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Transverse geometry  of the hard and soft  
pp collisions at the LHC



Motivations

Yuri’s talk - DPI is example that any observables differential cross section 
of  parton - parton inclusive scattering depend on transverse geometry

Detailed understading of the underlying event is necessary for 
precision necessary measurements of the hard cross section.

Interplay of soft and hard physics at LHC - constrains on hard physics 
from soft dynmanics.



Outline

Universality of underlying events at collider energies

Transverse geometry of high energy pp collisions - implications from studies of 
generalized parton distributions at HERA - size matters

Multijet production and S-channel unitarity

High multiplicity - dijet rate correlation

Onset of black disk regime - post -selection - from d -Au at RHIC to LHC
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Important characteristic of high energy collisions is the impact parameter of collision. Well 
defined  since angular momentum is conserved and L = bp 

Different intensity of interactions for small and large impact parameters 

Small b ➠ large overlap of parton densities

Large probability of multiparton, soft/hard interactions

b b
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Peripheral 
pp collisions 

Two scale picture
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Geometry of pp collision with production of dijet  in the transverse plane 

Diagonal Generalized 
Parton distribution - 

For hard collision

⇤h /
Z

d2bd2⇥1d
2⇥2�(⇥1 + b� ⇥2)f1(x1, ⇥1)f2(x2, ⇥2)⇤2!2

=

Z
d2�1d

2�2f1(x1, �1)f2(x2, �2)⇥2!2 = f1(x1)f2(x2)�2!2

For inclusive cross section at high virtuality transverse structure does not 
matter - convolution of parton densities

However critical for understanding global structure of inelastic events 
⇓
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Why this is interesting/ important? 
● Amplification of the small x effects: in proton - proton collisions a parton with given x1   resolves 
partons in  another nucleon with

At LHC
● Resulting strong difference between the semi-soft component of hadronic  final states 
at LHC &Tevatron in events with production of Z, W, Higgs, SUSY,... and in minimal bias 
events ➠  structure of underlying events

⇒ Necessary to account for new QCD phenomena related to a rapid growth of  the 
gluon fields at small x:  parton “1” propagates through the strong gluon field of  nucleon “2”.

Hence, accumulation of higher twist effects and possible divergence of the perturbative series.

In proton-ion, ion-ion collisions collisions at small impact parameters are  strongly  different  
from the minimal bias events. Is this true  also for pp collisions?

x2 = 4p2
�/x1s

At Tevatron
x1 = 0.01, p⇥ = 2GeV/c ⇤ x2 ⇥ 8� 10�6

x1 = 0.01, p⇥ = 2GeV/c ⇤ x2 ⇥ 4� 10�4



●

Goals for colliders  - realistic account of the transverse structure of the nucleon, the global structure of 
the events with Higgs, SUSY,...

Critical for interpretation of structure of the events with dijets at the colliders,  multiple collisions.  Multiparton 
interactions  have significant  probability at Tevatron and large probability at LHC - rates scale as 1/(transverse area 
occupied by partons), depend on the shape of the transverse distribution and on the degree of the overlap.
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Impact parameter picture is build into many current MC’s of pp collisions at LHC/ Tevatron, cosmic rays at 
highest energies (GZK) - but  does not include so far constrains on the transverse structure of the nucleon 
originating from HERA studies.

First quantitative analysis including information on the transverse structure from HERA -

Frankfurt, MS, Weiss, 2003

Goals for nucleon structure  - probing correlations between quarks, gluons, ....; Distinguish

●
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●
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●
●

●
●
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MIT bag
Constituent 

quark model with 
localized gluon fields

quark - diquark String models



Image of nucleon at different resolutions, q. Rest frame.

1000 > q  >  300 MeV/c

 q >  1000 MeV/c

Constituent quarks, pions  (picture inspired
 by chiral QCD)

pQCD evolution

+ + ...

resolution 1 fm,  q <  300 MeV/c

resolution 1/3  fm
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Note: This is image averaged over sizes of 
quark-gluon configurations in nucleon

qq̄ pair in ⇡
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(c) longitudinal momentum transverse coordinate

Image of nucleon at different resolution scales q. Fast frame.

Energy dependence of the transverse size of small x partons.

R2(n)⇡ n
k2t0

Random walk in b-space (Gribov 70).  (Drunken sailor walk) 
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n ∝ y =) R2 = R20+ cy⌘ R20+ c0 lns
Length  of the random walk  ∝  rapidity, y as each step a change in rapidity of few units.   

Implications:
(a) The transverse size of the soft wee parton cloud should logarithmically grow with energy. 

Logarithmic increase of the t-slope of the elastic hadron-hadron scattering amplitude 
with energy: 

f (t) ∝ exp(Bt/2), B(s) = B0+2α0 ln(s/s0)

α0 ∝ 1/k2t0
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(b) 



Studies of the diffraction at HERA stimulated derivation of new QCD factorization theorems.  In difference from derivation 
in the  inclusive case which  used closure, main ingredient is the color transparency property of QCD

π + T (A, N) → jet1 + jet2 + T (A, N) Frankfurt, Miller, MS 93 & 03

�� + N � � + N(baryonic system)

��L + N � ”meson”(mesons) + N(baryonic system)

D.Muller 94 et al, Radyushkin 96, Ji 96, Collins &Freund 98

Brodsky,Frankfurt, Gunion,Mueller, MS
 94- vector mesons, small x

Collins, Frankfurt, MS 97 -  general case

provide  new effective tools for study of the 3D hadron 
structure,  color transparency and opacity and chiral 
dynamics

Hard Exclusive processes



element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�

⇥⇥
�⌥

⌥ dy�

4⌃
e�ix2p

⇤y�
⇥p��T⌦̄⇤0,y�,0T�✏

⇤P⌦⇤0 ��p�,

⇤4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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element.4Wewillgivethedefinitionlater.Thefactor↵
j
V

is

thelight-conewavefunctionforthemeson,andH
ijisthe

hardscatteringfunction.Thesumsareoverthepartontypes

iandjthatconnectthehardscatteringtothedistribution

functionandtothemeson.Sincethemesonhasnonzero

flavor,thepartonjisrestrictedtobeaquark.Thefactoriza-

tiontheoremEq.⇤3�isillustratedinFig.1.
Theaboveformulaiscorrectfortheproductionoflongi-

tudinallypolarizedvectormesons.Fortheproductionof

transverselypolarizedvectormesonsorofpseudoscalarme-

sons,wehaveaformulaofexactlythesamestructure,butin

whichtheunpolarizedpartondensityisreplacedbyapolar-

izedpartondensity⇤thetransversitydensityfortransverse

vectormesons,andthehelicitydensityforpseudoscalarme-

sons�.Similarchangeswillneedtobemadetothedefinition

ofthemesonwavefunction. Theparameter⌅inEq.⇤3�istheusualrenormalization-

factorizationscale.ItshouldbeoforderQ,inorderthatthe

hardscatteringfunctionH
ijbecalculablebytheuseof

finite-orderperturbationtheory.The⌅dependenceofthe

distributionfi/pandofthelight-conewavefunction↵
j
V

are

givenbyequationsoftheDokshitzer-Gribov-Lipatov-

Altarelli-Parisi⇤DGLAP�kind,aswewilldiscussinSec.

VIII.
TypicallowestordergraphsforHareshowninFig.2.

ConsiderFig.2⇤a�,allofwhoseexternallinesarequarks.

Afterwegothroughthederivationofthefactorizationtheo-

rem,andhaveconstructeddefinitionsofthedistributionfi/p

andofthelight-conewavefunction↵V
,wewillbeableto

seethatthedefinitionofHisthesumofgraphssuchasFig.

2⇤a�contractedwithsuitableexternallinefactorsthatcorre-

spondtotheDiracwavefunctionsofthepartons.Inthecase

oflongitudinalvectormesonproduction,thefactorsare

1
2p⇤✏�

forthelowertwolinesand1
2V�✏⇤

forthelines

connectedtotheoutgoingmeson.Thesefactorsarerelatedto

spinaveragesofDiracwavefunctionsforthequarks.

Inthecaseofthegluon-inducedsubprocess,Fig.2⇤b�,the

externalfermionlinesofHaretobecontractedwiththe

samefactorsasbefore,butthetwogluonlinesaretobe

contractedwith⇧ �/2,where and�aretransverseindices,

andthe1/2representsakindofspinaverage.

SeeSec.IXformoreinformationontheprecisenormal-

izationconventionsforthehardscatteringfunction. B.Definitionsoflight-conedistributionsandamplitudes:

Longitudinalvectormeson
1.Quarkdistribution Thedistributionfunctionfi/pandmesonamplitude↵

j
V

aredefined,asusual,asmatrixelementsofgauge-invariant

bilocaloperatorsonthelightcone.Inthecaseofaquarkof

flavori,wedefine

fi/p⇤x1,x2,t,⌅�

⇥⇥
�⌥

⌥dy�

4⌃e�ix2p
⇤

y�

⇥p��T⌦̄⇤0,y�
,0T�✏⇤P⌦⇤0��p�,

⇤4�
wherePisapath-orderedexponentialofthegluonfield

alongthelightlikelinejoiningthetwooperatorsforaquark

offlavori.Wehavedefinedx1tobethefractionalmomen-

tumgivenbythequarktothehardscatteringand�x2tobe

themomentumgivenbytheantiquark;inthefactorization

theoremtheyobeyx1�x2⇥x,withxbeingtheusual

Bjorkenvariable.Atfirstsighttheright-hand-sideofEq.⇤4�

appearstodependonlyonx2andnotonx1noront.The

dependenceontheothertwovariablescomesfromthefact

thatthematrixelementisnonforward.Thedifferenceinmo-

mentumbetweenthestates�p�and�p��togetherwiththe

useofalight-coneoperatorbringsindependenceonx1and

ont.Itisnecessarytotakeonlytheconnectedpartofthe

matrixelement.
Thesamedefinitionhasrecentlybeengivenanddiscussed

byJiandRadyushkin�12–14�.AsJipointsout,whent⇣0

thereareinfacttwoseparatepartondensities,withdifferent

dependenceonthenucleonspin.Forthepurposesofour

proof,itwillbeunnecessarytotakethisintoaccountexplic-

itly;wecansimplysupposethatthisandtheotherparton

densitieshavedependenceonthespinstateofthehadron

states�p�and�p��. Theusualquarkdensityfi/p(x,⌅)isobtainedbysetting

t⇥0andx1⇥x2⇥xinEq.⇤4�.Inaddition,itwouldappear

thatonehastoremovethetime-orderingoperationfromthe

operatoroperatorsinEq.⇤4�toobtaintheoperatorusedfor

thepartondensitiesassociatedwithinclusivescattering�17�.

Weneedtime-orderedoperatorsinourpresentworkbecause

4
Infact,ourwholepaperappliestoamoregeneralcase.The

final-stateprotoninEq.⇤1�maybereplacedbyageneralbaryon:a

neutron,forexample.Thentheexchangedobjectnolongerhasto

havevacuumquantumnumbers.Theindexiinthefactorization

theoremisthentobereplacedbyapairofindicesfortheflavorsof

thetwoquarklinesjoiningthepartondensityfi/ptothehardscat-

tering.Similarly,thetwoquarklinesenteringthemesonmaybe

different,andtheindexjistobereplacedbyapairofindices.

