
2F1 2FE5 2F5 2F+ 2F5 2F5

Then we find n

12 + 72 — (2 — 21 — 22)

Gl l= JTS% Z Q+H (e) /dazldazg A P Ds
which yields » ki

3 19
Oqqq(€ —UT3—ZQf [ +—+(9(6) i e

2

Double and single poles in €, from IR and COL regios of phase space. How do they cancel?

30



Virtual contribution

But this is not the only contribution to NLO, we also need the virtual contribution. The result of the doing
the loop integral in n-dimensions is

Oqq,v (€) = ng&‘;iF ZQ?HQ"? [—3 = + Ofe )]

S
b

We just found

ol _aTB—ZQf [ §+§+(9( )]

Add up and add the LO contribution

ONLO — O'T3ZQ?¢= {1 e %}
f
The IR and COL divergence cancel nicely. All we had to do was add the real and virtual contributions.

This is in fact a very general phenomenon, and it known as the KLN theorem.

31



Kinoshita-L.ee-Nauenberg theorem

+ Theorem not only for QCD, but very generally for quantum mechanical transition probabilities

+ Inessence it says that if one computes the transition probability not just to one very specific state, but to a
collection of degenerate states [E-AE, E+AE] one gets a finite answer.

»  Clearly, a state of just 2 quarks and a state with 2 quarks plus a soft or collinear gluon are degenerate.
»  This is why inclusive, or semi-inclusive cross sections are finite
»  Butis also why we look at jets.

v Aquark with a correction and a quark with a soft of collinear gluon are part of the same jet
so a jet defines a collection of degenerate states

also event shapes are infrared-safe

+ Now we turn to hadronic collisions.

o7



Drell-Yan

Production of lepton pair in hadronic collision, either through photon, W or Z

e e TG 3 n
\

Storied physics background (next slide) ] > T h

These days: often a “theory” laboratory. All the key complications without many external legs. Higgs
production is just “Drell-Yan with initial state gluons”.

To illustrate typical issues in QCD higher-order calculations, we shall compute Drell-Yan to NLO.

» Infrared and collinear divergences, KLN theorem, factorization

33



Drell-Yan history

To predict DY cross section p+N—Y (bb)+X
c01.11d use the PDF’s from DIS. bottom discovery ‘77 p+p—W /Z+X
This worked well. Fermilab E288 exp. W/ Z discovery ‘83
g at CERN UA1/UA2
i PP Events -« !._

20 . SPECTROMETER

- Ld At normal current
go L [1=10% current

50

40 -

EVENTS /25 MaV

201

s

025 275 3.0  3.25 3.5
mg+e—[GeV]
J/Psi discovery 7
at BNEAESTancESEA G4
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Recall: LO and higher order amplitudes

Calculate in D=4-2¢ dimensions

| loop | extra parton
NNLO ;0 M % %W
b
2 loop | loop + 2 extra partons

| extra parton




NLO Drell-Yan: virtual diagrams
ge Ben e T it

+ Time here from right to left (apologies). 6 diagrams, but we are in luck

»  Sum of three “counterterm contributions” =0

because QCD corrections should not affect the electric charge of the quark

»  Self-energy diagrams = 0, leaves only triangle graph (leftmost one). We suspect (from the e+e- case) that the
loop integral will produce IR and COL divergences/

v Indeed we find

d0(1—> A\ —€/2T(1 4+ €/2)
Frrmor (1) s M
dQ2 ’v1rtual U Qf 02(R)( ) F(l—l—é)
g O 272 ar
x[ e Ert +O(5)]5( e

v QObserve again double and single pole

36



NLO Drell-Yan: real diagrams

Now there are two diagrams, with a gluon radiated of either incoming quark. Result

daé(lz—)
d()?

1l 4N —¢/2T(1 +¢/2) 4
— ;00— R( “) 5
s s D G I(l+e) e

X {23:1_5/2(1 e a:_s/z(l — :L')Hs}

We see a single pole, but no double pole! Trouble with KLN?

