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The AdS/CFT correspondence – Key questions

N = 4 SYM theory ⌘ type IIB superstring
theory on AdS

5

⇥ S5

I Find the spectrum of conformal weights
⌘ eigenvalues of the dilatation operator
⌘ (anomalous) dimensions of operators

hO(0)O(x)i = 1
|x |2�

I Find the OPE coeÖcients Cijk defined through

hOi (x1)Oj(x2)Ok(x3)i =
Cijk

|x
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I Once �i and Cijk are known, all higher point correlation functions
are, in principle, determined explicitly.
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Main current problem:

Find a framework for determining the OPE coeÖcients
of N = 4 SYM at any coupling

Why (light-cone) string field theory is interesting?

• It may serve as the appropriate framework...
• The use of integrability for string interactions would be fascinating!
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The AdS/CFT dictionary

Local operators in N = 4 SYM ⌘ string states in AdS
5

⇥ S5

� ⌘ E

trZZXZXZ J ⌘ J
1

= 4 J
2

= 2

angular momentum on S5

many scalar fields spinning strings (Ji /
p
�)

The spectral problem in N = 4 SYM is
I equivalent to finding the quantized energy levels of a string in
AdS

5

⇥ S5
I once we pass to e.g. uniform light cone gauge, this is equivalent to
finding the energy levels of a specific integrable 2D QFT on a
cylinder of size J
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Interesting classes of operators

many Z ’s and X ’s  ! large angular momenta
� classical string states
Heavy operators (� / �

1

2 )

few Z ’s and X ’s  ! supergravity modes (� / �0)
or lightest massive string modes (� / �

1

4 )
Light (or Medium) operators

many Z ’s and few X ’s  ! Heavy operators
with pi = O (1) but not of spinning string type
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How to solve the spectral problem?

I) solve the theory on
an infinite plane

symmetry + Yang-Baxter equation
+ crossing
+ unitarity
�! S-matrix

II) solve the theory on
a (large!) cylinder

Bethe Ansatz Quantization

e ipkL
Y

l 6=k
S(pk , pl) = 1

Get the energies from

E =
X

k

E (pk) =
X

k

r
1+

�

⇡2
sin2
pk
2

This gives the spectrum up to wrapping corrections...
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How to solve the spectral problem?

III) Include leading wrapping corrections...

— generalized Lüscher formulas

IV) Resum all wrapping corrections

— Thermodynamic Bethe Ansatz
�! Quantum Spectral Curve

Comments
I The basic steps follow the strategy used for solving ordinary
relativistic integrable quantum field theories...
(despite numerous subtleties and novel features)

I Key role of the infinite plane �! only there do we have
crossing+analyticity which allows for solving for the S-matrix
(functional equations for the S-matrix)

I Up to wrapping corrections, the finite volume spectrum follows very
easily
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— generalized Lüscher formulas

IV) Resum all wrapping corrections

— Thermodynamic Bethe Ansatz
�! Quantum Spectral Curve

Comments
I The basic steps follow the strategy used for solving ordinary
relativistic integrable quantum field theories...
(despite numerous subtleties and novel features)

I Key role of the infinite plane �! only there do we have
crossing+analyticity which allows for solving for the S-matrix
(functional equations for the S-matrix)

I Up to wrapping corrections, the finite volume spectrum follows very
easily

8 / 29



How to solve the spectral problem?

III) Include leading wrapping corrections...

— generalized Lüscher formulas
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Why are the OPE coeÖcients challenging?

We need to compute a quantum amplitude:

figure from Zarembo 1008.1059

I There is no analogous problem in relativistic integrable theories!
I This is a worldsheet 3-point function in conformal gauge of the string
but we do not have any integrable (or other) formulation of this!!

Nevertheless a lot of progress has been made...
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Why are the OPE coeÖcients challenging?

I On the classical level at strong coupling, we need to find a classical
solution of the topology of 3-punctured sphere and wave-function
contributions RJ, WereszczyÒski

a series of papers by Kazama, Komatsu

I A controllable corner at strong coupling: HHL correlators  �
Costa, Penedones, Santos, Zoakos; Zarembo

I CKKK at strong coupling Bargheer, Minahan, Pereira

I Lots of computational and conceptual progress at weak coupling in
various sectors
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Why are the OPE coeÖcients challenging?
Main motivation: Find a formulation which could (in principle) be
extended to all coupling

Possible approaches:

I Form factors
Bajnok (Nordita talk); Klose, McLoughlin; Bajnok, RJ, WereszczyÒski

— a-priori applicable only to the case of J
1

= J
2

, J
3

= 0
— can, in principle, be obtained exactly

I (Light-cone) String Field Theory vertex
— used in the days of pp-wave Spradlin, Volovich, Stefanski, Russo...