FIG.2.Typicallowest-ordergraphsforH.

FIG.1.Factorizationtheorem.
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�

⇥⇥
�⌥

⌥ dy�

4⌃
e�ix2p

⇤y�
⇥p��T⌦̄⇤0,y�,0T�✏

⇤P⌦⇤0 ��p�,

⇤4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�

⇥⇥
�⌥

⌥ dy�

4⌃
e�ix2p

⇤y�
⇥p��T⌦̄⇤0,y�,0T�✏

⇤P⌦⇤0 ��p�,

⇤4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�
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⌥ dy�
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where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�
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where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .
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partonic scattering process, which is calculable in powers of . The indices label

the different parton species. The contribution of diagrams in which the hard scattering process

involves more than the minimum number of partons is suppressed by . An important con-

sequence of factorization is that the –dependence of the amplitude rests entirely in the GPD.

Thus, different processes probing the same GPD should exhibit the same –dependence.

4.2 Space–time picture: “Squeezing” of hadrons

The physics of hard exclusive processes at small becomes most transparent when following

the space–time evolution in the target rest frame. As in the case of inclusive scattering, this

approach allows one to expose the limits of the leading–twist approximation, and to quantify

power corrections due to the nite transverse size of the produced meson.

In exclusive vector meson production, , one can identify three distinct stages

in the time evolution in the target rest frame. The virtual photon dissociates into a dipole

of transverse size at a time coh before interacting with the

target, cf. Eq. (3). The dipole then scatters from the target, and “lives” for a time

before forming the nal state vector meson. The difference in the time scales is due to the

smaller transverse momenta (virtualities) allowed by the meson wave function as compared to

the virtual photon.

In the leading logarithmic approximation in QCD , the effects of QCD radiation can

again be absorbed in the amplitude for the scattering of the small–size dipole off the target. It

can be shown by direct calculation of Feynman diagrams that the leading term for small dipole

sizes is proportional to the generalized gluon distribution, eff , where eff

[7]. A simpler approach is to infer the result for the imaginary part of the amplitude from

the expression for the cross section, Eq. (6), via the optical theorem. The imaginary part is

proportional to the generalized gluon distribution at and . At sufciently large

t

x
1

!xx
1

process
Hard scattering

amplitude
Meson distribution

Generalized
parton distribution

f

H

!
"*

L

M

Figure 4: Factorization of the amplitude of hard exclusive meson production, Eq. (12).
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Baryo-baryonic

t-dependence only from GPD’s

transverse spatial 
distribution of partons

f(x, �) ⌘
Z

d2⇥�ei
⇥�?�f(x, x, t), �t = �2

ρ - transverse distance 
from the c.m. of proton �c.m. =
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Best seen in the Breit frame

Before the interaction

N γ*
➠ (p,p)   (0, q)  

After photon absorption: for m2meson system= const, m2baryon=const, x=const, Q2→∞

Meson system
fast left movers➠

Baryon system
fast right movers  ➠

No soft interactions between left and right movers is possible provided the meson system has a 
small size. Insured by the choice of γ*L

For γ*T  nonperturbative contribution is suppressed only by ln Q2 similar to F2N(x,Q2)

Signature differences between VM production with  γ*T  and γ*L  are
● larger t-slope for “ γ*T

                                         ● increase of σL/ σT with  W at mixed Q2

Difficult measurements - H1 sees some evidence for a slighter larger σT t-slope, ZEUS does not.

❍  ❍



Vector meson diffractive production: Theory and HERA data

Space-time picture of Vector meson production at small x in the
target rest frame

(d)

i

γ

>>

t
2k

z(1-z)2Q

x
N

m

1
=

fx
N

m

1
=

i

L

T

γ d
*

q

q

V

l l l

σ
Vγ

ψψ

⇒ Similar to the π + T → 2jets + T process, A(γ∗
L + p → V + p) at pt = 0

is a convolution of the light-cone wave function of the photon Ψγ∗→|qq̄〉, the
amplitude of elastic qq̄ - target scattering, A(qq̄T ), and the wave function of
vector meson, ψV : A =

∫

d2dψL
γ∗(z, d)σ(d, s)ψqq̄

V (z, d).

M.Strikman



The leading twist parameter free answer is BFGMS94

dσL
γ∗N→V N

dt

∣

∣

∣

∣

t=0

=

12π3ΓV →e+e−MV α2
s(Q)η2

V

∣

∣

(

1 + iπ
2

d
d ln x

)

xGT (x, Q2)
∣

∣

2

αEMQ6N2
c

. Here, ΓV →e+e− is the decay width of V → e+e−;

ηV ≡
1

2

∫

dz d2kt
z(1−z) ΦV (z, kt)

∫

dz d2kt ΦV (z, kt)
→ 3 |Q2→∞

Note: In the leading twist d=0 in ψV (z, d). Finite b effects in the meson wave
function is one of the major sources of the higher twist effects.

M.Strikman



d

F2 Casimir operator  of color SU(3)

F2 F2(quark) =4/3 (gluon)=3

Consider first “small dipole - hadron” cross section

Comment:   This simple picture is valid only in LO.  NLO would require  introducing mixing of different 
components.  Also, in more accurate expression there is an integral over x, and an extra term due to 
quark exchanges. However the general pattern is now tested and works.
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Baym, Blattel, F&S 93

Interaction of fast particles in QCD is expected to differ qualitatively from soft dynamics

⌅dipole�T
inel (x, d) =

⇤2

3
F 2d2�s(⇥/d2)xGT (x,⇥/d2)

Important at 
Edipole < 10 

GeV

⇤(d, xN ) =
⇥2

3
�s(Q2

eff )d2
�
xNGN (xN , Q2

eff ) +2/3xNSN (xN , Q2
eff )

�
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The interaction cross-section, σ̂ for CTEQ4L, x = 0.01, 0.001, 0.0001,
λ = 4, 10. Based on pQCD expression for σ̂ at small dt, soft dynamics at
large b, and smooth interpolation. Provides a good description of F2p at
HERA and J/ψ photoproduction.

Frankfurt, Guzey, McDermott, MS 2000-2001

M.Strikman

HERA data confirm a fast increase of the  cross sections of interaction  small 
dipoles with energy predicted by pQCD due to xGN∝x-ω(Q), ω∈ 0.2 ÷ 0.4   

Provided a reasonable prediction for  σL

19
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d

Predictions: 

A rather slow  convergence of the t-
slopes B  of ρ and J/ψ at large Q  

d�

dt
� exp(Bt)

13 Oct 2005 18:17 AR AR257-NS55-10.tex XMLPublishSM(2004/02/24) P1: KUV

SMALL-x PHYSICS 425

Figure 8 The average dipole size, d, (left) and the effective scale, Q2
eff, (right) in

exclusive vector meson production (ρ, J/ψ, ϒ) by longitudinally polarized photons,
as a function of Q2 (26, 56). Also shown are the average values of d in the integrand
of the expression for the inclusive cross section, σL .

HERA data on heavy and light vector meson production. The data confirm in
particular the following predictions of this picture:

! Increase of cross sections with energy. Equation 19 implies that dσ/dt(t = 0)
grows with energy as [xG(x, Q2

eff)]
2, with Q2

eff estimated to be ∼3 GeV2.
When combined with the LO gluon density obtained from fits to DIS data, this
implies a growth ∝ W 0.8. Such behavior has been observed for ρ production
at Q2 = 10–20 GeV2, and for J/ψ production starting from Q2 = 0 (57).
The later onset of the hard regime for ρ electroproduction is due to the rather
slow “squeezing” of the qq̄ configuration in the ρ meson; it reaches a size
comparable to that of the J/ψ only at Q2 ∼ 20 GeV2 (Figure 8).3 The
naive choice Q2

eff = Q2 would imply a too fast growth (Figure 5). For soft
interactions, on the other hand, dσ/dt(t = 0) ∝ W 0.32, and the growth is
even smaller for the cross section integrated over t.

! Decrease of cross sections with Q2. The decrease with Q2 of σL for ρ-meson
production, and of the total cross section for J/ψ production, is slower than
1/Q6, owing to the Q2-dependence of αs G in Equation 19, as well as finite-
size (higher-twist) effects. This is best observed in J/ψ electroproduction,
where the model of Reference (55), which neglects finite-size effects, predicts

3In the case of ρ-meson production initiated by transverse photons, the squeezing is gener-
ated by the Sudakov form factor, as well as by the more rapid increase with energy of the
small size contribution. The observed behavior of σL/σT can be fitted within the current
models (58).
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 Weak Q dependence of B(J/ψ)  

Onset of fast increase of σ(γ*→ρ) 
only at large Q 
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●
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Figure 28: The value of the slope b from a fit of the form dσ/d|t| ∼ e−b|t| for the
reaction γ∗p → ρ0p, as a function of Q2. The lines are the predictions of models
as denoted in the figure (see text).
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Drop of  B is well reproduced by dipole  
approximation (in case of FKS actually a 

prediction of 12 years ago)

B
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electroproduction to the slope of  J/ψ 
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Transverse  distribution of gluons can be extracted from 
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B = B0 + 2��
IP ln(x0/x)



γ In LT limit  x1 -x << x1  

however due to DGLAP evolution skewed GPD 
kinematics for large Q probes diagonal GPD at Q0 scale

G(x, x, t) � G(x, t) =
�

d2�e�i⇤��� G(x, �)
transverse spatial distribution of 

gluons

x
ρ

xP
longitudinal

tra
ns

ve
rs

e

�
d2�G(x, �) = G(x) total gluon density

A(�⇤ + p ! ”Onium” + p) / G(x1, x1 � x, t)

x =
Q2 + m2

V

W 2

Transverse distributions: Exclusive processes

2 J /ψ, φ

ΔT

Q

GPDN (N )

t

x x' 

hard

x
gluons

ρ

• Hard exclusive meson production

Meson produced in small–size qq̄ configuration

QCD factorization theorem Q2
eff ! |t|

Collins, Frankfurt, Strikman 96

GPDs: Partonic form factor of nucleon,
universal, process–independent Ji 96, Radyushkin 96

Operator definition 〈N ′| twist-2 |N〉,
renormalization, non-pert. methods

• Transverse spatial distribution of gluons x′ = x

G(x, ρ) =

∫

d2∆T

(2π)2
e−iρ∆T GPD(x, t) 2D Fourier

Tomographic image of nucleon at fixed x,
changes with x and Q2

• Large x: Quark GPDs, polarization,
longitudinal momentum transfer x′ != x
JLab12: DVCS, meson production

Parton  form factors of nucleon - 
universal (process independent)

x1 x1 -x



Dipole fit to the two-gluon form factor with x-independent M2~ 1 GeV2   gives a reasonable description of the data F &S 02; 
gluon distribution is more compact than quark one for x ~ 0.02- 0.05 - can be quantitatively explained as effect of soft pions 
- Weiss & MS 04. Many implications for LHC and correlations of partons in nucleons