No. To see this, express the functions of x in terms of “plus-distributions”

]++5FM1_@ + 0(e?)

+

Bl

Seaaa e ll_x

ElE=a)laes e
»  Now do get double pole

Proof: use a test function F

Use, and add to virtual. Result ! Fz) 1 [ L p(g)— F(1)
(1) /0 dx R 5/0 dx F(z)é(1 — x) +/0 dx —
do, AmpN /2T (1 4+ £/2) i e a0l ) )
B0 e D e +e [ dz[F(z) - F(1)] + 0(e?)
dQ2 =0, Qf C'2<R)( 3 Fte) /0 S
4 D Il 3 P U=
X{s((1+x>[1—x]++25(1 :L‘))—|—4(1—|—x)[ T
1
- 21+ 0% + (4(2) - 8)(1 - 2) + O(e) }
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NLO Drell-Yan: sum of real and virtual

+ Again, now expressed in terms of the splitting function Pqq(X).

do'V Q3 4 In(1 —
Tég =0§0>2—7‘:Ce 2 {quq($)+4(1+x2) [ i—xx>]+
=2 1hixx S Glisscia e x)}

%

Even with KLN helping, there is a remaining divergence!

v Initial state collinear divergence

N 4

How to get rid of it?

v

Answer: very analogous to use of Z-factor for renormalization of coupling. Renormalize the PDF’s as

dh 1k
A= / - / By day (4 1) Tk (2 i )O(E — 21)
To first order : :

1 :
Basa(€) = Bg/al€ r) - /§ o/ (gw) x {O‘—quq@)}

2T €

v

v This new divergence cancels the above one.

V%

Notice: this new contribution shows no information about this being the Drell-Yan process

38



4

()CD Factorization

What you just witnessed is called “factorization”. It turns out:

4

For any process this removes the remaining initial state collinear divergence!
v \Works to all orders [Collins, Soper Sterman]

v KLN theorem helps cancel all IR and all final state collinear divergences

As a result, the “renormalized” PDF depends on yr, through the DGLAP equation.

Why does KLN not solve this?

>

The initial state is precisely defined, there is no set of degenerate initial states.

Physical picture:

T €

1 d :
¢Q/A<€) o ¢q/A<€7:uF) _/g ?quq/A (g»ﬂF) X {04 1qu(2)}

Consider the indicated propagator. If the gluon is very collinear, the virtuality of that line is very small.

»

Therefore, that state could be very long-lived: the gluon could have been radiated off long before the hard
scattering. The very collinear gluon thus should be grouped with the proton.

39



A brief aside on IR analysis, Landau equations...



All orders in QCD: resummation
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Predictive power in QF'T

+ QObservable, computed in perturbation theory

O:cha”—l—Rn

ik __n

+ Finite order: only take lowest few “»". Please complete then this checklist

M ais small enough?
4 Is R, small enough ?

[4 cn does not grow too fast with 7?2
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Resummation

+ Ifit does, sum up perturbative series to all orders
»  why would one do that?

» what can one sum?

» when should one do that?

» to what accuracy?

+ Answer: a black box

43
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4

Perturbative series in QF'T

Typical perturbative behavior of observable @ G e e

4

>

4

a is the coupling of the theory (QCD, QED, ..) eI e T AE e e
L is some numerically large logarithm

“1” = 12, In2, anything no

Notice: effective expansion parameter is aL2. Problem occurs if is this >1!!

Possible fix: reorganize/resum terms such that

G5 e e G e e IS M P g B B e o A
= exp | Lgi(asL)+ga(asl) +asgs(asl) + ... | Clas)
LL constants

N /

+ suppressed terms

Notice the definition of LL, NLL, etc

4



LL, NLL,.. and matching to fixed order

+ This is nomenclature you see very often: leading-log, next-to-leading log, etc

»  Here is the schematic overview of accuracy in resummation

i !

