Aspects of entanglement of/between disjoint regions in CFT & Holography

Erik Tonni SISSA

 C. De Nobili, A. Coser and E.T.;
 [1501.04311]

 P. Fonda, L. Giomi, A. Salvio and E.T.;
 [1411.3608]
 (JHEP)

 P. Calabrese, J. Cardy and E.T.;
 [1408.3043]
 (JPA)

Holographic Methods for Strongly Coupled Systems GGI, March 2015

Outline

Introduction & some motivations

Holographic entanglement entropy in AdS_4 :

Interpolating between the disk and the infinite strip

▶ Holographic mutual information: disks & other shapes

Entanglement in 2D CFT:

• Entanglement negativity: definitions and replica limit

- Entanglement entropies for disjoint intervals
- > Numerical extrapolations

• Entanglement negativity at finite temperature

Mutual Information & Entanglement Negativity

Short intervals expansion in 2D CFT

$$S_A = \frac{c}{3} \log \frac{\ell}{a} + \text{const}$$

Two intervals A_1 and A_2 : $\text{Tr}\rho_{A_1\cup A_2}^n$ for small intervals w.r.t. to other characteristic lengths of the system

The vacuum

is not

empty

$$r$$

$$\ell_1$$

$$\ell_2$$

$$\operatorname{Tr}\rho_A^n = c_n^2 (\ell_1 \ell_2)^{-c/6(n-1/n)} \sum_{\{k_j\}} \left(\frac{\ell_1 \ell_2}{n^2 r^2}\right)^{\sum_j (\Delta_j + \bar{\Delta}_j)} \langle \prod_{j=1}^n \phi_{k_j} \left(e^{2\pi i j/n}\right) \rangle_{\mathbf{C}}^2$$

 $\operatorname{Tr} \rho_A^n$ for disjoint intervals contains <u>all</u> the data of the CFT (conformal dimensions and OPE coefficients)

Generalization to 2 + 1 dimensions [Cardy, (2013)]

Holographic entanglement entropy in AdS(4)

[Ryu, Takayanagi, (2006)] Constant time slice in AdS_{d+2} Area $(\tilde{\gamma}_A)$ S_A Surfaces γ_A s.t. $\partial \gamma_A = \partial A$ Find the minimal area surface $\tilde{\gamma}_A$ 0.5 [Maldacena, (1998)] [Rey, Yee, (1998)] For arbitrary shapes of ∂A and AdS_4 we employ a numerical method based on *Surface Evolver* (by Ken Brakke) [Fonda, Giomi, Salvio, E.T., (2014)]

HEE in AdS(4). From

y

HEE in AdS(4). Polygons (1)

Infinite wedge with opening angle α ($|\phi| \leq \alpha/2$) [Drukker, Gross, Ooguri, (1999)] [Hirata, Takayanagi, (2006)]

$$z = \frac{\rho}{f(\phi)} \phi = \int_{f_0}^{f} \frac{1}{\zeta} \left[(\zeta^2 + 1) \left(\frac{\zeta^2(\zeta^2 + 1)}{f_0^2(f_0^2 + 1)} - 1 \right) \right]^{-\frac{1}{2}} d\zeta \quad f_0$$

4

HEE in AdS(4). Polygons (II)

Area of the minimal surfaces anchored on polygons

Numerical checks with Surface Evolver

HEE in AdS(4) for other simply connected regions

HEE in AdS(4). Annulus

Competition between two configurations of minimal surfaces $(\eta \equiv R_{\rm in}/R_{\rm out})$ [Gross, Ooguri, (1998)] [Zarembo, (1999)] [Olesen, Zarembo, (2000)] [Drukker, Fiol, (2005)]

Critical ratio η_c when $\Delta \mathcal{A} \equiv \mathcal{A}_{dis} - \mathcal{A}_{con}$ vanishes

Holographic mutual information in AdS(4). Squircles

$$I_{A_1,A_2} \equiv S_{A_1} + S_{A_2} - S_{A_1 \cup A_2} \equiv \frac{\mathcal{I}_{A_1,A_2}}{4G_N}$$

$$\mathcal{I}_{A_1,A_2} = F_{A_1 \cup A_2} - F_{A_1} - F_{A_2} + o(1)$$

Beyond a critical distance $\mathcal{I}_{A_1,A_2} = 0$ and the disconnected configuration is the minimal one

