Quark-Gluon Plasma Formation in Holographic Shock Waves Model of Heavy-Ion Collisions

Irina Aref'eva

Steklov Mathematical Institute, RAS, Moscow

Holographic Methods for Strongly Coupled Systems

18 March, 2015

Outlook

- Physical picture of formation of Quark-Gluon Plasma in heavyions collisions
- Why holography?
- **Results from holography (**fit of experimental data via holography:

top-down

bottom-up)

- Holography description of static QGP
- Holography description of QGP formation in heavy ions collisions

Experimental data

- Thermalization time
- Multiplicity

Quark-Gluon Plasma (QGP): a new state of matter

QGP is a state of matter formed from deconfined quarks, antiquarks, and gluons at high temperature

QCD: asymptotic freedom, quark confinement

Experiments: Heavy Ions collisions produced a medium

HIC are studied in several experiments:

- started in the 1990's at the Brookhaven Alternating Gradient Synchrotron (AGS),
- the CERN Super Proton Synchrotron (SPS)
- the Brookhaven Relativistic Heavy-Ion Collider (RHIC)
- the LHC collider at CERN.

 $\sqrt{s_{_{NN}}} = 4.75 \, GeV$ $\sqrt{s_{_{NN}}} = 17.2 \, GeV$ $\sqrt{s_{_{NN}}} = 200 \, GeV$ $\sqrt{s_{_{NN}}} = 2.76 \, TeV$

There are strong experimental evidences that RHIC or LHC have created some medium which behaves collectively:

- modification of particle spectra (compared to p+p)
- jet quenching
- high p_T-suppression of hadrons
- elliptic flow
- suppression of quarkonium production

Study of this medium is also related with study of Early Universe

Evolution of the Early Universe

Evolution of a Heavy Ion Collision

Study of QGP is related with one of the fundamental questions in physics: what happens to matter at extreme densities and temperatures as may have existed in the first microseconds $10^{-5}s$, $T \sim 10^{12} K$ after the Big Bang.

QGP as a strongly coupled fluid

- Conclusion from the RHIC and LHC experiments: appearance of QGP (not a weakly coupled gas of quarks and gluons, but a strongly coupled fluid).
- This makes <u>perturbative methods</u> inapplicable
- The <u>lattice formulation</u> of QCD does not work, since we have to study real-time phenomena.
- This has provided a motivation to try to understand the dynamics of QGP through the **gauge/string duality**

Dual description of QGP as a part of Gauge/string duality

- There is not yet exist a gravity dual construction for QCD.
- Differences between N = 4 SYM and QCD are less significant, when quarks and gluons are in the deconfined phase (because of the conformal symmetry at the quantum level, N = 4 SYM theory does not exhibit confinement).
- Lattice calculations show that QCD exhibits a quasi-conformal behavior at temperatures
 T >300 MeV and the equation of state can be approximated by E = 3 P (a traceless conformal energy-momentum tensor).
- This motivates to use the AdS/CFT correspondence as a tool to get non-perturbative dynamics of QGP.
- There is the considerable success in description of the static QGP.

Reviews: Solana, Liu, Mateos, Rajagopal, Wiedemann, 1101.0618 + AFTER

I.A., Holographic approach for QGP in HIC, UFN, 184, 2014; DeWolfe, Gubser, Rosen, Teaney, HI and string theory, Prog. Part.Nucl.Phys., 75, 2014 P.M.Chesler, W. van der Schee, Early thermalization, 1501.04952 [nucl-th]

lattice calculation of QCD thermodynamics $N_f=3$ S. Borsanyi et al., "The QCD equation of state with dynamical quarks," arXiv:1007.2580

Holography for QGP formation

Based on two conjectures:

TQFT = QFT with temperature

Holography for QGP formation

Black Hole <u>formation</u> in Anti de Sitter (D+1)-dim space-time

Models of BH creation in D=5 and their meaning in D=4

To initiate the process of BH formation one has to perturb the initial metric.

$$g_{MN} \Rightarrow g_{MN}^{(0)} + g_{MN}^{(1)}$$

AdS/CFT correspondence

$$Z_{ren}(z_0) g_{\mu\nu}^{(1)} |_{boundary = T_{\mu\nu}}$$

Main idea: make some perturbation of AdS metric that near the boundary mimics the heavy ions collisions and see what happens.