Klose, McLoughlin; Grignani, Zayakin, Schulgin
— should be applicable for generic J

1

, J
2

and J
3

(perhaps apart
from Jk = 0)
— seek an integrable formulation...
integrable worldsheet point of view  � this talk
analogous structures on the spin chain side

Jiang, Kostov, Petrovskii, Serban
Kazama, Komatsu, Nishimura
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We focus on the string worldsheet QFT side...

I This does not mean that we are concentrating on the strong
coupling side!

I An integrable approach should work at any coupling...
I We would like to develop an approach neglecting wrapping
corrections

Recall the spectral problem...

I It was crucial to have an infinite volume formulation in order to
derive functional equations

I We had a simple passage to finite volume (neglecting wrapping)

We would like to have similar features in
the OPE coeÖcient case...
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Form factors

I Form factors are expectation values of a local operator sandwiched
between specific multiparticle in and out states pk = m sinh ✓
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I Solutions explicitly known for numerous relativistic integrable QFT’s
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Form factors

I Up to wrapping corrections (⇠ e�mL), very simple way to pass to
finite volume (cylinder of circumference L): Pozsgay, Takacs
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I Relation to Heavy-Heavy-Light correlators:
Bajnok, RJ, WereszczyÒski

�! CHHL ⇠
Z

Moduli

Z
d2� VL(X I (�))

coincides exactly with a classical
computation of a ‘diagonal’ form factor

I Definitely requires testing away from strong coupling...
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Form factors

Pros:

I In principle can work at any coupling!
I Natural 1-volume setting and finite volume reduction
I Distinctive finite volume behaviour (in the relevant diagonal case)

Cons:

I For OPE coeÖcients applicable directly only when J charge (all
R-charges?) of the initial and final state/operator coincide!
(J charge defines the size of the cylinder)

I This is not a generic situation as typically we only have J
1

+ J
2

= J
3

in a 3-point correlation function
I The formulation is very asymmetrical between the two operators
corresponding to the initial and final state and the third ‘local’
worldsheet operator

I It is far from trivial how to associate a specific gauge theory
operator to a particular solution of the form factor axioms
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Light-cone String Field Theory Vertex

I String Field Theory vertex describes the splitting/joining of 3 strings
with generic sizes J

1

+ J
2

= J
3

I In the case of the pp-wave limit of AdS
5

⇥ S5, SFT vertex was used
to compute various OPE coeÖcients for a class of gauge theory
operators (so-called BMN operators)

I However, in general, the relation between the SFT vertex and OPE
coeÖcients has not been settled c.f. Dobashi, Yoneya

but see also Zayakin, Schulgin

Our goal: Concentrate first on defining the string field theory
vertex for a generic integrable worldsheet theory
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Light-cone String Field Theory Vertex

I pp-wave ⌘ free massive boson �
I impose continuity conditions for � and ⇧ ⌘ @t�

I � expressed in terms of cos 2⇡nLr and sin
2⇡n
Lr
modes...

looks like an inherently finite-volume computation...
I solution is surprisingly complicated...
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Light-cone String Field Theory Vertex

I Continuity conditions yield linear relations between creation and
annihilation operators of the three strings:

3X

r=1

X rnmp
!rm

⇣
a+(r)
m � a(r)m

⌘
= 0

3X

r=1

srX rnm
p
!rm

⇣
a+(r)
m + a(r)m

⌘
= 0

I Implement these relations as operator equations acting on a state
|V i 2 H

1

⌦H
2

⌦H
3

I The state has the form up to a possible prefactor...

|V i = exp
(
1
2

3X

r ,s=1

X

n,m

N rsnm a
+(r)
n a

+(s)
m

)
|0i

I Obtaining the Neumann matrices is surprisingly nontrivial as it
involves inverting an infinite-dimensional matrix

He, Schwarz, Spradlin, Volovich
! Lucietti, Schafer-Nameki, Sinha

I Involves some novel special functions �µ(m)
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Light-cone String Field Theory Vertex

I In the pp-wave times, people used simplified expressions for N rsnm
neglecting exponential e�µ↵r terms

(these are exactly wrapping terms e�MLr !!)
I Going to an exponential basis (BMN basis) one got e.g.

N rsmn =

"p
(!rm + µ↵m)(!sn + µ↵n)

!rm + !sn
�

p
(!rm � µ↵m)(!sn � µ↵n)

!rm + !sn

#
·(simple)

I Instead of integer mode numbers use rapidities... pk=M sinh ✓k

N33(✓
1

, ✓
2

) =
�1

cosh ✓
1

�✓
2

2

· sin p1L1
2
sin
p
2

L
1

2
I The integer mode numbers (characteristic of finite volume) are
completely inessential – they only obscure the simple structure

I Pole at ✓
1

= ✓
2

+ i⇡ (position of kinematical singularity as for form
factors!) �! there should be some underlying axioms...