O SO L C Tl = |fexDp [(Z Gl +(Z Gy s +(Z Gl e R }
=1t il

LL,NLL =l e
NlCIrLL ) A& LL -~ J/
2 NLL 5
»  This is a systematic expansion in as in the exponent NNLL

v If we can find the coefficients ¢y, dn, en, Co, C1 etc
»  Itis directly clear how to combine this with an exact NLO or NNLO calculation

v Expand the resummed version to the next order in as . Add the NLO and resummed, but subtract the order as -
expanded resummed result, to avoid double counting.

ONLO matched — ONLO 3 Oresummed B (OreSHmmed) ‘expanded to O(ag)

- generalization to NNLO is obvious

+ But what can L be the logarithm of?
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Benefits of resummation

+ |t can rescue predictive power
»  when perturbative series converges poorly
» and can predict terms in next order when they are not known exactly yet (“approximate NNLO")

v by expanding the resummed cross section to that order
+ Better physics description (small pr e.g., more later)

+ Lessens the renormalization/factorization scale uncertainty,
»  the inclusive top quark cross section

»  the Higgs cross section
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Resummation of what logarithm?

S0 many variables, so many logs,...

pT of b @ Tevatron

Points: CDF

Curves: FONLL

alpy(I/¥)>1.25 GeV) BR:
19.9*3% nb (CDF)
18.3%25 nb (FONLL)

[ —
-
P
Sy
N——"
do/dp,(3/¥) BR(I/¥=pu) (ud/GeT)

— ————————— Solid histogram: MC@NLO, 17.2 nb,
ThrUStT @ LEP Dashed m.Ttogram. MCTSNI)C, 16.4 lib :
| 40/dQ; (pb/GeV) { oo | L Y A
75 < Q < 105 GeV LU B R I L R NN N B B B BN BB B B pel1/9) (GeV)
ALEPH data NLLA+NNLO ——
| NLLA+NLO —— 3
200 A, NNLO
1% E
| \ 3
|| L\
10H 1]* 4 b
| “‘i 3
T Ve ‘
L Q=M
“
\x_“‘ < .
o e —— a, (M) =0.1189 13
10 <0 30 40 L 50 :
Qr ((J(.‘") .
'lo 7 1 l | l | | 1 1 | l L 1 l | l 1 L
0 0.1 0.2 03 04
1-T
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I st example of double logs: thrust

+ Near T=1 the final state looks like two very narrow jets

»  emission must then be either very soft, and/or very collinear. Large logs:

2
gl
»  Data (ALEPH) vs fixed order and vs resummation Becher, Schwartz
3.0 ——m———— 0
: { fixed order : | RG improved
25( _ 2.57\
{ LO (ag) LO (as) + NLL
20f NLO (a5”) : 20l " NLO (as°) + NNLL
| 1 NNLO ( 0,53) ’ NNLO ((1‘53) + NNNLL
47 45
dT [
1.0}
0.5}
Db
0.10 0.15 0.20 0.25 0.30

1-T
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2nd example of double log: recoil logs

+ Eg. pT of Z-bosons produced at Tevatron
»  Z-boson gets pr from recoil agains (soft) gluons
»  Visible logs (argument made of measured quantities)
v 1 emission: with gluon very soft: divergent
- virtual: large negative bin at pT=0

»  The turn-over at pT around 5 GeV is only explained by resummation, not by finite order calculations

gluon

28 ¢ Z-boson

- e DO 1994-1996
248 ~ b-space (Ladinsky-Yuan)

i CTEQ4M g,=0.11 GeV" g,=0.58 GeV
20 g=-1.5 GeV"'