Hologhraphic thermalization

How to "mimic" the heavy ions collision

Models: shock waves/ collision in AdS

infalling shell

colliding ultrarelativistic particles in AdS₃ (toy model)

Nucleus collision in AdS/CFT

An ultrarelativistic nucleus is a shock wave in 4d with the energy-momentum tensor

$$\langle T_{--} \rangle \sim \mu \, \delta(x^{-})$$

$$\langle T_{_{++}} \rangle \sim \mu \, \delta(x^{+})$$

$$\left\langle T_{--}\right\rangle \sim \frac{1}{\left(L^2 + x_{\perp}^2\right)^3} \delta(x^-)$$

Woods-Saxon profile

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-2 \, dx^{+} dx^{-} + \frac{2\pi^{2}}{N_{C}^{2}} \left\langle T_{--}(x^{-}) \right\rangle z^{4} \, dx^{-2} + \frac{2\pi^{2}}{N_{C}^{2}} \left\langle T_{++}(x^{+}) \right\rangle z^{4} \, dx^{+2} + dx_{\perp}^{2} + dz^{2} \right]$$

The metric of two shock waves in AdS corresponding to collision of two ultrarelativistic nucleus in 4D

Holographic collision of two gaussian shocks

Shocks pass through each other

Collision of plane waves in M₄

I.A., K.S. Viswanathan, I. Volovich Nucl.Phys. B 452 (1995) 346

$$ds^{2} = 4m^{2}[1 + \sin(u\theta(u)) + v\theta(v)]^{2}dudv$$

- $[1 - \sin(u\theta(u)) + v\theta(v)][1 + \sin(u\theta(u)) + v\theta(v)]^{-1}dx^{2}$
- $[1 + \sin(u\theta(u)) + v\theta(v)]^{2}\cos^{2}(u\theta(u)) - v\theta(v))dy^{2},$

where $u < \pi/2$, $v < \pi/2$, $v + u < \pi/2$.

$$r = m[1 + \sin(u + v)], \quad t = x, \quad \theta = \pi/2 + u - v, \quad \phi = y/m,$$

Interior of BH

Generalization to ADS?

Hologhraphic thermalization

Physical quantities that we expect to estimate:

D=5 AdS

D=4 Minkowski

 Black hole formation time

Thermalization time

• Entropy

Multiplicity

Thermalization time

Experimental data (just estimations)

$$\epsilon(y) = \frac{1}{A\tau_{therm}} \frac{dN}{dy} < m_{tr} >, \quad m_{tr} = \sqrt{m_{\pi}^2 + k_{tr}^2}$$

Distribution of energy density ϵ over rapidity y

Bjorken, 1983

Multiplicity

Experimental data

Plot from: ATLAS Collaboration 1108.6027

Multiplicity as entropy

D=4. Macroscopic theory of high-energy collisions Landau(1953); Fermi(1950) thermodynamics, hydrodynamics, kinetic theory, ...

D=5. Holographic approach

Main conjecture: multiplicity is proportional to entropy of produced D=5 Black Hole

$$\mathcal{M}\sim S$$
 Gubser et al: 0805.1551

The mininal black hole entropy can be estimated by trapped surface area

$$S \ge S_{trapped} = A_{trapped} / 4G_N$$

Gubser, Pufu, Yarom, JHEP, 2009 Alvarez-Gaume, C. Gomez, Vera, Tavanfar, Vazquez-Mozo, PLB, 2009 IA, Bagrov, Guseva, JHEP, 2009 Kiritsis, Taliotis, JHEP, 2011

Multiplicity: Hologhrapic formula vs experimental data

The simple holographic model gives

10

0

Ĥ

10²

ATLAS

 10^{4}

Pb+Pb vs_{NN}=2.76 TeV

√s and √s_{NN} [GeV]

10³

Search for models with suitable entropy

Metric with modified b-factor

IHQCD Gursoy, Kiritsis, Nitti

$$S_5 = -\frac{1}{16\pi G_5} \int \sqrt{-g} \left[R + \frac{d(d-1)}{L^2} - \frac{4}{3} (\partial \Phi)^2 + V(\Phi_s) \right] dx^5$$

$$ds^{2} = b^{2}(z)(-dt^{2} + dz^{2} + dx_{i}^{2})$$

Reproduces 2-loops QCD beta-function

Reproduce an asymptotically-linear glueball spectrum

Search for models with suitable entropy

Kiritsis, Taliotis, JHEP(2012)

Shock wave metric with modified b-factor

$$ds^{2} = b^{2}(z) \left(dz^{2} + dx^{i} dx^{i} - dx^{+} dx^{-} + \phi(z, x^{1}, x^{2}) \delta(x^{+}) (dx^{+})^{2} \right)$$

