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In the early '70's Belinsky. Khalatnikov and Lifshitz (BKL) developed
an ultra local or Carrollian approximation scheme for Einstein’s Equa-
tions in 341 dimensions,in which the metric at every point of space
evolves independently of every other point of space, thus reducing a
finite set of PDE's to a finite set of ODES in time t whose coefficients
depend on the spatial variables z°.

The ODE's are obtained by either ignoring spatial derivatives or re-
placing them by a suitable function of the spatial metric variables

9ij-



An exact special case of this procedure is to assume spatial homo-
geneity, i.e. that a three dimensional Bianchi Lie group G acts by
isometries on the spatial hypersurfaces t = constant . If G is abelian
(Bianchi I) the metric coefficients evolve as as powers of time

ds? = —dt® + t°P1dx? + t°P2dy? + t°P3d2° (1)

p1+pr+p3=1, ps+p3+ps=1. (2)

The Kasner motion is linear, i.e. free in Int.

In the BKL approximation this exact Kasner metric is modified by
allowing the Kasner exponents p; to depend arbitrarily on the spatial
variables. p; = p;(zF).



A more interesting exact model is when G = SU(2) or SO(3) (Bianchi
IX) for which

ds® = —dt* + g;j(t)o* ® o7 , (3)

where o%(z*) are left-invariant one forms for g = su(2).

The exact ode's are not explicitly integrable but BKL and Misner
et al. developed an approximation scheme according to which the
motion consist of of a chaotic quasi-periodic sequence of Kasner (i.e.
piecewise linear or free exact solutions of Bianchi I type) epochs and
eras, called by Misner the Mix-master Universe.



On this basis, BKL conjectured that the generic behaviour near a
spacetime singularity was of this type.

The claim remains controversial, but there is considerable body of
evidence that a open subset of Cauchy data will evolve in this way.



Subsequently, in the '80’s and 90's many people investigated BKL
behaviour in higher dimensions. For pure gravity, Henneaux et al.
claimed that there could be no chaotic behaviour of BKL type in
higher than 9+41.

In intermediate dimensions, they claimed that chaos is in principle pos-
sible but few if any explicit exact examples, analogous to the Bianchi
IX case, in which a group G acts simply transitively on spacelike sur-
faces appear to be known.



In supergravity one must add sources, the various p-form fields, e.g.
p=4, in 1041.

Damour, Henneaux,Julia, and Nicolai have analysed this case and dis-
covered that chaos, in the BKL sense, persists in 1041 and moreover
is characterised algebraically in terms of the Kac-Moody algebra Eqg.

On the basis of this result they have made the remarkable claim that
FE10 encodes the symmetries, and much else, of M-theory.



The potential importance of this result, means that the chaotic be-
haviour of higher dimensional spacetimes deserves the closest possible
scrutiny.

In particular the DHJN result is based on two different approximations

e Approximating the PDE’'s by ODE's

e Approximating the resultant ODE’'s by a piecewise free motion
subject to reflections.



The aim of our work is to obtain exact ODE’s obtained by a consistent
truncation of the Einstein equations to one time dimension and then
to apply the BKL test for chaos, as developed by Damour, Henneaux,
Nicolai and others.

A new feature of our work is that we deal with cases when the spatial
manifold is not only a group manifold but also the case when it is a
coset G/K. If the coset is reductive

g=pDk, [k,p] Cp (4)

ds® = —dt* + g;;()p' @ p’ (5)

then g;;(t) is a k = dimensional family of K-invariant metrics on the
tangent space p of G/K.



T he Einstein equations become a Lagrangian system with a constraint

1
Ly = §Gﬂy(a)a“'aw — Vi (at) (6)
1 ! vl
H; = EG'L“/Q{“ o’ 4+ Vi (at) (7)
) 1 d (8)
detgij dt

Here o, n = 1,2,...k are coordinates on a k -dimensional family of

K-invariant metrics on G/K, and Guw(a) is a (Lorentzian) metric on
that space with signature £k —1,1. The timelike direction corresponds

to rescaling the metric g;;.



A closely related set of equations arises when considering Riemannian
co-homogeneity one metrics (particularly of reduced holonomy)

ds = dr? + g;;(T)p' @ p’ | (9)
1

Lp = EGuy(a)a“’aw + Vi (a?) (10)

- 1 ul vl I
Hp = EG’Wa o’ — Vi (at) (11)

and now
1 d

/ (12)

- det 9ij dr



In the Riemannian case one often finds a subset of solutions with
reduced holonomy given by BPS equations of the form

ot = +GHY o, W, (13)

1

for some ‘superpotential'W(a*).