Small size of J/ψ - t-dependence of J/ψ  photo/electro production measures the 
two gluon f.f. of nucleon and hence transverse spread of gluons

→ M2~ 1.1 GeV2  (correcting for finite size of J/psi) 



J/ψ elastic photo and electro production
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Figure 10: The values of the t slope parameter b(Wγp) as a function of Wγp in the range |t| <
1.2 GeV2 for a) photoproduction and b) electroproduction. 〈Q2〉 indicates the bin centre value
in the Q2 range considered. The data points are the results of one-dimensional fits of the form

dσ/dt ∝ ebt in Wγp bins. The inner error bars show the statistical errors, while the outer error

bars show the statistical and systematic uncertainties added in quadrature. The solid lines show

the results of the two-dimensional fits (equation 2) as in figure 9. In a) the data are compared

with results from the ZEUS collaboration [6].
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Binkley et al

15

At large Q2 α’ 
consistent with zero 
but there is a tension 

between different 
data sets!!!

t-slope for J/ψ especially at Q2=9 
GeV2 is systematically lower than for 
DVCS - transverse quark distribution
 is somewhat  wider than for gluons
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the analysis of ref.20 .
.
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Exponential t-slope γ + p →  J/ψ + p
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+
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H1/ZEUS fits
parametrization

Fig. 2. The exponential t–slope, BJ/� , of the di�erential cross section of exclusive
J/� photoproduction measured in the FNAL E401/E458,13 HERA H1,15 and ZEUS14

experiments, as a function of x = M2
J/�/W

2. (In the H1 and ZEUS results the quoted

statistical and systematic uncertainties were added linearly.) The dashed lines represent
the published two–dimensional fits to the H1 and ZEUS data.14,15 The parameter Bg in
the exponential two–gluon form factor is related to the measured J/� slope by Eq. (4).
Our parametrization Eqs. (5)–(8) is shown by the solid line.

The data can be fitted as

Bg(x) = Bg0 + 2�⇥
g ln(x0/x), (5)

x0 = 0.0012, (6)

Bg0 = 4.1 (+0.3
�0.5) GeV�2, (7)

�⇥
g = 0.140 (+0.08

�0.08) GeV�2. (8)

Fits of similar quality are produced with a dipole with

Fg(x, t|Q2) = (1� t/m2
g)

�2, Bg = 3.2/m2
g. (9)

The spatial distributions of gluons in the transverse plane for two fits
are given by

Fg(x, ⇤|Q2) =

�
⇤

⇥

(2⇥Bg)
�1 exp[�⇤2/(2Bg)],

[m2
g/(2⇥)] (mg⇤/2) K1(mg⇤),

(10)

These transverse distributions are similar for average ⇤, leading, for exam-
ple, to nearly identical distributions over the impact parameter for pro-
duction of the dijets in pp collisions16 . At the same time, dipole fits gives

B = B(W0) + 2�0 ln(W 2/W 2
0 )
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pQCD (DGLAP approximation)  - rather 
weak Q evolution of  α’ - Frankfurt, MS, 

Weiss 03

Change of  transverse spread   with x due to DGLAP evolution - leads to effective α´ which 
drops with Q but still remains finite even at very high Q.
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Interplay of hard and soft interactions in pp collisions, rate of multiple hard collisions is determined by 
the value of <ρ2g> as compared to much larger radius of soft interactions. PYTHIA assumed before 
this year <ρ2g> = <ρ2q>  a factor ~ 2 -- 2.5 smaller than given by analysis of GPDs from J/ψ 
production and x-independent.  Two exponentials - roughly  equivalent to dipole with m2= 
2GeV2 (Andrzej Siodmok). No dependence on virtuality or x.  Difference is probably even 
bigger for   <ρ2q>. Evidence from  analysis of DVCS that <ρ2g> somewhat smaller than  <ρ2q>

Comparison with MC models 

Why these assumptions were made? 

To fit four jet cross section 

γ + p J/ψ + p, <E  > = 100 GeVγ

m2= 2GeV2 

http://www.physics.uoregon.edu/%7Esoper/UE2011/siodmok.pdf
http://www.physics.uoregon.edu/%7Esoper/UE2011/siodmok.pdf


D(x1, x2, p
2
1, p

2
2, ��) = G(x1, p

2
1, ��)G(x2, p

2
2, ��)

Independent particle approximation which could be reasonable for 
small x1,x2

In FSW03 we obtained this result using coordinate space representation - potential  problem uncertainties 
due to double Fourier transform - now we see it is pretty stable - since  F2g2(Δ) is essentially  measured 
directly.

Reminder (YuDok talk) 
General expression for rate of  DPI for collision of particles a and b in 2⊗2

F2g(x ⇠ 0.03, t) = (1� t/m

2
g)

�2
,m

2
g ⇠ 1.1GeV

2

1

S

=

Z
d

2�!�
(2⇡)2

Da(x1, x2,�
�!
�)Db(x3, x4,

�!
�)

Da(x1)Da(x2)Db(x3)Db(x4)
,

So we are better off than naive   S~  54 mb - still a factor of ~2 is missing:

S =
28⇡

m2
g

⇠ 32 mb.

1⊗2 ?
MC - two options - assume S=15 mb and choose mg2=2 GeV2. or assume S=30 mb 
and ignore the  data indicating smaller values of S. 



Gluon transverse size decreases with 
increase of x

Pion  cloud contributes for
x<Mπ/MN   [MS &C.Weiss 03]

Transverse size of large x partons is much 
smaller than the transverse range of soft 

strong interactions 

�
�2(x > 10�2

⇥
� R2

soft

⇐
Two scale picture
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• Gluonic transverse size - x dependence
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Q2�4GeV 2
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hard|Q2�40GeV 2

LHC

Can be measured in ultraperipheral 
collisions at  LHC
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Transverse distributions: Exclusive processes
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ΔT

Q

GPDN (N )
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hard

x
gluons

ρ

• Hard exclusive meson production

Meson produced in small–size qq̄ configuration

QCD factorization theorem Q2
eff ! |t|

Collins, Frankfurt, Strikman 96

GPDs: Partonic form factor of nucleon,
universal, process–independent Ji 96, Radyushkin 96

Operator definition 〈N ′| twist-2 |N〉,
renormalization, non-pert. methods

• Transverse spatial distribution of gluons x′ = x

G(x, ρ) =

∫

d2∆T

(2π)2
e−iρ∆T GPD(x, t) 2D Fourier

Tomographic image of nucleon at fixed x,
changes with x and Q2

• Large x: Quark GPDs, polarization,
longitudinal momentum transfer x′ != x
JLab12: DVCS, meson production
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The change of the normalized ρ–profile of the gluon distribution,
Fg(x, ρ; Q2), with Q2, as due to DGLAP evolution, for x = 10−3. The
input gluon distribution is the GRV 98 parameterization at Q2

0 = 3 GeV 2,
with a dipole–type b–profile.

M.Strikman

Shrinkage of the transverse distribution  with increase of  Q is very modest.
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The change of the average transverse gluonic size squared, 〈ρ2〉, due to
DGLAP evolution, for x = 10−2, 10−3 and 10−4.

M.Strikman

Change of  <ρ2(Q2)> with x due to 
DGLAP evolution - leads to effective α´ 
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The distribution of interactions over b for events with inclusive dijet trigger 
(Higgs production,...) is given by

P2(b) =

Z
d2⇥1

Z
d2⇥2�

(2)(⇤b� ⇤⇥1 + ⇤⇥2)Fg(x1, ⇥1)Fg(x2, ⇥2),

Fg(x, ⇥) =
m2

g

2�

⇣mg⇥

2

⌘
K1(mg⇥)

Fg(x, t) = 1/(1� t/mg(x)
2)for 

P2(b) =
m2

g

12�

✓
mgb

2

◆3

K3(mgb)
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account that their transverse centers are separated by a dis-
tance b—the impact parameter of the pp collision; see Fig. 7.
This implies that the distribution of the cross section for such
events over the impact parameter b is given by

P2!b "#! d2$1! d2$2% (2)!b!!1"!2"

#Fg!x1 ,$1"Fg!x1 ,$2", !31"

where x1$2q! /!s , cf. Eqs. !29" and !30", and the scale of
the gluon $ profiles is q!

2 . This distribution is normalized
such that the integral over all b is unity. Since it has the form
of a convolution in the parton transverse positions, it can also
be expressed as the Fourier transform of the square of the
two-gluon form factor, Eq. !20". In particular, for the two-
gluon form factor of dipole form, Eq. !22", used in our model
of the $-dependent gluon distribution !see Sec. III" one ob-
tains

P2!b "$
mg
2

12& "mgb
2 # 3K3!mgb ", !32"

where mg should be substituted by the value corresponding
to x1$2q! /!s and Q2$q!

2 , see Eq. !27".
Figure 8 shows the distribution P2(b) for a center-of-

mass energy of !s$14000 GeV !LHC", and two values of
the jet momentum, q!$10 GeV and 100 GeV. One sees that
the distribution is rather insensitive to the precise value of
the jet momentum. This can be explained by the relatively
slow decrease of '$2( with increasing x and Q2. The average
values of impact parameter squared, 'b2( , calculated with
these distributions, is 0.71 fm2 for q!$10 GeV and
0.63 fm2 for q!$100 GeV.
In Fig. 8 we assume production of a two-jet system at

zero rapidity, cf. Eq. !30". If we considered instead a two-jet
system at some nonzero rapidity, y, the !anyway weak" de-
pendence of the $ distributions in Eq. !31" on x1 and x2
would work in opposite directions, leading to an extremely
weak dependence of our results on the rapidity of the pro-
duced system over a wide range of y.

In Fig. 9 we compare the b distribution for the hard dijet
trigger, P2(b) !solid line", with the b distribution for generic
inelastic events, P in(s), estimated in Sec. II. The short-
dashed line in Fig. 9 shows the distribution P in(s) obtained
from the parametrization of the elastic pp amplitude of Islam
et al. )9* !‘‘diffractive’’ part only". Shown are the results for
!s$14000 GeV !LHC", 1800 GeV !Tevatron p̄p), and 500
GeV !RHIC". A momentum of q!$25 GeV was assumed for
the dijet trigger. One sees that in all cases the b distribution
for dijet events is much narrower than the one for generic
inelastic collisions. The corresponding averages 'b2( are
given in Table I. The average 'b2( for the hard dijet trigger
rises much more slowly with s than for generic inelastic col-
lisions, which are dominated by soft physics. Thus, the re-
duction in effective impact parameters due to the dijet trigger
is most pronounced at LHC energies, where 'b2( is reduced
to +1/4 its value for generic inelastic collisions.
A further reduction of the effective impact parameters can

be achieved by a trigger on events with two dijets, i.e., two
binary hard parton collisions !such processes can be easily
distinguished from the leading twist 2→4 processes in the
collider experiments; see, e.g., Ref. )7*". It was estimated in
Ref. )18* that this reduces 'b2( by a factor of two as com-
pared to the single dijet trigger. In our approach, the b dis-
tribution for the double dijet trigger is given by

P4!b "$
P2
2!b "

! d2bP2
2!b "

. !33"

For simplicity we assume here identical x1 and q! for the

FIG. 7. Illustration of the overlap integral of parton distributions
in the transverse plane, defining the b distribution for binary parton
collisions producing a dijet, Eq. !31".