Typical behavour

$$b(z) = \frac{L}{z}e^{-z^2/z_0^2}$$

 $s_{NN}^{\delta_1} \ln^{\delta_2} s_{NN}$ $\delta_1 \approx 0.225, \quad \delta_2 \approx 0.718$

not 0.15

Description of HIC by the wall-wall shock wave collisions

S. Lin, E. Shuryak, 0902.1508 I. A., Bagrov and E.Pozdeeva, JHEP(2012)

$$ds^{2} = b^{2}(z) \left(dz^{2} + dx^{i} dx^{i} - dx^{+} dx^{-} + \phi(z, x^{1}, x^{2}) \delta(x^{+}) (dx^{+})^{2} \right)$$

$$\left(\partial_z^2 + \frac{3b'}{b}\partial_z\right)\phi^w(z) = -16\pi G_5 \frac{E^*}{b^3}\delta(z_* - z)$$

I. A., E.Pozdeeva, T.Pozdeeva (2013, 2014)

Shock walls collision with modified by b-factor

$$\left(\partial_z^2 + \frac{3b'}{b}\partial_z\right)\phi^w(z) = -16\pi G_5 \frac{E^*}{b^3}\delta(z_* - z)$$

$$\phi^{\omega}(z) = \phi^{\omega}_{a}\theta(z_{*}-z) + \phi^{\omega}_{b}\theta(z-z_{*})$$

$$\phi_{a}^{w} = C_{a} \int_{z_{a}}^{z} b^{-3} dz, \quad \phi_{b}^{w} = C_{b} \int_{z_{b}}^{z} b^{-3} dz.$$

$$C_{a} = C \frac{\int_{z_{b}}^{z_{*}} b^{-3} dz}{\int_{z_{b}}^{z_{a}} b^{-3} dz}$$

$$C_{b} = C \frac{\int_{z_{b}}^{z_{*}} b^{-3} dz}{\int_{z_{b}}^{z_{*}} b^{-3} dz}$$

Shock walls collision with modified by b-factor

$$\left(\partial_z^2 + \frac{3b'}{b}\partial_z\right)\phi^w(z) = -16\pi G_5 \frac{E^*}{b^3}\delta(z_* - z)$$

 z_a

$$\frac{\frac{8\pi G_5 E}{L^2} b^{-3}(z_a) \int_{z_b}^{z_*} b^{-3} dz}{L^2} = \int_{z_b}^{z_a} b^{-3} dz, \\
\frac{8\pi G_5 E}{L^2} b^{-3}(z_b) \int_{z_a}^{z_*} b^{-3} dz = -\int_{z_b}^{z_a} b^{-3} dz, \\
s = \frac{1}{2G_5} \int_{z_a}^{z_b} b^3 dz$$

Power-law b-factor

$$\begin{split} b(z) &= \left(\frac{L}{z}\right)^a \\ \mathbf{S}_{\text{walls}} = & \frac{L}{2G_5} \left(\frac{8\pi G_5}{L^2}\right)^{\frac{3a-1}{3a}} E^{\frac{3a-1}{3a}} \end{split}$$

The multiplicity depends as s^{0.15}_{NN} in the range 10-10³ GeV Power-law b-factor coinsides with experimental data at *a*≈0.47.

et us take
$$b(z) = \left(rac{L}{z}
ight)^{1/2}$$

Le

Multiplicity VS quark potential

Question: can we fit this background with other data?

Multiplicity VS quark potential

AdS with soft-wall

1004.1880

$$V_{Cornell}(x) \equiv V_{Q\bar{Q}}(x) = -\frac{\kappa}{x} + \sigma_{str}x + V_0$$
O. Andreev and V. Zakharov
hep-ph/0604204
R.Galow at al, 0911.0627
S.He, M.Huang, Q.Yan
1004.1880

$$V_{Cornell}(x) \equiv V_{Q\bar{Q}}(x) = -\frac{\kappa}{x} + \sigma_{str}x + V_0$$
Coulomb term
Coulomb term
Confinement
linear potential

Multiplicity and quark potential

But: there is a problem with the available energy

Multiplicity and quark potential

$$\frac{L^2 e^{\frac{az^2}{2}}}{z^2} \approx \frac{L^2}{zL_{eff}}$$

Trapped surface

 $z_{UV} < z < z_{IR}$

Pack the trapped surface in the interval

 $z_{UV} < z_a < z < z_b < z_{IR}$

 $s \sim (L_{eff}E)^{1/3}$

But restriction on energy

 $E_{IR} < E < E_{IIV}$

Small energies!