I Still some puzzling features — the sin pkL1
2

factors
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The language of mode expansions and enforcing continuity does
not seem to generalize for interacting integrable QFT’s...

Questions:

1. How to formulate an infinite volume version of the string
vertex?

2. Can we propose functional equations for the Neumann
coeÖcients (more generally amplitudes with various numbers of
particles in each string)?
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The decompactified string vertex

Or equivalently...

String #1 still remains of finite size... (L ⌘ L
1

)
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The decompactified string vertex

I The emission of string #1 can be understood as an insertion of
some macroscopic (not completely local) operator...

I Looks like some kind of generalized form factor with ingoing
particles in string #3 and outgoing ones in string #2

I Key diÄerence: string #1 ‘eats up volume’ �! the operator
should have a e ipL branch cut defect...

Formulate functional equations...
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The decompactified string vertex
Functional equations for the (decompactified) string vertex

N33(✓
1

, ✓
2

) = N33(✓
2

, ✓
1

)·S(✓
1

, ✓
2

)

N33(✓
1

, ✓
2

) = e�ip1LN33(✓
2

, ✓
1

� 2⇡i)

N33(✓ + i⇡ + ", ✓) =
1
"
(1� e ipL)F

0

+ reg

In addition, we have phase factors for crossing
N32(✓

1

, ✓
2

) = e i
p
1

L
2 N33(✓

1

, ✓
2

� i⇡)

I The exact pp-wave solution (for S(✓
1

, ✓
2

) = 1), involving the �µ(m)
special function solves these equations (and can be reconstructed
from them...)

I This includes all wrapping corrections for the #1 string
I Need assumptions about the analytic structure – use properties of
pp-wave formulas as heuristics

I Straightforward generalization of the axioms to an interacting
integrable QFT
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The decompactified string vertex

Comments:

I The solution of the above equations involves all e�mL corrections..
I The asymptotic solution is much simpler:

N33asympt(✓1, ✓2) =
�1

cosh ✓
1

�✓
2

2

· sin p1L1
2
sin
p
2

L
1

2
I Functional equations for N rsasympt(✓1, ✓2) ???

Surprise: Large L limit does not commute with ✓ ! ✓ + i⇡ !!

I In order to have a chance for a unique solution we need to
understand the analyticity properties of the solutions

I By examining the explicit case of the pp-wave we see that the
knowledge about the location of zeroes is crucial...
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The decompactified string vertex

Analyticity properties – some heuristics

I Recall the expression

N33asympt(✓1, ✓2) =
�1

cosh ✓
1

�✓
2

2

· sin p1L1
2
sin
p
2

L
1

2
I The puzzling sin p1L1

2

appear also in the exact expression
I In contrast N22(✓

1

, ✓
2

) does not have these factors:

N22asympt(✓1, ✓2) =
1

4 cosh ✓
1

�✓
2

2

I What is the diÄerence?
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The decompactified string vertex – analyticity properties

I The condition sin pL1
2

means that the phase factor

e ipL1 = 1

so a plane wave with such a momentum does not feel string #1...
I Such a plane wave incoming from string #3 is a perfectly smooth
plane wave on string #2...

I So it should be ‘orthogonal’ to the vacuum �! the Neumann
coeÖcient should vanish

I On the other hand, such a plane wave on string #2 continued back
in time to string #3 will always have some junk below string #1

I So there should be nonzero overlap with everything on string #3,
hence nonzero Neumann coeÖcient
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The program — back to finite volume

We considered so far the ‘decompactified string vertex’...

but ultimately we are interested in the finite volume one...

Main idea:

I Look at the vertex from two points of view
1. Keep strings #2 and #3 decompactified
2. Keep strings #1 and #3 decompactified

I In each case there will be freedom in picking the solution of the
relevant axioms

I Go to finite volume in both cases...
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The program — back to finite volume

I Key requirement: the finite volume reduction of both expressions
should coincide

I This should determine the vertex up to wrapping corrections...
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Conclusions

I We search for approaches to the OPE coeÖcients from the
worldsheet point of view

I Ideally, these approaches should work at any coupling (possibly up to
wrapping corrections)

I A key step is the existence of an infinite volume setup, which allows
for formulating functional equations incorporating e.g. crossing

I Second step involves reduction to (large) finite size
I Form factors and string field theory vertex seem to be promising
(complementary) candidates

I String field theory axioms are similar in flavour to form factor ones..
I We reproduced pp-wave string field theory formulas for the
Neumann coeÖcients

I Kinematical singularity can be observed also in some weak coupling
results

I All this is just scratching the surface...
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