A gradient flow like this is not very chaotic and we suspect that all
Riemannian solutions, whether BPS or not, are non-chaotic.

This is consistent with our experience applying the BKL-DHN criteria
to all our explicit examples.



In n+ 1 Lorentzian dimensions the metric

Guvdatda” (15)

IS essentially a restriction ?f a conformal rescaling of De-Witt metric
on GL(n.fR)/SO(n) C BR3"("*t1) the space of positive definite n x n
matrices

1 .. .
Zg” 9'°dgirdgs — 9’ dg; ;9" “dgrs - (16)

For diagonal metrics it is the flat Minkowski metric on 8E™ 11 | but
for non-diagonal metrics it is curved. For diagonal metrics, the free

Kasner motion (obtained by setting V; = 0) is that of a light ray in
Minkowski spacetime g~ 1.1



In the diagonal case, we set g;; = diag(e_zﬁu) pw=12,...n. The
Lorentzian potential is then given by the Ricci scalar of G/K with the
invariant metric g;. It is given in terms of the structure constants of
G and K and is then of the form

Vp =) +exp—2m,0H (17)
The hyperplanes through the origin of SE*—1:1.
Wﬂﬂ“ =0, (18)

determine positive or negative walls which may be timelike, spacelike
or lightlike w.r.t. the metric Gy .

In the BKL approximation, the free motion comes to an end when
the light ray bounces off a timelike positive wall



If there are sufficiently many timelike walls, then the lightray will be
confined within a closed polyhedral billiard and the motion is chaotic.

Following Chitre, one may project onto the ‘mass shell 'in g™~ 11,
that is hyperbolic space H"1 and one seeks a hyperbolic billiard

For any given model, checking whether the positive timelike walls
enclose a closed polyhedral billiard (possibly with vertices on the ‘ab-
solute 'or sphere at infinity, i.e. on the conformal boundary of H"* 1
Is straightforward,although possibly involved.



The simplest case is when there are just n positive walls WZ and the

billiard is an n-symplex The diagonal elements of the Grammian

GY = GMVW'ZTF‘Z. (19)
must all be be positive in order that the n walls be timelike. By
LLegendre duality, the inverse Grammian gives the Grammian of the
vertices

GZJ — G,LLI/U ,] 7'(-“'05 — 5Z (20)

If the hyperbolic billiard is to have finite volume, the vertices must lie
inside or on the absolute, i.e. the vertices must be timelike or lightlike
which means that the diagonal elements of Gz-j must all be non-
positive. If there are more than n positive walls the analysis is more
complicated because some walls may lie behind, or be ‘dominated 'by
other walls.



For non-diagonal metrics g;5 the analysis is much more complicated.One
introduces an Iwasawa decomposition

gij = (N*AN);; (21)

where A = diag(exp —28,) and N has ones on the diagonal and zeros
beneath it. The full curved De-Witt metric on SL(n.R)/SO(n) is
given by

Gdatda” =3 (dp*)? — (3 dB*)? +§ > 2WFIENNTDZ, (22)
I 1% p<v

T he potential V7 is also modified by additional wall terms of the form

+ N2 exp —2m,8" and + N*exp —2m,8". (23)



The strategy of DHN is to project the motion onto the space of diag-

onal variables 8, and to regard the Isawawa variables N as ‘frozen 'or
slowly varying. The term in the kinetic energy is 5 5,,«, e2(#"=F)(W'N-1)2
gives rise to a further ‘centrifugal potential 'in the effective Lorentzian
potential

1 v

ff —2(pH— 2

VET =Vi 45 Y e (PN, (24)
p<v

where P is the momentum canonically conjugate to N. Freezing P

means introduces additional symmetry walls of the form

Bu—0Bv=0. (25)



If one accepts the strategy of DHN, one may now, in any given case,
test for chaos in the sense of BKL. For coset models, G/K the number
of Iwasawa and diagonal variables is reduced since we must respect
K-invariance. Thus the results of DHN and others are not directly
applicable and we must test anew.

So far, in all the examples we have examined above 34 1 dimensions,
we have not found a single chaotic example (Lorentzian or Rieman-
nian).

Our special coset examples were motivated by our previous work on
reduced holonomy and contain no form fields. Thus there is no con-
tradiction with the work of DNH.

However it is disappointing since we have no simple explicit examples
of BKL behaviour to examine in depth.