FIG. 8. The b distribution for the trigger on hard dijet produc-
tion, P2(b), obtained with the dipole form of the gluon b profile,
Eq. !32", for !s$14000 GeV and q!$10 GeV and 100 GeV. The
plots show the ‘‘radial’’ distributions in the impact parameter plane,
2&bP2(b). Also shown is the corresponding distribution for a trig-
ger on double dijet production, P4(b), with the same p! .

DIJET PRODUCTION AS A CENTRALITY TRIGGER . . . PHYSICAL REVIEW D 69, 114010 !2004"

114010-7

Quantifying two scale picture - b distributions for dijet trigger and minimal bias 
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Figure 6: Geometric probability for two gluons to collide (left y-axis) and inclusive jet pro-
duction rate with respect to the bulk one (right y-axis). Solid and dashed lines represent two
parameterizations of P

2

(b) as given by Eq. (11) in [2].

We have extracted R for charged-particle jets for two p

T

thresholds, p

ch.jet

T

> 5 GeV/c160

and p

ch.jet

T

> 30 GeV/c, from the data taken from Ref. [8] and presented them in Figs. 7(a,161

b). The ratios show a very strong increase beyond N

ch

⇠ 80. To compare Eq. (10) with162

the data in Figs. 7 (a, b) we need ideally to plot the rate of jet production as function of163

N

UE

ch

. Experimentally, the purest way to measure the rate is to select jets produced in one164

bin of rapidity with multiplicity measured in another bin of rapidity. By doing this, we would165

avoid the contribution of the hadrons produced in the hard trigger component of the event.166

In practice, with the current data, we can only try to correct roughly for this e↵ect by using167

MC simulations (pythia 6 z2*) to estimate the average charged-particle multiplicity in168

the selected jets: �N

ch

= 10 (15) for p

ch.jet

T

> 5 (30) GeV/c. Hence, to correct for the jet169

contribution we need to reduce the experimental ratios by a factor P (N
ch

)/P (NUE

ch

) and plot170

them as a functions of the N

UE

ch

, which is N
ch

��N

ch

here. The di↵erential N
ch

distribution171

used for computation of the corrections is taken from [14]. Since the low-N
ch

events have large172

fluctuations in |⌘|, the correction is not reliable for N
ch

 50 and the corresponding points are173

not plotted in Figs. 7(a, b). One can see that the corrected ratios are approximately the same174

for two p

T

cuts. This is consistent with the hypothesis that the rates are determined by the175

initial state of colliding protons.176

It is worth noticing, that ALICE has performed studies of a similar quantity, R, i.e. the ratio177

of the J/ multiplicity as a function of N
ch

normalized to minimum bias J/ multiplicity [3].178

They also reported the same ratio for D and B-meson production. The observed dependences179

of R on N

ch

/ hNi are very similar to the one we observe after correcting for the jet contribution180

(Fig. 8). It is worth emphasizing here, that similarity between R in the two measurements is181

highly non-trivial as the rapidity intervals used for determination of N
ch

di↵er by a factor of182

⇠ 3.183

We mentioned above that the inclusive rate of the jet production at given b as compared to184

the bulk rate can be calculated using the information about spatial (transverse) gluon distri-185

butions in nucleons (Eq. (11) of [2]). Hence, it is provocative to consider relative contributions186

8



σtot = 2
Z
d2bReΓ(s,b)

σinel =
Z
d2b(1� (1�ReΓ(s,b))2� [ImΓ(s,b)]2

σel =
Z
d2b|Γ(s,b)|2

Impact parameter amplitude  in hp interaction
Study of the  elastic scattering allows to determine how the strength of the interaction depends on 
the impact parameter, b:

Γh(s,b) =
1
2is

1
(2π)2

Z
d2~qei~q~bAhN(s, t)

Γ(b) = 1 ⌘ σinel = σel - black disk regime -BDR

; ImA= sσtot exp(Bt/2)

)
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⌘
Z

d2b�Inel(b)

�Inel(b) ⇡ 2Re�(b)� [Re�(b)]2



Γh(s,b) =
1
2is

1
(2π)2

Z
d2~qei~q~bAhN(s, t)where

Pin(s, b) =
2Re �pp(s, b)� |�pp(s, b)|2

�in(s)

Compare with b-distribution for  minimal bias (generic) inelastic pp scattering

Γ(b) = 1 ⌘ σinel = σel - black disk regime (BDR).
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Warning: b for dijet event and for minimal bias events are a priori two different quantities since ρi are 
distances from c.m..  However for small x1,x2 of colliding partons they are close - recoil effects are small

If x1,x2 ~ 1 this would be b~0 collision.
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Overlap function Γinel(b) and probability of inelastic collision with an impact 
parameter smaller than b using fit to the elastic differential cross section (solid 
line)  and exponential parameterization of the elastic cross section

The smallness of the real part of f(s, t) corresponding to small Im�(s, b) implies that one can54

compute G with high precision either directly from experimental results (see Fig. 3 in [9])55

or assuming the Gaussian profile of the elastic contribution �(s, b) (see Fig. 4 in [2]). The56

obtained shapes of G(s, b) (see Fig. 1 (a)) are similar and show the pattern with rather flat57

shoulder at small impact parameters b with subsequent quite steep fall-o↵. Attempts to fit it58

by a Gaussian fail because the plateau up to b ⇡ 0.4� 0.5 fm is very flat. This is discussed in59

more details in [12].60

When compared to ISR results [9], the overlap function and, consequently, the blackness61

(opacity) of protons at 7 TeV somewhat increases in the central region approaching complete62

saturation. At the same time, a much stronger increase, about 40 %, is observed in the63

peripheral region near 1 fm. Therefore, the periphery starts to play an increasing role in64

multiparticle production.65
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Figure 1: Overlap function (a) and probability of inelastic collision with an impact parameter
smaller than b (b), according to [9] (solid lines) and [2] (dashed lines).

To illustrate the interplay between the black and gray regions we compute the relative66

contribution of the impact parameters smaller than b to the inelastic cross section:67

P

inel

(b) =
Z

b

0

d

2

bG(s, b)/�
inel

(s), (5)

where �

inel

- inelastic cross section of pp collisions. One can see from Fig. 1 (b) that the main68

contribution to the inelastic cross section originates from the gray area while the dark region69

(b  0.4 fm) constitutes only about 8 %.70

2.2 Geometry of dijet production71

The transverse distribution of partons in nucleons is given by the generalized parton distri-72

butions f

j

(x,Q2

, t), which are measured in exclusive hard processes. In these processes we73

consider Q ⇠ p

jet

T

. Their Fourier transform, f
j

(x,Q2

, ⇢), determines the geometry of the inclu-74

sive hard interactions [13]. The probability that the dijet collision occurs at a given b is75

P

2

(x
1

, x

2

, b|Q2) ⌘
Z
d

2

⇢

1

Z
d

2

⇢

2

�

(2)(b� ⇢1 + ⇢2)

3

Γ in
el
(b

)

Interaction at LHC is black for b< 0.8 fm  but gray interactions give dominant 
contribution to the total inelastic cross section. Inelastic diffraction = 0 at BDR 
but at LHC it is 20 -- 30% of σinel.  



Impact parameter distributions of inelastic pp collisions 
at √s = 7TeV. Solid (dashed) line: Distribution of events 
with a dijet trigger at zero rapidity, y1,2 = 0, c, for pT = 
100 (10) GeV . Dotted line: Distribution of minimum–
bias inelastic events (which includes diffraction).

Median impact parameter b(median) of events with 
a dijet trigger, as a function of the transverse 
momentum pT , cf. left plot. Solid line: Dijet at zero 
rapidity y1,2 = 0. Dashed line: Dijet with rapidities 
y1,2 = ±2.5. The arrow indicates the median b for 
minimum–bias inelastic events.

Weak dependence of P2(b) on rapidity and pT of the dijet
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Much smaller impact parameters for hard dijet trigger
Impact parameters for hard dijet triggers with 
different rapidities, pt’s are practically the same

Universal underlying event for dijet triggers with much higher 
activity  than for minimal bias events

ATLAS : MB, UE and MC tuning Emily Nurse 

UE distributions 

•! Select events with "1 charged particles, pT > 1 GeV 

•! Direction of hard scatter  =  leading charged particle 

•! Define a region transverse to the hard scatter  

•! Study charged particle and pT density as a function of 

the lead pT in different regions. 

6 

!s lumi. Nev  

0.9 TeV 9 µb-1 202,285 

7 TeV 6.8 µb-1 265,622 

Pythia (v6.4.21) tune to diffraction suppressed MB and UE data 

Start with MC09c (ATLAS tune to CDF minbias+UE data and D0 dijet angular 

correlations with LO* PDFs [PHYS-PUB-2010-002]).  

6

to DGLAP evolution would change the results in Fig. 5
by less than ∼ 5%. Also shown is the median b with a
trigger on a jets at non-zero rapidity y1 = −y2 = 2.5,
which amounts to an effective increase of x1,2 by a factor
cosh y ≈ 6, cf. Eq. (16) and the discussion in Sec. V. In
all cases, the median impact parameter in jet events is
far smaller than that in minimum–bias collisions, which
is given by b(median) = 1.32

√
B for the parametrization

of Eq. (13).
To conclude this discussion, a comment is in order con-

cerning the interpretation of the impact parameter dis-
tributions in pp events with hard processes. Our analysis
based on Eq. (10) shows that pp events with at least one
hard process (and no other requirements) are on average
more central than minimum–bias inelastic events. This
statement concerns the relative distribution of impact pa-
rameters in a collective of inelastic pp events and how it
is changed by imposing the requirement of a hard pro-
cess. One should not confuse this with statements about
the absolute probability for a hard process (in a certain
rapidity interval) in a pp collision at certain impact pa-
rameters. In fact, the analysis of Refs. [21, 22] shows
that there can be a substantial absolute probability for
a hard process in pp collisions at large b, and that uni-
tarity places non–trivial restrictions on the dynamics of
hard interactions in peripheral collisions.