Holographic mutual information in AdS(4). Disjoint ellipses

Entanglement between disjoint regions: Negativity

$$\begin{array}{c} \rho = \rho_{A_1 \cup A_2} \text{ is a mixed state} \\ \hline \rho^{T_2} \text{ is the partial transpose of } \rho \\ \hline \langle e_i^{(1)} e_j^{(2)} | \rho^{T_2} | e_k^{(1)} e_l^{(2)} \rangle = \langle e_i^{(1)} e_l^{(2)} | \rho | e_k^{(1)} e_j^{(2)} \rangle \\ \hline \langle e_i^{(1)} e_j^{(2)} | \rho^{T_2} | e_k^{(1)} e_l^{(2)} \rangle = \langle e_i^{(1)} e_l^{(2)} | \rho | e_k^{(1)} e_j^{(2)} \rangle \\ \hline \langle e_i^{(k)} \rangle \text{ base of } \mathcal{H}_{A_k} \rangle \\ \hline \text{Peres, (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)] [Eisert, (2001)] [Vidal, Werner, (2002)] \\ \hline \text{Trace norm} \qquad \boxed{ ||\rho^{T_2}|| = \text{Tr}|\rho^{T_2}| = \sum_i |\lambda_i| = 1 - 2 \sum_{\lambda_i < 0} \lambda_i} \quad \begin{array}{c} \lambda_j \text{ eigenvalues of } \rho^{T_2} \\ \text{Tr} \rho^{T_2} = 1 \end{array} \\ \hline \text{Logarithmic negativity} \qquad \boxed{ \mathcal{E}_{A_2} = \ln ||\rho^{T_2}|| = \ln \text{Tr}|\rho^{T_2}| } \end{array}$$

 ${\mathcal E}$ measures "how much" the eigenvalues of ρ^{T_2} are negative

Bipartite system $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ in any state ρ

 $\mathcal{E}_1 = \mathcal{E}_2$

Replica approach to Negativity

[Calabrese, Cardy, E.T., (2012)]

$$\square \text{ A parity effect for } \mathbf{Tr}(\rho^{T_2})^{n_e} = \sum_i \lambda_i^{n_e} = \sum_{\lambda_i > 0} |\lambda_i|^{n_e} + \sum_{\lambda_i < 0} |\lambda_i|^{n_e} \\ \mathbf{Tr}(\rho^{T_2})^{n_o} = \sum_i \lambda_i^{n_o} = \sum_{\lambda_i > 0} |\lambda_i|^{n_o} - \sum_{\lambda_i < 0} |\lambda_i|^{n_o}$$

Analytic continuation on the even sequence $Tr(\rho^{T_2})^{n_e}$ (make 1 an even number)

$$\mathcal{E} = \lim_{n_e \to 1} \log \left[\operatorname{Tr}(\rho^{T_2})^{n_e} \right]$$

Р

$$\lim_{n_o \to 1} \operatorname{Tr}(\rho^{T_2})^{n_o} = \operatorname{Tr} \rho^{T_2} = 1$$

ure states
$$\rho = |\Psi\rangle\langle\Psi|$$
 and *bipartite* system $(\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2)$

$$Tr(\rho^{T_2})^n = \begin{cases} Tr \rho_2^n & n = n_o & \text{odd} \\ (Tr \rho_2^{n/2})^2 & n = n_e & \text{even} \end{cases}$$
Schmidt decomposition
Taking $n_e \to 1$ we have
$$\mathcal{E} = 2 \log Tr \rho_2^{1/2} \qquad \text{(Renyi entropy 1/2)}$$

2D CFT: Renyi entropies as correlation functions

One interval (N = 1): the Renyi entropies can be written as

a two point function of *twist fields* on the sphere [Calabrese, Cardy, (2004)]