B e S C e q,-space (Ellis-Veseli)
16 - MRSR1 &0.1 GeV™ g, =4.0 GeV gluon

Gt g b-space (Davigs-Webber-Stirling) < t

MRSA g,=0.15 GeV’ g,=0.4 GeV
] 2
fffff Fixed-order (O(c;
Fixe (0(c)

doldp,*BR(Z—>ee) (pb/GeV)
o

D - RN

05 10 15 20 25 30
p(GeV)
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Divergence near pr=0

differential cross section vs pt for 93 93 -> 23 93 LHC at 14 TeV _hist_pt
Entries 10000
= Mean 24
° RMS 13.71
,"z 400
©
350
<
70
pt (GeV)
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4

Physics near small pr

At finite order

>

do In pr o] . >
—— = g0 rbd i +ci— + ¢po + ...
22 = cod(pr) + (AT 4ol + clfr)

hence the real divergence toward pr near zero

Resummed
CZ'% = co exp [—cha, In?(pr) + .. |
v this is also the effective behaviour of the parton shower there

Notice:

>

>

finite order oscillates wildly near small pr, and may be negative

resummed is positive, and it tracks the data well

Physics of resummed answer:

>

probability of the process not to emit at small pr is vanishingly small

v

There is violent acceleration of color charges after all..
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ard example of double log: threshold logs

+  Logarithm of “energy above threshold @ In*(1 — Q@?/s)
»  “Invisible” logs”: argument made up of integration variables

»  Typical effect: enhancement of cross section

- —@

S
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Threshold log rule of thumb

+ Why do they increase the cross section? (N large = near threshold)

G A exp(—In? N
Upartonic,resum(N) = e ( ) = p( ) o s eXp(—|— 1Il2 N)

i (exp(— In” N)

+ In words:
»  The hadronic cross section is a product/convolution of PDF’s and the partonic cross section
»  In both factors emissions may, and should occur.
v The contribution from the PDF’s is too stingy

v The partonic cross section has to overcompensate in order to get the right amount for the hadronic cross
section
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Reminder of origin of double (“Sudakov™) logs
+ Double logarithms in cross sections are related to IR divergences

—

_-"f-//
f\/\/\y(jij ] 1 = 1 27 1
P ,\(ﬂ\ » (p AL k)Q 2p - k QEgEq(l — COSqu)

Phase space integration
o / dogiils D ~ O /K dbig by * / dfqg sin”" Oqg
(2m)* p-kp' -k Eg g
]. p' p'
~ a, (= +1In*(K)). g

€

p'+k
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Basics of eikonal approximation: QED

+ Charged particle emits softly
»  Propagator: expand numerator & denominator in soft momentum, keep lowest order

»  Vertex: expand in soft momentum, keep lowest order

k > U
>
p+k P
GO e
2p - k + k2 -k
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Basics of eikonal approximation in QED

Ei, i Ko, po Ky bin
> p
Exact: 1 (REloinelli)ise s 1 (2petekE et K= znjkm-
B ) (p+ Kn)? ’ s
1 1
Approx: DA 2pHn
Eikonal 1 1 1

=y - =
|dent|ty: p - (kl S kQ)p : kg p - (kl ol kg)p : ]431 D - klp - kQ

K
Sum over H L
all perm’s: i 5

Independent, uncorrelated emissions, Poisson process
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Kikonal approximation: no dependence on emitter spin

+  Emitter spin becomes irrelevant in eikonal approximation
p+k

»  Fermion p -
: Ngh Sl =

»  Approximate, and use Dirac equation  pu(p) =0

»  Result:

pH
g (M u(p)) X e
»  Two things have happened
v No sign of emitter spin anymore

v Coupling of photon proportional to p* !

+ Decoupling again of emission and emitter
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Kikonal exponentiation

In the eikonal approximation, suddenly we see very interesting patterns.