IV. TRANSVERSE MULTIPLICITY AS AN

INDICATOR OF HARD DYNAMICS

The estimates of the previous section show that pp
events with a hard parton–parton collision are much more
central than minimum–bias events, and that the average
impact parameters change only very little for pT above
∼ 2GeV. At the same time, it is known that the overall
event characteristics, such as the average multiplicity, de-
pend strongly on the centrality of the underlying pp col-
lision. Combining these two observations, we can devise
a practical method to determine down to which values
of pT mid–rapidity particle production is predominantly
due to hard parton–parton collisions. The observable of
interest is the transverse multiplicity, measured in the
direction perpendicular to the transverse momentum of
the trigger particle or jet. It is not directly affected by
the multiplicity associated with the trigger or balancing
jets, but is indirectly correlated with the presence of a
hard process because of its dependence on the centrality.
Based on the results of Figs. 4 and 5 we predict that the

transverse multiplicity should be practically independent
of pT of the trigger as long as the trigger particle orig-
inates from a hard parton–parton collision which “cen-
ters” the pp collision. Furthermore, the transverse multi-
plicity in such events should be significantly higher than
in minimal–bias inelastic events, since the known mecha-
nisms of particle production — minijet interactions, mul-
tiple soft interactions, etc. — are much more effective in
central collisions. When measuring the transverse multi-

pT

p critT,
pT

(N )

trigger particle
from soft int.

trigger particle
from hard process

min.
bias

FIG. 6. Schematic illustration of the expected dependence of
the transverse multiplicity, N(pT ), on the pT of the trigger.

plicity as a function of pT of the trigger, we thus expect
it to increase from its minimum–bias value at low pT and
become approximately constant at pT ∼ few GeV (see
Fig. 6). The point where the transition happens, pT,crit,
indicates the critical value of pT above which particle pro-
duction is dominated by hard parton–parton processes.

Interestingly, the predicted increase and eventual flat-
tening of the transverse multiplicity agrees well with the
pattern observed in the existing data. At

√
s = 0.9TeV

the transition occurs approximately at pT,crit ≈ 4GeV
[6], at

√
s = 1.8TeV at pT,crit ≈ 5GeV [4], and the pre-

liminary data at 7TeV indicate somewhat larger values
of pT,crit = 6 − 8GeV [5, 7]. We thus conclude that the
minimum pT for hard particle production increases with
the collision energy. Note that we consider here an inclu-
sive trigger; the procedure adopted in the experimental
analysis (selection of the fastest particle in the measured
rapidity interval) somewhat enhances the contribution of
soft mechanisms in particle production.

It is worth noting that the overall pattern described
here is reproduced by the tunes of current MC models;
cf. the comparisons in Refs. [4–7]. This is because these
models effectively include the key feature used in our
analysis — the narrow impact parameter distribution of
dijet events (although 〈b2〉 in these models is too small by
a factor ∼ 2), and impose a cutoff on the minimal pT of
the minijets. Our point here is that the observed pattern
can be explained naturally on the basis of the transverse
geometry of pp collisions with hard processes, without in-
volving detailed models. This allows one to determine in
a model–independent way where the dominant dynamics
in particle production changes from soft interactions to
hard parton–parton processes.

For pT lower than pT,crit the relative contribution of
hard processes to particle production starts to decrease.
In terms of the transverse geometry, this means that the
observed trigger particle can, with some probability, orig-
inate from either peripheral or central collisions in the
sense of Fig. 1. We can estimate the fraction of particles
produced by hard interactions in this “mixed” region in a

Schematic illustration of the expected dependence of
the transverse multiplicity, N (pT ), on the pT of the trigger.
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N(pT ) = �
hard

(pT )Nhard

+ [1� �
hard

(pT )]Nsoft

large b 
softish

Warning: experimental 
procedure - selection of 
particle with maximal pt 

is not exactly inclusive 
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∆φ−∆φ

leading track

toward
|∆φ| < 60◦

away

|∆φ| > 120◦

transverse

60◦ < |∆φ| < 120◦
transverse

60◦ < |∆φ| < 120◦

FIG. 1. Definition of regions in the azimuthal angle with respect to the leading track.

the largest pT in the event – referred to as the “leading” track – is used to define regions of

the η–φ plane which have different sensitivities to the UE. The axis given by the leading track

is well-defined for all events, and is highly correlated with the axis of the hard scattering in

high-pT events. A single track is used as opposed to a jet or the decay products of a massive

gauge boson, as it allows significant results to be derived with limited luminosity and avoids

the systematic measurement complexities of alignment with more complex objects.

As illustrated in Fig. 1, the azimuthal angular difference between charged tracks and

the leading track, |∆φ| = |φ − φleading track|, is used to define the following three azimuthal

regions [6]:

• |∆φ| < 60◦, the “toward region”;

• 60◦ < |∆φ| < 120◦, the “transverse region”; and

• |∆φ| > 120◦, the “away region”.

The transverse regions are most sensitive to the underlying event, since they are generally

perpendicular to the axis of hardest scattering and hence have the lowest level of activity

from this source. However, the hard scatter can of course also emit particles perpendicular
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FIG. 3. ATLAS data at 900 GeV (left) and at 7 TeV (right) corrected back to particle level,
showing the density of the charged particles 〈d2Nch/dη dφ〉 with pT > 0.5 GeV and |η| < 2.5, as a
function of pleadT . The data are compared with PYTHIA ATLAS MC09, DW and Perugia0 tunes,

HERWIG + JIMMY ATLAS MC09 tune, and PHOJET predictions. The top, middle and the
bottom rows, respectively, show the transverse, toward and away regions defined by the leading
charged particle. The error bars show the statistical uncertainty while the shaded area shows the

combined statistical and systematic uncertainty.
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Underlying event distribution

 Warning - when determining enhancement factor for smaller √s ~ 1 ÷2 TeV  -  underlying event  one 
should subtract jet contribution in the away region more carefully - smaller angular range. 
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Two-Jet Production at Large p⊥ 247

Figure 10.5: Color antennae for hard scattering g1+g2 → g3+g4 in the case
when t-channel gluon exchange dominates (Θs"1).

For example, for the gg scattering events with small scattering angle
Θs " 1, when one-gluon exchange dominates in t-channel, two color con-
figurations of the participating gluons contribute, as shown in Fig:10.5. Here
the associated soft radiation reads (see Appendix)

8π
dNg1g2

dΩ!n
=

{
(̂13) + (̂24) +

1

2

[
(̂12) + (̂34) + (̂14) + (̂23)

]}
· N ′

g

(
ln

E

Λ

)
.

(10.6)
Pattern function (10.4) for 900 gg-scattering is displayed in Fig. 10.6(a). Note-
worthy to mention a symmetry between four quadrants. A different situation
occurs in the case of qg-scattering shown in Fig. 10.6(b). A large asymmetry
of about a factor of four between gg and qq quadrants in clearly seen here.
If detectable, this asymmetry would allow the separation of g- and q-jets on
an event-by-event basis. By moving to large rapidity one can select events
in which the fraction of the longitudinal momentum carried by one of the
partons is very large and the other is very small thus enriching contribution
from the qg-scattering.

Color	
antennae for hard scattering	
 g1 + g2	
→ g3 + g4 in the case 
when t-channel gluon exchange dominates (Θs ≪ 1). Leads to ridges. 

Contribution of color antennae to transverse multiplicity? 
Should grow with pT of the trigger? 

Key observation:  color antennae are functions of pT not sNN 
LHC - plateau transverse multiplicity Ntr(

p
s = 7 TeV)/Ntr(

p
s = 0.9 TeV)/ ⇡ 2

Transverse multiplicity predominantly  due to MPI’s. At large pT pQCD antennae 
contributions should be subtracted. Subtraction is more important for smaller
 √s ~ 2 TeV (for fixed pt)



Conclusions from analysis of the ATLAS and CMS data 

pQCD become the dominate charged 
particle production mechanism at 
relatively large and growing with s  pT:

pT,crit(
p
s = .9 TeV) ⇠ 4 GeV/c,

pT,crit(
p
s = 1.8 TeV) ⇠ 5 GeV/c,

pT,crit(
p
s = 7.0 TeV) ⇠ 6 – 8 GeV/c

Flattening of dependence on pT for pT > pT,crit

Geometrical considerations explain the observed pattern confirm difference of transverse scale for 
minimal bias and hard collisions  and indicate that mechanisms different from two parton collisions 
are important for hadron production with    pT < 3 GeV/c
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Energy dependence of transverse multiplicity for central collisions ∝√s0.34 is much stronger than for 
peripheral collisions where it is practically  energy independent. 

A number of recent experimental UE studies use the above described techniques [4–7].99

ALICE and ATLAS collaborations use a leading charged particle as a reference, while CMS100

collaboration uses a leading charged-particle jet. Despite very di↵erent pseudorapidity ranges101

of ALICE and ATLAS experiments (⌘ <0.8 and ⌘ <2.5), their results are very close. Of102

particular interest is particle density in transverse region defined as follows:103

µ

tr

=
N

tr

ch

�⌘�(��)
, (7)

where N tr

ch

is the charged-particle multiplicity in the transverse region, �⌘ is the pseudorapidity104

range studied, �(��) is the azimuthal width of the transverse region. The transverse charged-105

particle density as a function of leading object at
q
(S) = 7 TeV is shown in Fig. 3. The106

dependence saturates at some p

T

= p

crit

T

, which is ⇡ 4� 5 GeV/c and ⇡ 8 GeV/c for leading107

charged particle and leading charged-particle jet techniques, respectively. According to the108

two-scale picture of the proton structure described in Sec. 1 and elaborated in Ref. [2] , the109

observed plateau can be interpreted as an indication of dominance of central collision.110

 (GeV/c)leader
T

p
0 2 4 6 8 10 12 14 16 18 20

tr
µ

0

0.5

1

CMS
ALICE

Figure 3: Charged-particle density in the transverse region as a function of p

T

of leading
object (CMS - charged-particle jet, ALICE - charged particle). CMS analyses particles with
p

T

> 0.5 GeV/c and |⌘| < 2.4, ALICE - p
T

> 0.5 GeV/c and |⌘| < 0.8.

Since we aim to reveal a connection between UE studies [4–7] and studies of jet proper-111

ties as function of N
ch

[8], we need to estimate the N

ch

that corresponds to the plateau of112

transverse multiplicity density. The N

ch

in [8] is defined as a total number of charged par-113

ticles with ⌘ < 2.4 and p

T

> 0.25 GeV/c, while µ

tr

is obtained with charged particles with114

p

T

> 0.5 GeV/c. From Fig. 3 we can see that the transverse multiplicity density saturates at115

µ

sat

tr

⇡ 1.0. The charged-particle multiplicity of UE can be roughly estimated in assumption of116

flat ⌘-distribution as follows:117

N

UE

ch

= µ

sat

tr

�⌘�� ⇡ 30, (8)

where �⌘ =4.8, �� = 2⇡ are the pseudorapidity and azimuthal angle ranges used in [8].118

Moreover, one should account for di↵erent p
T

cuts of charged particles. The correspondence of119

5

Charged-particle density in the transverse region as a function 
of pT of leading object (CMS - charged-particle jet, ALICE - 
charged particle). CMS analyses particles with pT >0.5GeV/c 
and |η|<2.4,  ALICE-pT >0.5GeV/c and  |η|<0.8.

Difference between onsets of flat regime is due to single 
particle carrying a fraction of jet momentum.

Azarkin, Dremin, MS 2014



Consider multiplicity - M (trigger)-  of an inclusive  hard process - dijet,...  as a 
function of  overall hadron multiplicity: 

Build the ratio: R =
M(trigger)

M(minimal bias)
If no fluctuations - maximal R due to effect of geometry - selection of b ~0

Using P2(b) =
m2

g

12�

✓
mgb

2

◆3

K3(mgb)

~4.5R = P2(0)⇥in(pp) =
m2

g

12�
⇥in(pp) MS 11

Test of geometrical picture and observing its breakdown at very high soft multiplicities

More central collision, larger the rate of the hard collisions per collision. Larger hadron 
multiplicity smaller b.   What are quantitative expectations. 