An example, a three function ansatz for SO(n 4+ 2)/S0O(n) in (2n +
1) 4+ 1 dimensions

ds® = dt® + a®0? + b° 57 + 2 v?, (26)

Geometrically the orbits are the bundle of unit tangent vectors on
Sntl  The case n = 1 is Bianchi IX. Riemannian solutions with
reduced holonomy include n = 1 Eguchi-Hanson and n = 2 the De-
formed Conifold. For arbitrary n there is a non-compact Calabi-Yau
metric with holonomy SU(n+1) on T*S™+1 called the Stenzel metric.



Defining a = %, b = P, ¢ = €7, and introducing the new coordinate
n by a" b" cdn = dt, we find that the Riemannian Ricci-flat equations
can be derived from the Lagrangian L =T — Vg, where

2
Bl — 8 — - Dl K- 1) 87
_%(a )22 (a* + b* + c* — 242 b% — 2na’c® — 2nb° ) (27)

T
VE

where a prime means d/dn, together with the constraint that the
Hamiltonian vanishes, Hr =T + Vg = 0. The DeWitt metric and its
inverse are thus given by

n-1 n 1 1 -1 -1
Gw=-| n n-1 1], Gv=3l-1 1 -1
1 1 0 -1 -1 2n-1

(28)



Writing the Lagrangian as Ly = %GW (dat/dn) (da® /dn) — V', where

ot = («, 8,7), we find that the potential can be written in terms of a

superpotential, as

y OW OW
oot O

VE — —%G (29)
with
W = 2(ab)" ! (a® + 0%+ c?). (30)

It follows that the Lagrangian can be written, after dropping a total
derivative, as

dot da
L LGP Y,W) (T
dn dn

where 0,W = oW /0a*. This implies that the second-order equations
for Ricci-flatness are satisfied if the first-order equations da*/dn =

L= 3Gu( + GY7 9,W), (31)



FGHY 0,W are satisfied. Thus we arrive at the first-order equations

o = %e—a—ﬁ—’y (626 + 627 . 6204) ,
B %e—a—ﬁ—'y (eQa 4 62'7 . 626) ,
o — %n e "R (2% 4 28 _ 27 (32)

For the Lorentzian motion there are three positive walls, of the form

mit=(Mm+1,n-1,0): 2a+ (n—1)(a+B)=0  (33)
mi?=(-1,n+1,0): 28+ (n—1)(a+8)=0 (34)
i =(n-1n-1,2): 2y+(m-1)(a+B) =0  (35)

These have the intersections

rtna®: ok =(0,0,1) (36)



m?nad: b, =AM14+n,1-n,1-n) (37)
mdnal: Wb, =M1 -n,14n,1-n) (38)

The first is a lightlike vector and the last two are spacelike. All three
planes are timelike. Although one of the intersections is lightlike, the
other two are spacelike:

Guywﬁl'l@,j'l = G“V’fr;bl'Qa;l'Q = G“VW;'L'38;|'3 =2,
G,vaf_lvfl_l — GNVUiQUEI—Q = 2)\2(n - 1), G,WUflb—qu—s = (B9)

Thus the triangular billiard has one vertex on the absolute and two
outside it, implying that the motion is not chaotic in the BKL sense.

For the Riemannian motion, the relevant walls are negative (as terms
in V, = —Vg), and they take the form

wljl =(n,n—1,1), 7'(';2:(71—1,71,1), 7'(';32(1,1,0). (40)



These have the intersections

mina?: Wty =A(1,1,1-2n)! (41)
N ot =M1, -1,1)¢ (42)
=Nt o, =A(-1,1,1)" (43)

The third plane, w;3, is lightlike and if n > 1, the other two planes

are spacelike. All of the intersections are spacelike:

GMrtoyt = GMn 29,2 =1 —n, GM'r 30,3 =0,
Guyvﬁlvz:[ — G’u,y'U'IiQ'UZQ — 2)\2 y G'u,y'vli?)'vz:a — 2)\2(277, — 144)

Thus there is no chaos for the Riemannian equations.



Introduction of off-diagonal terms. To be consistent with K = SO(n)
invariance we can only consider a single Iwasawa variable.

ds® = dt® + a?(0; + N5;)? + b° 57 4 2 v?, (45)

For concreteness we set n = 2. One finds that
T — T 4 2 28(N")? (46)

(47)



Including the symmetry wall we obtain a total of 5 positive walls.

Eliminating redundant walls we obtain just three walls

i)

a—+ B+ 2y

i)

B3a+ 0
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(48)
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(53)
(54)
(55)



and the simplex method applies. All three walls are timelike. The
intersection of the second and third is spacelike while the other two

intersections lie on the light cone. No chaos in the sense of BKL is
possible in this case.