One loop vertex correction, in eikonal approximation
p

oo fesl ot

Two loop vertex correction, in eikonal approximation

ko 1 £ 1 0 2
W@é W{ A“z(/”k2<p-k><p-k>>

Exponential series! A really beautiful result

Yennie, Frautschi, Suura
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Non-abelian eikonal approximation

+ Same methods as for QED, but organization harder: SU(3) generator at every vertex

ki, p Ko, po Ky

(e p
»  now no obvious decorrelation Order the Ta according to A

i

(I)n()\Qa )\1) =P exp

A2
z'g/ dAn - A*(\n) T,
A1

+ Key “object™ Wilson line

»  Order by order in “g”, it generates QCD eikonal Feynman rules, including the SU(3) generators
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Non-abelian exponentiation: webs

Gatheral; Frenkel, Taylor; Sterman

+ Take quark - antiquark line, connect with soft gluons in all possible ways, and use eikonal approximation

+ Exponentiation still occurs! Sum of all eikonal diagrams D with color factor C and momentum space part F

Y C(D)F(D) = exp [C(D)W(D)]

+ (=S Cr

o - o
g -y T
» > o
P >
« « «
4 - - ll’.
o o o
o + e + o
. “ o . o
L L .
. - “a -
- --. ..ll .
» »
. - = a
L - e
T e o
» » >

» A selection of diagrams in exponent, but with modified color weights: “webs”
v Easy to select webs: they must be two-eikonal line irreducible

v More difficult to compute the modified color factors, but can be done also
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Resummation using path integrals

EL, Stavenga, White

Use textbook result

Sum of all diagrams = exp (Connected diagrams> f = i) dt(%ib2—|—p-A+..)

Write scattering amplitude as first-quantized path integral

M (p1,p2,{k}) = /DAS Dx(t) H[z) f1[As, z(t)] f2[As, z(£)] 514

x(t): path of charged
Eikonal vertices are sources for gauge bosons along line particle

e SR

Connected
Disconnected
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Path integral method, non-abelian

T B B

+ Not immediately obvious how this could work (the path integral must be a real

exponential), since

»  Source terms have non-abelian charges, so don't commute

»  External line factors are path-ordered exponentials

»  Nevertheless
Z FDCD ===chl
D

+ To prove, use replica trick (from statistical physics)

62

Gatheral; Frenkel, Taylor; Sterman



R@plica tI'iCk FL, Stavenga, White

+ Relates exponentiation of soft gauge fields to that of connected diagrams in QFT.
+ Consider a N copies of a scalar theory

» If Zis exponential, find out what contributes to log Z

Z[J]N = /D¢1 s 'D¢Neis[¢1]+--+is[¢N]+J¢1—|—..J¢N

»  Amounts to diagrams that allow only one replica — connected!

Z¥ — 14 Nlog Z + O(N?) ><[ X
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Application to QCD

Amplitude for two colored lines M@ meé W@
S(p1,p2) = H(p1,p2) /DA f(00)e 4]

Replicate, and introduce replica ordering operator R

N

Z/d:c-Ai(:c)

i=ll

f(oo)zPeXp[/dx-A(a:)] HPeXp de Az )] RP exp

X2 2
§ . . i " Web
i A i, b

Modified color factor

(@)

(a) is order N

(b) for equal replica number (i=j): Cf2. For i#j also CF2. Sum: NCz+ N Cr=NCy
(c) for equal replica number (i=j): CF2-Cr Ca /2. Eeleilon ;
For i#j Cr2 Term linear in N: i (CF e )+ e,
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Mulaple colored lines

Projector matrix Z Ryy =0
d/

Z ]:(D)C(D) = eXp[Z }“(d)Rld,C(d’)] Eigenvalues Oor 1
d,d’

»  multi-parton webs are “closed sets” of diagrams, with modified color factors

X % % X\é = Multiparton Web

(3b) (3c) (3d)

+ Structure

+ Closed form solution for modified color factor

% C(3a) - C(3b) — C(3¢) + C(3d) | x |M(3a) — 20 (3b) — 2M (3c) + M(3d)|

» Interesting properties of projector matrix (reduces degree of divergence)
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Projector matrix

Y F(D)C(D) = exp|» _ F(d)Raa C(d)]
d,d’
Gardi, White

»  Projects out contributions that come from exponentiation of lower order diagrams

v Interesting combinatorial aspects (Stirling numbers)

v Proof of idempotency and zero sum row property

»  Combinatorics involves quite interesting for mathematicians
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How to resum?