σ(min.bias)= σin(pp)  or 
smaller - diffraction 
excluded

40



Analysis of CMS data (Azarkin, Dremin , MS, 14)
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Figure 7: Ratio of N
j

at given N
ch

to N
j

of bulk of events: (a) - for charged-parctile jet
p
T

> 5GeV/c, (a) - for charged-parctile jet p
T

> 30GeV/c. The black solid lines represent data
sorted according the total N

ch

. Dashed blue lines represent the ratio if data would be sorted
according the UE N

ch

, however, the data points are plotted using total N
ch

. To corrected
the total N

ch

to the UE N
ch

, one need to subtract ⇡ 10 (15) particles for p
T

threshold of
5 (10) GeV/c.
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Figure 8: Relative yield of hard momentum processes as a function of N
ch

, which does not
include particles originating from the hard interactions. The di↵erential N

ch

distribution is
taken from [12].

9

Universality of scaling of for hard processes scales with multiplicity:   simple trigger - 
dijets(CMS) & direct J/ψ , D and B-mesons (Alice)

max value from geometry

reproduced by P2(b)

Superhigh multiplicities appear 
to require special rare 

configurations in nucleons 

41
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Figure 4: Fraction of events with N

ch

> N

fixed

ch

. The N

ch

is defined as a number of stable
charged particles with p

T

> 0.5 GeV/c and |⌘| < 2.4. The N

ch

distribution is taken from [14].
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Figure 5: Correspondence between impact parameter and N

ch

. N
ch

is defined here as a number
of charged particles with |⌘| < 2.4 and p

T

> 0.5 GeV/c. Since events with N

ch

> 35 are
e↵ectively central as shown below, the correspondence is not valid there.

7

Correspondence between impact parameter and Nch. Nch is defined here as a 
number of charged particles with |η| < 2.4 and pT > 0.5 GeV/c. Since events with Nch 
> 35 are effectively central as shown below, the correspondence is not valid there.
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❖ Transverse multiplicities with two dijet pair trigger

If no correlations between partons (too low rate of 4 jets) 

account that their transverse centers are separated by a dis-
tance b—the impact parameter of the pp collision; see Fig. 7.
This implies that the distribution of the cross section for such
events over the impact parameter b is given by

P2!b "#! d2$1! d2$2% (2)!b!!1"!2"

#Fg!x1 ,$1"Fg!x1 ,$2", !31"

where x1$2q! /!s , cf. Eqs. !29" and !30", and the scale of
the gluon $ profiles is q!

2 . This distribution is normalized
such that the integral over all b is unity. Since it has the form
of a convolution in the parton transverse positions, it can also
be expressed as the Fourier transform of the square of the
two-gluon form factor, Eq. !20". In particular, for the two-
gluon form factor of dipole form, Eq. !22", used in our model
of the $-dependent gluon distribution !see Sec. III" one ob-
tains

P2!b "$
mg
2

12& "mgb
2 # 3K3!mgb ", !32"

where mg should be substituted by the value corresponding
to x1$2q! /!s and Q2$q!

2 , see Eq. !27".
Figure 8 shows the distribution P2(b) for a center-of-

mass energy of !s$14000 GeV !LHC", and two values of
the jet momentum, q!$10 GeV and 100 GeV. One sees that
the distribution is rather insensitive to the precise value of
the jet momentum. This can be explained by the relatively
slow decrease of '$2( with increasing x and Q2. The average
values of impact parameter squared, 'b2( , calculated with
these distributions, is 0.71 fm2 for q!$10 GeV and
0.63 fm2 for q!$100 GeV.
In Fig. 8 we assume production of a two-jet system at

zero rapidity, cf. Eq. !30". If we considered instead a two-jet
system at some nonzero rapidity, y, the !anyway weak" de-
pendence of the $ distributions in Eq. !31" on x1 and x2
would work in opposite directions, leading to an extremely
weak dependence of our results on the rapidity of the pro-
duced system over a wide range of y.

In Fig. 9 we compare the b distribution for the hard dijet
trigger, P2(b) !solid line", with the b distribution for generic
inelastic events, P in(s), estimated in Sec. II. The short-
dashed line in Fig. 9 shows the distribution P in(s) obtained
from the parametrization of the elastic pp amplitude of Islam
et al. )9* !‘‘diffractive’’ part only". Shown are the results for
!s$14000 GeV !LHC", 1800 GeV !Tevatron p̄p), and 500
GeV !RHIC". A momentum of q!$25 GeV was assumed for
the dijet trigger. One sees that in all cases the b distribution
for dijet events is much narrower than the one for generic
inelastic collisions. The corresponding averages 'b2( are
given in Table I. The average 'b2( for the hard dijet trigger
rises much more slowly with s than for generic inelastic col-
lisions, which are dominated by soft physics. Thus, the re-
duction in effective impact parameters due to the dijet trigger
is most pronounced at LHC energies, where 'b2( is reduced
to +1/4 its value for generic inelastic collisions.
A further reduction of the effective impact parameters can

be achieved by a trigger on events with two dijets, i.e., two
binary hard parton collisions !such processes can be easily
distinguished from the leading twist 2→4 processes in the
collider experiments; see, e.g., Ref. )7*". It was estimated in
Ref. )18* that this reduces 'b2( by a factor of two as com-
pared to the single dijet trigger. In our approach, the b dis-
tribution for the double dijet trigger is given by

P4!b "$
P2
2!b "

! d2bP2
2!b "

. !33"

For simplicity we assume here identical x1 and q! for the

FIG. 7. Illustration of the overlap integral of parton distributions
in the transverse plane, defining the b distribution for binary parton
collisions producing a dijet, Eq. !31".

FIG. 8. The b distribution for the trigger on hard dijet produc-
tion, P2(b), obtained with the dipole form of the gluon b profile,
Eq. !32", for !s$14000 GeV and q!$10 GeV and 100 GeV. The
plots show the ‘‘radial’’ distributions in the impact parameter plane,
2&bP2(b). Also shown is the corresponding distribution for a trig-
ger on double dijet production, P4(b), with the same p! .

DIJET PRODUCTION AS A CENTRALITY TRIGGER . . . PHYSICAL REVIEW D 69, 114010 !2004"

114010-7

2 jets

4 jets

Median b  for 4 jets

Median b for 2 jets ≈ 0.7

Parton Correlations likely to reduce 
the ratio of median b’s from 0.7 to  0.8

<b2>dijet : <b2>4➝4: <b2>3➝4 = 2: 1.5 :1

If   3➝4 = 4➝4 ,  <b2>dijet <b2>4 jets = 1.6/

➝ A significant (~ 40%) increase of the transverse multiplicities for 4 jets from MPI



b=0

Enhancement of hard processes  due to fluctuations is expressed through 
fluctuations of GPDs   (more complicated because of the shape fluctuations)

Rfl=
gN (x1, Q2|�)g1N (x2, Q2|�)
gN (x1, Q2)g1N (x2, Q2)

�S⇥
S

S- transverse area of overlap.

Large fluctuations of S if nucleon (hard partons in the 
nucleon) has   a pancake or a cucumber  component

Measurement of R as a function Nch for different x’s of colliding partons and observing R exceeding 
~4   for large Nch provides  unambiguous evidence for gluon transverse  fluctuations. More difficult to 
distinguish area fluctuation and gluon density fluctuations.

diquark model: rstring /rtN ~ 1/2 ÷1/3  →
 <S>/Shead-on ~  4 ÷ 9

P2(0)�in(pp)

For highest studied multiplicities geometrical limit is exceeded  by a factor of ~ 2 in the 
CMS data and probably in the ALICE data

We found also evidence for gluon fluctuations in the analysis of HERA of the process 
γ+p➝J/ψ +Y at t=0.
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What is mechanism of violation of the geometry limit? 



Onset of nonlinear regime and suppression of minijets in pp collisions 

Observation of MC models - need to suppress production of minijets

PYTHIA - suppression factor 

HERWIG �(pT � p00(s))

p0(
p
s = 7TeV ) ⇡ 3GeV/cR(pT ) =

✓
p2T

p2T + p20(s)

◆2

;

R(pT = 4GeV/c) = 0.4

Is the need for modification of dynamics for minijet range (po ~10 GeV/c !! at GZK) 
been an artifact of  MC or signal for serious problems?

p0(s) / s0.12
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• pp         2 jet + X cross section in impact parameter 
space.

 

 


   

   






 

 

 



 

   


    

Overlap function

Minijet cross section: overlap function 
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• Inclusive dijet cross section:

Reconstruct inelastic profile function

Invert:

where,

• In general:

  










 

  










 

  




  


    

_

_

In the high energy limit, !inel
dijetsðs; bÞ is expected to approach

one at small b (black disk limit). Equation (27) is com-
pletely satisfactory as far as conditions (28) and (29) are
concerned. For large b, only the first term in the series in
Eq. (27)—i.e., single scattering—is important. However, in
a precise treatment, one should also account for potential
for violations of the consistency requirement in Eq. (25) in
the high energy limit and at intermediate values of b where
corrections of order !2ðs; b;pc

t Þ2 are non-negligible.
Indeed, such consistency problems were found in Ref. [18].

V. ORGANIZING CORRELATIONS IN MULTIPLE
COLLISIONS

A. Impact parameter independence

Deviations from uncorrelated scattering can arise from
multiple sources. As discussed in Sec. I, correlations can be
generated both in perturbative evolution equations and in
nonperturbative models.