Twist fields have been largely studied in the 1980s [Zamolodchikov, (1987)] [Dixon, Friedan, Martinec, Shenker, (1987)] [Knizhnik, (1987)] [Bershadsky, Radul, (1987)]

Integrable field theories [Cardy, Castro-Alvaredo, Doyon, (2008)] [Doyon, (2008)]

2D CFT: Renyi entropies for many disjoint intervals

N disjoint intervals $\implies 2N$ point function of twist fields

$$\frac{A_{1}}{u_{1}} \frac{A_{2}}{v_{2}} \frac{A_{2}}{v_{2}} \cdots \frac{A_{N-1}}{u_{N-1}} \frac{A_{N}}{v_{N}} \frac{A_{$$

 $\mathcal{R}_{3,4}$

 $\mathcal{Z}_{N,n}$ partition function of $\mathcal{R}_{N,n}$, a particular Riemann surface of genus g = (N-1)(n-1)obtained through replication

N intervals: free compactified boson & Ising model

$$\mathcal{R}_{N,n}$$
 is $y^n = \prod_{\gamma=1}^N (z - x_{2\gamma-2}) \left[\prod_{\gamma=1}^{N-1} (z - x_{2\gamma-1})\right]^{n-1}$

$$g = (N - 1)(n - 1)$$

[Enolski, Grava, (2003)]

Partition function for a generic Riemann surface studied long ago in string theory [Zamolodchikov, (1987)] [Alvarez-Gaume, Moore, Vafa, (1986)] [Dijkgraaf, Verlinde, Verlinde, (1988)]

 $\begin{array}{ll} \text{Riemann theta function} & \Theta[\boldsymbol{e}](\boldsymbol{0}|\Omega) = \sum_{\boldsymbol{m} \in \mathbb{Z}^p} \exp\left[\mathrm{i}\pi(\boldsymbol{m} + \boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \Omega \cdot (\boldsymbol{m} + \boldsymbol{\varepsilon}) + 2\pi\mathrm{i}(\boldsymbol{m} + \boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \boldsymbol{\delta}\right] \end{array}$

Free compactified boson $(\eta \propto R^2)$

[Coser, Tagliacozzo, E.T., (2013)]

[Fagotti, Calabrese, (2010)] [Alba, Tagliacozzo, Calabrese, (2010), (2011)]

Two disjoint intervals: numerical extrapolations

Mutual information in XXZ model (exact diagonalization) [Furukawa, Pasquier, Shiraishi, (2009)]

Rational interpolation: an example

Rational interpolation:

[De Nobili, Coser, E.T., (2015)]

$$W_{(p,q)}^{(n)}(x) \equiv \frac{a_0(x) + a_1(x)n + \dots + a_p(x)n^p}{b_0(x) + b_1(x)n + \dots + b_q(x)n^q}$$

Method first employed in 2 + 1 dimensions [Agón, Headrick, Jafferis, Kasko, (2014)]

Periodic harmonic chair

Harmonic chain on a circle (c

$$H = \frac{1}{2} \sum_{j=1}^{L} \left[p_j^2 + \omega^2 q_j^2 + (q_{j+1}) \right]$$

[Peschel, Chung, (1999)] [Botero, Reznik, [Audenaert, Eisert, Plenio, Werner,(2002

Decompactification regime

[Dijkgraaf, Verlinde, Verlinde, (1988)] [...] [Coser, Tagliacozzo, E.T., (2013)]

$$\mathcal{F}_{N,n}^{ ext{dec}}(oldsymbol{x}) = rac{\eta^{g/2}}{\sqrt{\det(\mathcal{I})} \, |\Theta(oldsymbol{0}| au)|^2}$$

- \blacksquare Riemann theta function Θ

Nasty n dependence

] Numerical checks for the Ising model through Matrix Product States

Three disjoint intervals: Numerical extrapolations

Non compact boson (data from the periodic harmonic chain)

Partial transposition: two disjoint intervals

[Calabrese, Cardy, E.T., (2012)]