+ There are many ways, depending on
»  the observable
»  the logarithm

»  the resummer

+ Here we take as key notions
»  factorization

»  approximations for kinematic limit (eikonal approximation e.g.)

67



+

Resummation 101

Cross section for n extra gluons

Phase space measure Squared matrix element

1
O-(n) &= 2_3/d(1)n+1(P7 k17"'7kn) X ‘M(P7 kl""7kn)‘2

When emissions are soft, can factorize phase space measure and matrix element [eikonal
approximation]

el
d(I)n_H(P, ki, .. ,k‘n) — d(I)(P) X (d(I)l(k)) ﬁ

Sum over all orders
MP e, )2 — M) X (M emission (B)2)"

> o(n) =a(0) x exp | / 4D ()| M emission (k) 2]

n

Incorporate Theta or Delta functions in space space

»  but these must factorize similarly, or they cannot go into exponent
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Phase space in resummation

+ Kinematic condition expresses “z” in terms of gluon energies

== P
— et e e @ 2K
I 5<1 S ; \/E)
» or conservation of transverse momentum .

0*(Qr — > ry)

+ Transform (e.g. Laplace/Mellin or Fourier) factorizes the phase space
/oo e e_WNé(w = sz) &2 Hexp(—wiN) /d2QT o0 QT 52(QT i ZP’?F) Sl H eib-pi_r
0 i i i i

+ So can go into exponent

Za(n) = g(0) x exp [/d@l(k)\./\/ll o (e XD [ ee

n

»  Large logs: In(N) or In(bQ)
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Factorization and resummation for Drell-Yan

O(N) = A(Na Iy gl)A(Na M, 52)S(N7 Iy 517 fQ)H(:u)
+ Near threshold, cross section is equivalent to product of 4 well-defined functions
+ Demand independence of

»  renormalization scale

»  gauge dependence parameter ¢

v find exponent of double logarithm

d d d
0= -0 (N) = &1 3-0(N) = Ea o (N)

A:exp[/‘%/%.]

70
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Factorization for threshold resummation

+ A(N): initial state soft+collinear radiation effects

» rea|I+2vir[:uaI o(N) = 3" 6s(N)¢; () [Ai(N)Aj(N)Sij(N) Hij]
3 as"n4" Ly f

+  Sj(N): soft, non-collinear radiation effects

4 Gsnlnn N

+ H: hard function, no soft and collinear effects

Cr
27Tb0)\

_2 S
2 1n2]\7—|—..]
7T

Ay(N) = exp | In N {20+ (1 —2)) In(1 —zA)}+..]

= exp
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4

4

4

From N space back to momentum-space

Parton cross section derived in N space

PDF’s in N space
Use initial conditions in N-space, then QCD-PEGASUS evolution (A. Vogt)

>

Use inverse Mellin transform

>

(res) 2 2 2 2\
Uhlhg—.kl(/) ) {m } R L) = -

Avoid Landau pole singularity with Minimal Prescription (go left..)

v

gives Good numerical stability

Exercise:

>

i
» Melling transform f(N):/ g =
0

>

function f(z) =P

v

Inverse Mellin transform

Correct!

1

1

P

1

20
2 ch (" y — p
/ dyTm [e'¢ p~Cmp—ve
0

(res)
X 0’?]’!2-‘

w(N = Cup + ye'®, {m?}  ph. p1¥) |

Catani, Mangano
Nason, Trentadue




Resummed Drell-Yan/Higgs cross section

Sterman; Catani, Trentadue

Threshold-resummed Drell-Yan Joresum AN
cross section T G = / — 2V &(N)
dQ o 2mi
: . 1 AT Q% (1—=z)? d
Functions in exponent depend o(N) = exp|— / il R e / A Alas(p))
only on coupling 0 l-= : z

+D(cs((1 — x)Q))H sClabE aS(Q2)% +...)