Correlations will also be induced by kinematical con-
straints. We will assume, however, that most active partons
have small enough x that these constraints are unimportant,
at least for the first few terms in the series in Eq. (27). For
this paper, we will assume that the incoming partons that
take part in multiple hard collisions move nearly parallel
with transverse momentum of order #1="QCD. That is,
they have momentum typical for bound constituents of the
incoming hadrons. In general, if pc

t is allowed to be larger
than a few GeV, the partons will undergo DGLAP evolu-
tion, and hence may include partons with larger transverse
momentum. Furthermore, one expects significant depen-
dence of "eff on the hard scale at large pc

t [22]. In such
cases, it is possible that correlations may be understood as
arising from parton evolution. However, conflicts with
Eq. (25) become less likely at larger pc

t .
Therefore, we organize the description of correlations

around the assumption that the effect is to introduce a
simple (impact parameter independent) rescaling from
the uncorrelated case. As a first example, we reconsider
double hard collisions. Equation (26) gives the uncorre-
lated expression

!4ðs; b;pc
t Þ ¼ 1

2!2ðs; b;pc
t Þ2 (30)

which should be replaced in the correlated case by

!4ðs; b;pc
t Þ ! 1

2ð1þ #4ðsÞÞ!2ðs; b;pc
t Þ2; (31)

where #4ðsÞ parametrizes the deviation from uncorrelated
scattering. Our strategy is to estimate the size of the double
correlation by directly fitting Eq. (31) to experimental data,
given the constraint that !2ðs; b;pc

t Þ is fixed by the GPD in
Eq. (19). Note that we place no condition on the b integral
of Eq. (30). In particular, we do not use the approximation
in Eq. (2). In general, the correlation correction will also
depend on both pc

t and b. For our analysis, we will not
explicitly write the pc

t arguments in Eq. (30) because we
are mainly concerned with correlation corrections in the
limited range of pc

t where Eq. (25) becomes problematic
within the usual eikonal picture. As we will see, neglecting
the b dependence in #4ðsÞ will allow for a direct parame-
trization of the correlation correction in terms of experi-
mentally observed double scattering rates. It is likely that
this is a very rough approximation, but it will allow for a
first estimate of the role of correlations at large impact
parameters. We also remark that the dynamics responsible
for confinement are likely to induce large correlations
regardless of impact parameter. We will discuss possible
b dependence in greater detail in Sec. VII.
In experiments the effect of double partonic collisions is

most commonly represented by the observable,

"eff ¼
1

2

"inc
2 ðs;pc

t Þ2
"inc

4 ðs;pc
t Þ

: (32)

In the uncorrelated case, using Eq. (30) and Eq. (19) in
Eq. (32) yields

"uncor
eff ¼ 1R

d2bP2ðs; b;pc
t Þ2

: (33)

In general, the value of "eff can be fitted to experimentally
measured values by changing the width or shape of
P2ðs; b;pc

t Þ. However, in our approach P2ðs; b;pc
t Þ is fixed

by experimental measurements of the GPD, so the width of
P2ðs; b;pc

t Þ is not a free parameter.
If Eq. (31) is used in Eq. (32), one obtains for "eff in the

correlated case

"cor
eff ¼

1

ð1þ #4ðsÞÞ
R
d2bP2ðs; b;pc

t Þ2
: (34)

FIG. 3. Graphical representation of the term in the series for uncorrelated scattering—the first three terms in the second line of
Eq. (27), assuming no correlations. Spectator partons are not shown.

T. C. ROGERS AND M. STRIKMAN PHYSICAL REVIEW D 81, 016013 (2010)

016013-6
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extrapolated profile function 
from elastic cross section Small effect from correlations

• Identical 
partons,

• CTEQ6M gluon 
PDF

Compare reconstructed profile
with model extrapolation.

 Mismatch in description at large impact parameters where we 
expect small effect from correlations.

(other models also compared.)
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• CTEQ6M gluon 
PDF
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Mismatch in description at large impact 
parameters where naively we expect a small 
effect from correlations & where gluon 
densities for corresponding transverse 
distances from the center are rather small 

Also: At large b large contribution to Γinel is from 
diffraction where jet production is suppressed. LHC 

data correspond to   as σdiff≈0.25 σinel

15

• Consistency requirement:

• Total inelastic cross section:

Reconstruct inelastic profile function

• Compare with inelastic profile obtained from unitarity relation 
models/extrapolation of elastic profile:
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Role of saturation:
Region where gluon PDF would lead to 
saturation in dipole-proton scattering

(solid line for octet dipoles)

! Apparently small 
effect from gluon saturation.

Blue curves – Golec-Biernat, Wustoff (GBW) model

!
! ! "# $%&

"! ! "#' (%&"! ! )#' (%&

Integrand of dijet factorization formula

Problem is not due to break up LT approximation for nucleon pdfs  - essential x are  
rather large and pt cutoff is pretty high.

Region where gluon PDF is large enough to lead to saturation of small b 
partial waves in octet (triplet) dipole - nucleon scattering -  small contribution
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Naively -- very little since GPDs at large ρ are small and so probability of  double hard interaction is 
small.  Explore an option of clumpy nucleon structure - example quarks with localized gluon field. 

Could correlations change this conclusion?

Denote   η= Suncorr/Sexp

Assume:  (i) No correlations in x. (ii)  Strength of correlation does not decrease with ρi 

for example - color singlet clusters at nucleon periphery

tions of the total inelastic profile function. They correspond
to Eq. (44) with the range of parameters in Eqs. (45) and
(46). The pt cutoff in all cases is fixed at the typical value
of pc

t ! 2:5 GeV.
The uncorrelated curve lies entirely above the shaded

area for b & 1:6 fm, in violation of Eq. (25). That is, the
hard contribution to the total inelastic cross section is
larger than the total inelastic cross section itself for
much of the essential range of impact parameters. The
curves that include double or quadratic correlations
exhibit greater consistency for the full range of b for
both Figs. 7(a) and 7(b). In the case of the moderate sized
correlation corrections in Fig. 7(a), the effect of including

triple and higher correlation corrections is rather small
compared with the case where only corrections from
double correlations are kept. Including higher correlation
corrections does seem to smooth out the shape of the
profile function. (We have also assumed all correlation
corrections to be positive.) However, the higher correction
terms only become significant at small impact parameters
where the profile function is already close to unity anyway.
If the correlation corrections are larger, as in Fig. 7(b), then
the higher n > 2 correlations are more significant.
Now let us consider what is needed for the radius of the

hard overlap function if all the !2nðsÞ are set to zero in
Eq. (41) (reducing to the standard eikonal formula). If a
small value of pc

t is used to evaluate "
inc
pQCDðs;pc

t Þ, then fits
of the total cross section to current data require a very
narrow width for the overlap function [12]. In theoretical
calculations, a narrow overlap function is obtained, for
example, in the semiperturbative approach proposed in
[34] where the radius of the hard overlap function de-
creases with energy. In PYTHIA the hard overlap function
is modeled by the double Gaussian parametrization [8]

P2ðbÞ ¼
ð1% #Þ2

2a21
exp

!%b2

2a21

"
þ 2#ð1% #Þ

a21 þ a22
exp

! %b2

a21 þ a22

"

þ #2

2a22
exp

!%b2

2a22

"
; (47)

with a2 ¼ 0:4a1 and # ¼ 0:5 (in Tune A). The radius in
Eq. (47) does not vary with energy. We determine a1 by
using Eq. (47) in Eq. (33) for "eff with uncorrelated
multiple hard scattering and fixing it to the measured
CDF value. In Fig. 8 we show Eq. (47) with a1 calculated
using "eff ¼ 14:5 mb (Ref. [1]) and "eff ¼ 11 mb
(Ref. [37]). For comparison we have also plotted the over-
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FIG. 8 (color online). Overlap functions obtained from the
two-gluon form factor, Eq. (16) (solid curve), the Godbole-
Grau-Pancheri-Srivastava (GGPS) model of Ref. [34] (dashed
curve), and the PYTHIATune A overlap function Eq. (47) fitted to
"eff ¼ 14:5 mb (dash-dotted curve) and "eff ¼ 11 mb (dotted
curve).
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FIG. 7 (color online). Inelastic profile functions calculated
with and without correlations for

ffiffiffi
s

p ¼ 14 TeV and pc
t ¼

2:5 GeV. The shaded region corresponds to the range of typical
extrapolations. The dash-dotted curve corresponds to the stan-
dard eikonal expression. The dotted curve is the inelastic profile
function including the double correlation correction in Eq. (39)
with (a) !4 ¼ 1:3 [1] and (b) !4 ¼ 2:1 [37]. The dashed curve is
with the triple quadruple and correlation corrections from
Eq. (41) using ! ¼ !4 ¼ !6 ¼ !8 ¼ (a) 1.3 and (b) 2.1.
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pt0 =2.5 GeV/c,  W= 14 TeV, 

Still problems at large b where 
one needs a room for diffraction



What could have been missed?
At least one of two partons in the two parton interaction is typically has rapidity |y|> 1.   
Effective W for propagation of such parton through the second nucleon is  W~ 400 GeV (W2 invariant 
energy of parton - nucleon system)

Nonlinear effects in propagation of partons through nucleons should be larger than at  HERA

✺ A factor of 4 smaller x than minimal x at HERA 

✺ Gluons instead of quarks

✺ Smaller b in events with dijet trigger  - gluon propagates 
through stronger gluon field 

⇒ What can be inferred from theoretical analysis of  
☛     HERA data (Wmax ~ 250 GeV)

☛    forward pion production in d-Au collisions at RHIC (Weff~150 GeV)
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To determine the strength of interaction at HERA energies one can use the 
dipole approximation.  

Soft

Regime

Matching Region

Hard

Regime

Υ J/ψ

σinel =
π2

3
F2d2αs(λ/d2)xGT(x.λ/d2)

F2 Casimir operator  of color SU(3) Frankfurt et al 
2000-2001

studies of the “quark-
antiquark dipole”
  (transverse size d)  - 
nucleon cross 
section based pQCD and  
HERA data 

S-channel unitarity (finite transverse size)  - the growth should be tamed.   Is it tamed when interaction 
reaches strength close to maximal possible - black disk regime of the complete absorption for small 
impact parameters?  Did  HERA reach this limit?

Leading log approximation. In NLO would need to include both qq, and qqg. 
Smaller NLO G(x,Q) compensates presence of two components.

_ _

,
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σtot = 2
Z
d2bReΓ(s,b)

σinel =
Z
d2b(1� (1�ReΓ(s,b))2� [ImΓ(s,b)]2

σel =
Z
d2b|Γ(s,b)|2

Impact parameter amplitude  in “h”(dipole)p interaction
Study of the  elastic scattering allows to determine how the strength of the interaction depends on 
the impact parameter, b:

Γh(s,b) =
1
2is

1
(2π)2

Z
d2~qei~q~bAhN(s, t)

Γ(b) = 1 ⌘ σinel = σel - black disk regime -BDR

; ImA= sσtot exp(Bt/2)

)
53

t-dependence from vector meson exclusive 
production in DIS + QCD factorization 
theorem from VM production



At HERA in quark channel  range of b where interaction is close to BDR  is 
small  except for Q2 ~ 1 GeV2 where large size dipoles dominate 

For gluons BDR range is much larger  Q2 ~ 4 GeV2  for x=10-4? 

�inel
gg (b) =

9

4
�inel
qq̄ (b)
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Large nonlinear effects at the LHC in wide range of rapidities down to y~0

in proton (A) - proton (A)  collisions a parton with given xR   resolves partons in  another nucleon with x2 = 4p2?/xRs

Onset of BDR for interaction of a small 
dipole - break down of LT pQCD 
approximation - natural definition of 
boundary: Γdip(b) =1/2   - corresponds 
the probability for dipole to pass through 
the target at given b without interaction:

|1-Γdip(b)|2 <1/4 pt BDR �
�

2dBDR
➠
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A = 208, no shadowing

A = 208, shadowing

proton, b = 0

Forward RHIC
kinematics

0.010.001 xF for pp at LHC

Warning - estimate assumes x-ω regime for all x- may overestimate pt BDR for 
parton energies (in nucleus rest frame) Ed > 105 GeV   - better to use 
double log approximation

xR = 0.01, p? = 2GeV/c ) x2 ⇠ 8⇥ 10�6
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Breaking of pQCD mechanism in d -Au  data  (RHIC) in forward pion production  

Brief  summary of challenge / evidence

The pp data  are consistent with NLO pQCD 
calculations of  Vogelsang et  al. for pt >1.3 GeV/c. 
However they are sensitive to the gluon fragmentation 
which contributes !!! even at the highest pion energies.