Thermalization time

BH creation in two shock waves collisions is modeled by Vaidya metric with

a horizon corresponding to the location of the trapped surface

Thermalization time is estimated within standard prescription with

the Vaidya metric

Danielsson, Keski-Vakkuri, Kruczenski

hep-th/9905227,

I.A. arXiv: 1503.02185

Thermalization time via Vaidya metrc

$$\begin{split} ds^{2} &= b^{2}(z)(-dt^{2} + dz^{2} + dx_{i}^{2}) \\ \text{Blackening function} & f(z_{h}, z) = 1 - K(z_{h}, z) \\ K(z_{h}, z) &= \frac{K(z)}{K(z_{h})} & K(z) = \int_{0}^{z} \frac{dz}{b(z)^{3}} \\ ds^{2} &= b^{2}(z) \left(-f(z_{h}, z) dt^{2} + \frac{dz^{2}}{f(z_{h}, z)} + d\vec{x}^{2} \right) \\ dv &= dt - \frac{dz}{f(z_{h}, z)} \end{split}$$

Vaidya metric

$$ds^{2} = b^{2}(z) \left(-f(z_{h}, z, v) dv^{2} - 2dvdz + d\vec{x}^{2}\right)$$
$$f(z_{h}, z, v) = 1 - \theta(v) K(z_{a}, z)$$

$$\begin{aligned} \text{Vaidya metric} \qquad ds^2 &= b^2(z) \left(-f(z_h, z, v) \, dv^2 - 2dv dz + d\vec{x}^2 \\ & f(z_h, z, v) = 1 - \theta(v) \, K(z_h, z) \right. \\ & \ell = 2s \int_0^1 \frac{b(s)}{b(sw)} \frac{dw}{\sqrt{(1 - K(z_h, sw)) \cdot \left(1 - \frac{b^2(s)}{b^2(sw)}\right)}} \\ & \tau = s \int_0^1 \frac{dw}{1 - K(z_h, sw)} \\ & k_4 = 1/z_h^4 + \ldots \end{aligned}$$

 τ [fm]

Anisotropic thermalization

In the past: it has been claimed that the pre-equilibrium period can only exist for up to 1 fm/c and after that, the QGP becomes isotropic.

Now: QGP is created after very short time after the collision $\tau_{therm} \sim 0.1 fm/c$ and it is anisotropic for a short time $0 < \tau_{therm} < \tau < \tau_{iso}$ The time of locally isotropization is about $\tau_{iso} \sim 2fm/c$

M. Strickland, 1312.2285 [hep-ph]

Anisotropic thermalization

• Experimental evidence for anisotropies:

jet quenching, changes in R-mod.factor, photon and dilepton yields

> D.Giataganas, 1306.1404, D.Trancanelli, 1311.5513

Created QGP is anisotropic

This gives a reason to consider BH formation in anisotropic background

Duality with Lifshitz

.

.

Gravity background

Kachru, Liu, Mulligan, 0808.1725

Azeyanagi, Li, Takayanagi, 0905.0688

$$ds^{2} = L^{2}\left(-r^{2\nu}dt^{2} + r^{2}d\vec{x}_{d-1}^{2} + \frac{dr^{2}}{r^{2}}\right)$$
$$t \to \lambda^{\nu}t, \quad \vec{x} \to \lambda\vec{x}, \quad r \to \frac{1}{\lambda}r$$

Lifshitz-like

$$ds^{2} = L^{2} \left(r^{2\nu} \left(-dt^{2} + dx^{2} \right) + r^{2} \sum_{j=1}^{q} dy_{j}^{2} + \frac{dr^{2}}{r^{2}} \right)$$

Multiplicity with anisotropic Lifshitz background

$$S = \frac{1}{2\kappa^2} \int d^5x \sqrt{|g|} \left[R - 2\Lambda - \frac{1}{12}H_3^2 - \frac{m_0^2}{2}B_2^2 \right]$$

$$H_3 = 2\sqrt{\frac{\nu - 1}{\nu}}\rho d\rho \wedge dt \wedge dx, \quad B_2 = \sqrt{\frac{\nu - 1}{\nu}}\rho^2 dt \wedge dx$$

$$ds^{2} = \rho^{2} \left(-dt^{2} + dx^{2} \right) + \rho^{2/\nu} \left(dy_{1}^{2} + dy_{2}^{2} \right) + \frac{d\rho^{2}}{\rho^{2}}$$

$$\Lambda = 5 + \frac{6}{\nu} + \frac{3}{\nu^2}$$

IA, A. Golubtsova arXiv:1410.4595

 $z = 1/\rho$

Shock wave

$$ds^{2} = \frac{\phi(y_{1}, y_{2}, z)\delta(u)}{z^{2}}du^{2} - \frac{1}{z^{2}}dudv + z^{-2/\nu}\left(dy_{1}^{2} + dy_{2}^{2}\right) + \frac{dz^{2}}{z^{2}}dudv + z^{2}dudv + z^{2}du$$