Partial Transposition for bipartite systems: pure states

$$\begin{aligned} \mathcal{H} &= \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2} \\ & \lim_{B \to \emptyset} \left(\underbrace{\begin{array}{c} B & A_1 & B & A_2 & B \\ \hline u_1 & v_1 & u_2 & v_2 \\ \hline \mathcal{T}_n & \overline{\mathcal{T}}_n & \mathcal{T}_n & \overline{\mathcal{T}}_n \end{array} \right) \\ & \left(\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n^2(u_2)\overline{\mathcal{T}}_n^2(v_2) \rangle \right) & \operatorname{Partial} = \operatorname{exchange}_{\text{two twist fields}} \\ & \mathcal{T}_n^2 \text{ connects the } j\text{-th sheet with the } (j+2)\text{-th one}_{\text{Even } n = n_e} \implies \operatorname{decoupling} \\ & \left(\operatorname{Tr}(\rho_A^{T_2})^{n_e} = (\langle \mathcal{T}_{n_e/2}(u_2)\overline{\mathcal{T}}_{n_e/2}(v_2) \rangle)^2 = \left(\operatorname{Tr} \rho_{A_2}^{n_e/2} \right)^2 \\ & \operatorname{Tr}(\rho_A^{T_2})^{n_o} = \langle \mathcal{T}_{n_o}(u_2)\overline{\mathcal{T}}_{n_o}(v_2) \rangle = \operatorname{Tr} \rho_{A_2}^{n_o} \\ & \left(\operatorname{Two dimensional CFTs} \right) & \left(\operatorname{Ar}_{T_{n_e}}^2 = \frac{c}{6} \left(\frac{n_e}{2} - \frac{2}{n_e} \right) \right) & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2} \ln \ell + \operatorname{const} \right) \\ & \left(\mathcal{E} = \frac{c}{2$$

Partial Transpose in 2D CFT: two adjacent intervals

Three point function

$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n(-\ell_1)\bar{\mathcal{T}}_n^2(0)\mathcal{T}_n(\ell_2)\rangle$$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_e} \propto (\ell_1 \ell_2)^{-\frac{c}{6}(\frac{n_e}{2} - \frac{2}{n_e})} (\ell_1 + \ell_2)^{-\frac{c}{6}(\frac{n_e}{2} + \frac{1}{n_e})}$$
$$\operatorname{Tr}(\rho_A^{T_2})^{n_o} \propto (\ell_1 \ell_2 (\ell_1 + \ell_2))^{-\frac{c}{12}(n_o - \frac{1}{n_o})}$$

Partial Transpose in 2D CFT: two disjoint intervals

$$\operatorname{Tr} \rho_{A_{1}\cup A_{2}}^{n} \xrightarrow{B \quad \overline{T_{n}} \quad A_{1} \quad \overline{T_{n}} \quad B \quad \overline{T_{n}} \quad A_{2} \quad \overline{T_{n}} \quad B}{u_{1} \quad v_{1} \quad u_{2} \quad v_{2} \quad$$

Two adjacent intervals: harmonic chain & Ising model

Two disjoint intervals: periodic harmonic chains

Previous numerical results for \mathcal{E} : Ising (DMRG) and harmonic chains [Wichterich, Molina-Vilaplana, Bose, (2009)] [Marcovitch, Retzker, Plenio, Reznik, (2009)]

Non compact free boson [Calabrese, Cardy, E.T., (2012)]

$$\widetilde{R}_n = \frac{\operatorname{Tr}(\rho_A^{T_2})^n}{\operatorname{Tr}\rho_A^n}$$

$$\widetilde{R}_{n} = \left[\frac{(1-x)^{\frac{2}{3}(n-\frac{1}{n})}\prod_{k=1}^{n-1}F_{\frac{k}{n}}(x)F_{\frac{k}{n}}(1-x)}{\prod_{k=1}^{n-1}\operatorname{Re}\left(F_{\frac{k}{n}}(\frac{x}{x-1})\bar{F}_{\frac{k}{n}}(\frac{1}{1-x})\right)}\right]^{\frac{1}{2}}$$