✾

analyses of Guzey, Vogelsang and MS

☛



The dA data  are  << than NLO pQCD calculations of Guzey, MS,  Vogelsang 
with LT nuclear shadowing since essential xA are > 0.01. 

✾

5

FIG. 3: Nuclear modification factor (RdAu) for minimum-
bias d+Au collisions versus transverse momentum (pT ). The
solid circles are for π0 mesons. The open circles and boxes
are for negative hadrons (h−) at smaller η [10]. The error
bars are statistical, while the shaded boxes are point-to-point
systematic errors. (Inset) RdAu for π0 mesons at 〈η〉 = 4.00
compared to the ratio of calculations shown in Figs. 2 and 1.

for h− at smaller values of η [10]. The systematic errors
from p+p and d+Au data are added in quadrature. The
uncertainty in 〈Nbin〉 is included in the normalization er-
ror, but not the absolute η uncertainty, as the calorimeter
position was unchanged for d+Au and p+p data.

In the absence of nuclear effects, hard processes are
expected to scale with the number of binary collisions
and RY

dAu = 1. At midrapidity, R h±

dAu
>
∼ 1, with the

familiar Cronin enhancement for pT
>
∼ 2 GeV/c [10, 21].

As η increases, RY
dAu becomes much less than unity. The

decrease of RY
dAu with η is qualitatively consistent with

models that suppress the nuclear gluon density [11, 13,

14, 15]. Multiplying R h−

dAu by 2/3 to account for possible
isospin suppression of p+p → h−+X at these kinematics
[8], R π0

dAu is consistent with a linear extrapolation of the

scaled R h−

dAu to η = 4. The curves in Fig. 3 (inset) are
ratios of the calculations displayed in Figs. 2 and 1. The
data lie systematically below all the predictions.

Exploratory measurements of the azimuthal correla-
tions between a forward π0 and midrapidity h± are pre-
sented in Fig. 4 for p+p and d+Au collisions. The lead-
ing charged particle (LCP) analysis picks the midrapidity
track (|ηh| < 0.75) with the highest pT > 0.5 GeV/c, and
computes the azimuthal angle difference ∆φ = φπ0 −
φLCP for each event. The ∆φ distributions are normal-
ized by the number of π0 seen at 〈η〉 = 4.00. Correlations
near ∆φ = 0 are not expected due to the large η sepa-
ration between the π0 and the LCP. The data are fit to
a constant plus a Gaussian centered at ∆φ = π. The fit

FIG. 4: Coincidence probability versus azimuthal angle dif-
ference between the forward π0 and a leading charged particle
at midrapidity with pT > 0.5 GeV/c. The left (right) column
is p+p (d+Au) data with statistical errors. The π0 energy
increases from top to bottom. The curves are fits described
in the text, including the area of the back-to-back peak (S).

parameters are highly correlated, and their uncertainties
are based on the full error matrix. The area S under
the back-to-back peak centered at ∆φ = π represents
the probability of a LCP being correlated with a forward
π0. The area B under the constant represents contribu-
tions from the underlying event. The total coincidence
probability per trigger π0 is S + B ≈ 0.62 (0.90) for
p+p (d+Au) data, and is constant with Eπ. The value
of S/B for p+p does not depend on midrapidity track
multiplicity. The width of the peak has contributions
from transverse momentum in parton hadronization and
from momentum imbalance between the scattered par-
tons. The fit values are independent of Nγ .

A PYTHIA simulation [28] including detector resolu-
tion and efficiencies predicts most features of the p+p
data [29]. PYTHIA expects S ≈ 0.12 and B ≈ 0.46,
with the back-to-back peak arising from 2 → 2 scatter-
ing, resulting in forward and midrapidity partons that
fragment into the π0 and LCP, respectively. The width
of the peak is smaller in PYTHIA than in the p+p data,
which may be in part because the predicted momentum
imbalance between the partons is too small, as was seen
for back-to-back jets at the Tevatron [30].

The back-to-back peak is significantly smaller in d+Au
collisions compared to p+p, qualitatively consistent with
the monojet picture arising in the coherent scattering [13]
and CGC [18] models. HIJING [31] includes a model of
shadowing for nuclear PDFs. It predicts that the back-to-
back peak in d+Au collisions should be similar to p+p,
with S ≈ 0.08. The data are not consistent with the

BRAHMS and STAR are consistent when an isospin 
correction which  reduces h-  ration measured by 
BRAHMS by a factor ~ 1.5 (Guzey, MS,Vogelsang 04)  is 
introduced. 

Significant nuclear suppression = RdAu/1.5
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✾

dAu - only peripheral collisions contribute  and pQCD subprocess dominates.

Forward - central correlation data 

pp  - pQCD OK

Strong suppression of 2 → 2 (qg →π0+ X, xg~ 0.02) for NA collisions at 
central impact parameters:  suppression is at least a factor of 4 

Need few % effective energy losses to explain the magnitude of the 
suppression - due to strong dependence of cross section on xF 

Resembles what we need for LHC ?
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✾ Forward π0- forward π0 correlation data 
Can be explained by taking into account (i) fractional  energy losses, (ii) LT nuclear 
shadowing, (iii)  multiparton mechanism of production of two leading pions

Δϕ independent pedestal in dA is  2.5 ÷ 4 times larger in pp ✶

✶ Suppression of Δϕ =180o peak by a factor ~ four

Black curve is the pp data 
peak above pedestal for φ 
~π scaled down by a factor 
of 4

1: 3

Overall suppression of f-f (dAu/pp) is about a factor of 10;  hardly could be much larger - since the probability of 
fluctuations in the  nucleus wave function leads to a probability of punch through of 5 - 10% (Alvioli + MS).
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Conclusion - BDR for gluons is present in the kinematics relevant for the presence of effective 
cutoff of minijet production via  interactions with the “spectator”partons. Implementation is not 
clear so far.  Deficiency of the current procedure is that (x-independent)  suppression factor  
allows a parton with large xF to propagate through the the center of the nucleon without 
interaction. Contradicts the BDR pattern.
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s = 14 TeV

leading particles
events with centrality trigger - dijets (P2); 

four jets via double parton interactions (P4)

Large flow of energy to central rapidities
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Pushing to large x for larger mass limits on SUSY, etc

Selection of large x selects special configurations in colliding nucleons with smaller soft / 
minijet rates.  Theoretical expectation - large x selects larger longitudinal and hence larger 
transverse momenta, and fewer gluons.

Jet production in pA collisions - possible evidence for x -dependent color fluctuations

Summary of some of the relevant  experimental observations of CMS  & ATLAS 

❖  Inclusive jet production is consistent with pQCD expectations (CMS) 
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❖      xp scaling  (ATLAS) - enhancement/suppression effect scales with  

xp =pT × cosh(y*) / Ep (c.m,)

xp = 0.6

enhancement - problem for 
energy momentum 
conservation interpretation
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×  corrects ATLAS data for difference
 of Ncoll in Glauber and Color

 Fluctuation  models

We can estimate  σ(x=0.6)/σtot[fixed target]=1/4  
Z �(s1)

0
P (�, s1)d� =

Z �(s2)

0
P (�, s2)d�from probability conservation relation:  

σ(x=0.6) ~ σtot/2  gives a reasonable description of the data

➠ x≥0.5 configurations have  small transverse size (~1/2 rN )

4

that h�(x)i / h�i ⇠ 0.6 gives a good description of the252

data as shown in Fig. 3. It is worth emphasizing here253

that a naive explanation of the data as due to energy-254

momentum conservation does not work as one observes255

both suppression and enhancement of Rhard.256
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With the final data becoming available it would be257

possible to perform a comparison with the model for dif-258

ferent x with essentially one free parameter h�(x)i / h�i259
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Overall, we find that h�(0.5)i ⇠ (0.5 ÷ 0.6)�
tot

gives261

a reasonable description of the data giving a strong sup-262

port to the idea that large x configurations have a weaker263

interaction strength. A natural question is to what �264

these configurations correspond to at fixed target ener-265

gies. This can be estimated from the probability conser-266

vation property of P (�):267

Z
�(s1)

0
P (�, s1)d� =

Z
�(s2)

0
P (�, s2)d�, (6)

leading to the estimate �(x ⇠ 0.5)/�
tot

⇠ 1/4 for268 p
s = 30 GeV. This value is a factor of two smaller than269

that obtained for the LHC. This reflects an important270

feature of pQCD that the cross section of small size con-271

figurations grows faster with collision energy than for the272

average configurations.273

Our finding has a number of implications. It confirms274

the presence of the CF in pA interactions, and, hence,275

suggests that CF should contribute to dynamics of the276

central AA collisions[12]. A weaker interaction strength277

of the x ⇠ 0.5 configurations also has important impli-278

cation for the EMC e↵ect. It was explained in [14] that279

smaller size configurations for bound nucleons should be280

suppressed as the consequence of the Le Chatelier’s prin-281

ciple. So the presence of the EMC e↵ect of the suppres-282

sion of quark distribution in nuclei as compared to the283

free nucleons starting at x ⇠ 0.4 and fully developed at284

x � 0.5 matches nicely observation of the pattern of the285

suppression of the jet production observed at the LHC.286

A suppression observed for x ⇠ 0.15 where gluons still287

give a large contribution may reflect the fact that the288

gluon density enters at a scale 104 GeV2 which for Q

2
0,289

corresponds to significantly larger x where we also expect290

squeezing for configurations with gluons hence suggesting291

presence of the EMC e↵ect for gluons as well.292

Further experimental studies are necessary to study293

the jet suppression pattern for the processes where gluons294

with x

g

� 0.3 give significant contribution. This would295

allow to measure the e↵ective size of these configurations296

and check directly how e↵ective squeezing is in this case.297

Comparison of W

+
,W

� production at large x

q

would298

be also very interesting since there are indications of the299

di↵erent transverse structure for proton configurations300

with leading u and d quarks.301
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➠ Implication for the LHC - different underling event structure than at smaller x
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Supplementary slides



How strong are fluctuations  of the gluon field strength?

Consider ��L + p� V + X for Q2 > few GeV2

 Expand initial proton state in a set of partonic states characterized by the number of partons 
and their transverse positions, summarily labeled as  |n〉

|p� =
�

n

an|n�

Each configuration n has a definite gluon density G(x, Q2| n) given by 
the expectation value of the twist--2 gluon operator in the state |n〉

G(x, Q2) =
�

n|an|2G(x, Q2|n) � ⇥G⇤

In this limit the QCD factorization theorem (BFGMS03, CFS07) for these processes is applicable 

 MS + LF + C.Weiss,
 D.Treliani PRL 08
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⇥g ⇥ ⇤G2⌅ � ⇤G⌅2

⇤G⌅2 =
d���+p�V M+X

dt

⇥
d���+p�V M+p

dt

����
t=0

.⇒

Data from HERA -- ωg = 0.15÷0.2  for x=10-3, Q2~ 4 GeV2

ωg  is a  bit smaller than the corresponding 
quantity for pion  - nucleon scattering.
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