Multiplicity with anisotropic Lifshitz background

Domain walls

$$\begin{split} \Box_{Lif_{3}} &- \frac{1}{L^{2}} \left(1 + \frac{2}{\nu} \right) \Big] \frac{\phi(z)}{z} = -16\pi G_{5} z J_{uu} \qquad J_{uu} = E \left(\frac{z}{L} \right)^{1+2/\nu} \delta(z - z_{*}) \\ &\frac{\partial^{2} \phi(z)}{\partial z^{2}} - \left(1 + \frac{2}{\nu} \right) \frac{1}{z} \frac{\partial \phi(z)}{\partial z} = -16\pi G_{5} J_{uu} \\ \phi &= \phi_{a} \theta(z_{*} - z) + \phi_{b} \theta(z - z_{*}) \\ \phi_{a}(z) &= C_{0} z_{a} z_{b} \left(\frac{z_{*}^{2(\nu+1)/\nu}}{z_{b}^{2(\nu+1)/\nu}} - 1 \right) \left(\frac{z^{2(\nu+1)/\nu}}{z_{a}^{2(\nu+1)/\nu}} - 1 \right), \\ \phi_{b}(z) &= C_{0} z_{a} z_{b} \left(\frac{z_{*}^{2(\nu+1)/\nu}}{z_{a}^{2(\nu+1)/\nu}} - 1 \right) \left(\frac{z^{2(\nu+1)/\nu}}{z_{b}^{2(\nu+1)/\nu}} - 1 \right), \\ C_{0} &= -\frac{8\nu \pi G_{5} E z_{a}^{1+2/\nu} z_{b}^{1+2/\nu}}{(\nu+1)L^{3+\frac{\nu}{\nu}} (z_{b}^{2(\nu+1)/\nu} - z_{a}^{2(\nu+1)/\nu})}. \end{split}$$

Multiplicity with anisotropic Lifshitz background

Colliding Domain Walls

$$ds^{2} = L^{2} \left[-\frac{1}{z^{2}} du dv + \frac{1}{z^{2}} \phi_{1}(y_{1}, y_{2}, z) \delta(u) du^{2} + \frac{1}{z^{2}} \phi_{2}(y_{1}, y_{2}, z) \delta(v) dv^{2} + \frac{1}{z^{2}} \phi_{1}(y_{1}, y_{2}, z) \delta(v) dv^{2$$

$$S \sim rac{
u}{4G_5} (8\pi G_5)^{2/(
u+2)} E^{2/(
u+2)}$$
To get $S \sim E^{0.3}$

T

Blackening of anisotropic background

$$ds^{2} = b^{2}(z)\left(-\frac{dt^{2}}{z^{2(\nu-1)}} + d\vec{x}^{2} + dz^{2}\right)$$

Blackening

$$ds^{2} = b^{2}(z) \left(-\frac{f(z_{h}, z)}{z^{2(\nu-1)}} dv^{2} - 2\frac{dvdz}{z^{\nu-1}} + d\vec{x}^{2} \right)$$
$$dv = dt - \frac{dz}{z^{1-\nu}f(z_{h}, z)} \qquad f(z_{h}, z) = 1 - \frac{K(z)}{K(z_{a})}$$
$$ds^{2} = b^{2}(z) \left(\frac{-dt^{2} + dx^{2}}{z^{2(\nu-1)}} + dy_{1}^{2} + dy_{2}^{2} + dz^{2} \right)$$

Blackening ?

Thermalization time in anisotropic background

For power-law b-factor

Alishahiha, Astaneh, Mozaffar, 1401.2807; Fonda, Franti, Keranen, Keski-Vakkuri, Thorlacius, Tonni, 1401.6088

Arbitrary b-factor

$$\ell = 2s \int_0^1 \frac{b(s)}{b(sw)} \frac{dw}{\sqrt{(1 - K(z_h, sw)) \cdot \left(1 - \frac{b^2(s)}{b^2(sw)}\right)}}}{\tau = s \int_0^1 \frac{dw}{1 - K(z_h, sw)}}$$

Thermalization time in confining background with anisotropy