Two disjoint intervals: periodic harmonic chains

Analytic continuation for $x \sim 1$ [Calabrese, Cardy, E.T., (2012)]

$$\mathcal{E} = -\frac{1}{4}\log(1-x) + \log K(x) + \text{cnst}$$

Analytic continuation $n_e \to 1$ for 0 < x < 1 not known

 $\mathcal{E}(x)$ for $x \sim 0$ vanishes faster than any power

Numerical extrapolations (rational interpolation method) [De Nobili, Coser, E.T., (2015)]

Two disjoint intervals: Ising model

[Calabrese, Tagliacozzo, E.T., (2013)]

CFT

$$\mathcal{G}_n(y) = (1-y)^{(n-1/n)/6} \frac{\sum_{\mathbf{e}} |\Theta[\mathbf{e}](\mathbf{0}|\tau(\frac{y}{y-1}))|}{2^{n-1} \prod_{k=1}^{n-1} |F_{k/n}(\frac{y}{y-1})|^{1/2}}$$

0 < y < 1

Tree tensor network:

One interval at finite temperature: a naive approach

[Calabrese, Cardy, E.T., (2014)]

- **D** Logarithmic negativity \mathcal{E} of one interval at finite $T = 1/\beta$
 - A naive approach: compute $\langle \mathcal{T}_n^2(u) \overline{\mathcal{T}}_n^2(v) \rangle_{\beta}$ through the conformal map relating the cylinder to the complex plane

$$\mathcal{E}_{\text{naive}} = \frac{c}{2} \ln \left(\frac{\beta}{\pi a} \sinh \frac{\pi \ell}{\beta} \right) + 2 \ln c_{1/2}$$

Problems:

The Rényi entropy n = 1/2 is not an entanglement measure at finite T

 $\mathcal{E}_{\text{naive}}$ is an increasing function of T, linearly divergent at high TEntanglement should decrease as the system becomes classical

One interval at finite temperature in the infinite line

(connection to the (j + 1)-th cylinder following the arrows)

Single copy of
$$\rho_{\beta}^{T_A} \implies \operatorname{Tr}(\rho_{\beta}^{T_A})^n$$

Deformation of the cut along ${\cal B}$

A cut remains connecting consecutive copies \implies No factorization for even n

(The double arrow indicates the connection to the (j + 2)-th copy)

Deforming the cut at zero temperature

The cut connecting consecutive copies shrinks to a point Only the connection to the $j \pm 2$ copies along A remains \implies Factorization for even n

AA

One interval at finite temperature in the infinite line

 \mathcal{E} depends on the full operator content of the model large T linear divergence of \mathcal{E}_{naive} is canceled semi infinite systems $\operatorname{Re}(w) < 0$ (BCFT) have been also studied

Harmonic chain (Dirichlet b.c.) and finite size setup

Conclusions

- Shape dependence of holographic entanglement entropy in AdS_4 .
 - \rightarrow ellipses and other shapes, including finite polygons
 - \rightarrow Holographic mutual information for unusual regions
- Numerical extrapolations for the replica limit
- Entanglement for mixed states.

Entanglement negativity in QFT (1+1 CFTs): $Tr(\rho^{T_2})^n$ and \mathcal{E}

- \rightarrow free boson on the line and Ising model
 - finite temperature
- Entanglement negativity. Some generalizations:
 - \rightarrow free compactified boson, systems with boundaries and massive case
 - \rightarrow topological systems (toric code) [Lee, Vidal, (2013)] [Castelnovo, (2013)]
 - \rightarrow results for holographic models

[Rangamani, Rota, (2014)] [Kulaxizi, Parnachev, Policastro, (2014)]

→ evolution after a quantum quench [Coser, E.T., Calabrese, (2014)] [Eisler, Zimboras, (2014)] [Wen, Chang, Ryu, (2015)]

▶ fermionic Gaussian states [Eisler, Zimboras, (2015)]

Open issues

- Shape dependence of holographic entanglement entropy:
 - Analytic results
 - Black holes
 - Tripartite information
 - HMI for polygons
 - Higher dimensions
 - Time dependent backgrounds

Entanglement negativity in CFT:

Analytic continuations

Higher dimensions

Interactions

Negativity in AdS/CFT

Thank you!