6py(N,Q%) = go(Q?) exp [Ggy(Q2)]
A. Vogt GDy = InNgi(A)+g2(A) +asgs(N) +...,  A=foasInN

6 T T T T I T T T T T T T T T T T T 12

10

Good convergence in exponent




More color: 2 = 2 parton scattering

+ Four external partons can connect in multiple ways

i a

For example:  ¢(i)q(j) — ¢'(a)q (b) =z

¥ ¢ C C

+ Forgg->gg, (at least) 6 ways.

»  (Different basis choices possible in this space of color tensors)
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Colorful 2 = 2 scattering

Kidonakis, Oderda, Sterman;

+ Factorization by “usual” methods into A, S, H functions
» A’s color diagonal (collinear quarks and gluons)

»  Soft emissions mix the color tensors, and the effective vertices H

Represent scattering amplitude as vector in color tensor space

Moy (% (), €) = Mr(-)(en) o

ML() — SLKHK SOV
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Soft anomalous dimensions

: : : _ : 353 Kidonakis, Oderda, Sterman
+ Define soft amplitude as VEV of Wilson lines with velocities Bi

»  represent external particles

S = (0] H (I)ﬁi(oov O)ami|0>cKﬂ7z‘

+ Wilson line composite operator has anomalous dimension

d
—S=TIgS
Mdu S

+ Soft function is square of amplitude, at fixed energy, depends on ratio (Q/Nu), so can
control N dependence through u dependence

» To do resummation beyond LL, need to understand soft anomalous dimensions
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Soft anomalous dimensions

+ For two lines (Drell-Yan, DIS, Higgs), aka cusp anomalous dimension, known to 3
loops

=) = <O' Hq, (I)ﬁz (OO, O)Oéz"ni |O> (CK)m

Moch, Vermaseren, Vogt; Berger

()0 (2)" 60 (00 - a1 0r) -

N J/
~"

Aybat, Dixon, Sterman, Mitov, Czakon

K
+ For2 —2oneloop I' is a matrix (known to 2 loops)
»  depends only on velocities and color states of external lines
»  for squark and gluino production some new possibilities with respect to Standard

MOdel T =—los (TZZW_;) — 1;” and U(m) = log (ml;;)
( = AN2(N, — 2) 4AN2(N, +2) . \
11,
s N AUl I
= Qg = N_(N_ +2)
IRt e = 10 T'22 qq CN CJ‘F 1 0 : e %[T(mg)+T(m4)+U(m3)+U(m4)],
C
N_ (N, —2 i e
\ % Q C’( C ) Q 1‘133 = QO = 5 [T(m3) —|—T(m4) —U(m3) ~ U(m4)},
N =t ’ )

il



Soft anomalous dimension

+ Matrices become diagonal in —0 limit

lim S15(Q/(Nu), 1) = o15 817 AT (Q/(Np), 1)

/Q/N dq as(q)
m

AP (Q/(Nu),p?) = exp[ G DI}’

» even true for pT distributions

»  but not true for double-differential distributions

' Kul Motyk
»  for squarks and gluinos e.g. ulesza, Motyka

{qu%dd,l} = {_4/37_10/3}

{Dqg—><}'§,l} 7 {_4/37 _10/37 _16/3}
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Soft Collinear Effective Theory

Bauer, Fleming, Pirjol, Stewart,...

+ Previous “(d)QCD" analysis was essentially diagram based
+ Effective field theory approach: SCET

»  Distinguish separate fields for soft, collinear, hard partons, and ultrasoft gluons

il
- D

1

ilbc,J_) %gn = ZTT{G/CLVGC,HV}

LSCET.qq = Enlin - D + i, 1

v Powerful power counting. Using +,-,T notation
ph~Q(L1L,1) pe~QALVA) ps~ QAN
v Fields scale similarly:
s D N

» 2 gauge transformations, collinear and ultrasoft

v and two types of Wilson lines: /() S

/)



Soft Collinear Effective Theory

Bauer, Fleming, Pirjol, Stewart,...

+ Decouple soft gluons from collinear via field redefinition & (z) — Sy, (2)EL” (x)

ﬁn D£—>§(O)%n D &W

»  Soft gluons do not of course fully dlsappear from every observable
»  Can form soft functions (matrix elements of soft Wilson lines)
+ Resummation: match and run

»  Write observable (e.g. Opy) as

<OQCD> and as H<O.ZSC'ET> X O;/natch
»  Solve RG equations for O'scer Z
»  Find C by 1-loop (or 2-loop) calculations on both sides

+ Powerful method
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NNLO-NNLL inclusive cross section

Baernreuther, Fiedler, Mitov, Czakon

+ A milestone in QCD, with clear benefits
»  precision top physics is here
» new calculational methods developed

»  use for gluon density at large X, and 0s ~ czakon, mitov, Mangano, Rojo

10

L eyl g =
9 \ CDF and DO, L=8.8fb'; —v— ] Scale variation Concurrent uncertainties:
280
~ 8+ B
g 260 NLO NNLO ~ 20
5 10 o B T cales (0}
° 7 1 240 | ~
\\ [ L pdf (at 68%cl) 2-3%
220 NLL .
6 1 NNLL ~ (o)
PPbar — tt+X @ NNLO+NNLL\ E o NEE s (parametric) 1.5%
o | MSTW2008NNLOGEO) S 200 LL Meop (param etric) ~ 3%
164 166 168 170 172 174 176 178 180 182 © 180 Fixed Ord
ixed Order =—e—
Miop [GEV] 160 NLO+res —e— | | ) )
NNLO+res =——s Soft gluon resummation makes a difference
140 ; ;
' ' w LHC 8 TeV;m, =173.3 GeV; A=0
Theory (scales + pdf) ; ) top ; ’
300 - CMS dilep%:)r(h 7 Te\% —_— 120 5% -> 3%
ATLAS and CMS, 7TeV ——
ATLAS, 7TeV —e—
CMS dilepton, 8TeV
T 250 |
&
g
©
200 t
PP — tt+X @ NNLO+NNLL
150 Myop=173.3 GeV
MSTW2008NNLO(68c))
6.5 7 7.5 8 8.5
Vs [TeV]
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Logarithm is again threshold logarithm

4
4
Higgs cross section: gluon fusion
30 N T T T | I i T I
Lt 22 A-softy my = 125 GeV |
I LHC 8 TeV
: o s s \:
[ '\.\.\ 4
[| —-—- NNLO
s NNLO+LL -
| — — — NNLO+NLL [t i R o e e F e o
[| —-—- NNLO+NNLL
L | ——— NNLO-+NNNLL
0 e [ T | | | | | S| -
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N’LL resummation for Higgs production

For inverse Mellin transform, employ both Minimal Prescription and Borel prescription

Nice progression, especially with exponentiated constants

MR / My

Code: ResHiggs and ggHigs

Bonvini, Marzani

Higgs cross section: gluon fusion
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Resummation vs parton shower

+ Both account for emission to all orders in perturbative QCD. It's accuracy vs flexibility
»  Resummation: a formula
v accuracy to LL, NLL, NNLL depending on what the theorists did. For specific observables
»  Parton shower: generate events
v very flexible, can use for any observables

v but, on the downside, in essence only LL accuracte (it never has all the NLL information in it, because that
is to some extent observable dependent).

Progress is being made here however
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Final summary

+ Many concepts in perturbative QCD were discussed, in both their essence and some technical aspects
»  Qenormalization, asymptotic freedom
»  Finite orders, IR and COL divergence-handling
»  All-orders: resummation, why and how

v here there is quite a bit of physics insight possible

+ My hope: that when you see such concepts in workshops or talks, you now have a sense about what this
IS about.

v and ask about it!
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