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Introduction

The AdS/CFT correspondence:
The large N limit of N = 4 Yang-Mills is dual to type IIB string theory

on AdS5 × S5 ⇒ Spectra of both theories should agree

→ Difficult to test, because the correspondence is a strong/weak
coupling duality: we can not use perturbation theory on both sides

String energies expanded at large λ

E (λ) = λ1/4E0 + λ−1/4E1 + λ−3/4E2 + . . .

Scaling dimensions of gauge operators at small λ

∆(λ) = D0 + λD1 + λ2D2 + . . .

E (λ)↔ ∆(λ)

→ Integrability illuminates both sides of the correspondence

→ Sstring should interpolate to Sgauge
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Integrability in the AdS/CFT correspondence

A complete formulation of the AdS/CFT correspondence⇒ Precise
identification of string states with local gauge invariant operators

⇒ E
√
α′ = ∆

Strong evidence in the supergravity regime, R2�α′ (R4=4πg2
YMNα′2)

Difficulties:
◦ String quantization in AdS5 × S5

◦ Obtaining the whole spectrum of N = 4 is involved

An insight: There is a maximally supersymmetric plane-wave
background for the IIB string [Blau et al]

⇓
Plane-wave geometry ⇒ Penrose limit
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The Penrose limit shows up on the field theory side [Berenstein, Maldacena, Nastase]

⇓
Operators carrying large charges, tr (X J

1 . . .), J � 1

→ Dual description in terms of small closed strings whose center moves
with angular momentum J along a circle in S5

[Gubser, Klebanov, Polyakov]

Generalization: Operators of the form tr (X J1
1 X J2

2 X J3
3 ) are dual to

strings with angular momenta Ji [Frolov, Tseytlin]

⇒ The energy of these semiclassical strings admits an analytic
expansion in λ/J2

E = J
[
1 + c1

(Ji

J

) λ
J2

+ . . .
]

⇒ Comparison with anomalous dimensions of large Yang-Mills operators:

• Bare dimension ∆0 → J

• One-loop anomalous dimension → λ
J c1

(
Ji

J

)
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Verifying AdS/CFT in large spin sectors⇒ Computation of the
anomalous dimensions of large operators

(Difficult problem due to operator mixing)

Insightful solution:

→ The one-loop planar dilatation operator of N = 4 Yang-Mills
leads to an integrable spin chain (SO(6) in the scalar sector
[Minahan,Zarembo] or PSU(2, 2|4) in the complete theory [Beisert,Staudacher])

Single trace operators can be mapped to states in a closed spin chain
⇒ BMN impurities: magnon excitations

tr(XXXYY X . . .)↔ | ↑↑↑ ↓↓ ↑ . . .〉
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The Bethe ansatz

→ The rapidities uj parameterizing the momenta of the magnons satisfy
a set of one-loop Bethe equations

e ipjJ ≡
(

uj + i/2

uj − i/2

)J

=
M∏

k 6=j

uj − uk + i

uj − uk − i
≡

M∏
k 6=j

S(uj , uk)

Thermodynamic limit: integral equations

→ Assuming integrability an asymptotic long-range Bethe ansatz
has been proposed [Beisert,Dippel,Staudacher](

x+
j

x−j

)J

=
M∏

k 6=j

uj − uk + i

uj − uk − i
=

M∏
k 6=j

x+
j − x−k

x−j − x+
k

1− λ/16π2x+
j x−k

1− λ/16π2x−j x+
k

where x±j are generalized rapidities

x±j ≡ x(uj ± i/2) , x(u) ≡ u

2
+

u

2

√
1− 2

λ

8π2

1

u2
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The quantum string Bethe ansatz

String non-linear sigma model on the coset

PSU(2, 2|4)

SO(4, 1)× SO(5)

Integrable

[Mandal,Suryanarayana,Wadia] [Bena,Polchinski,Roiban]

Admits a Lax representation: there is a family of flat connections A(z), dA(z)− A(z) ∧ A(z) = 0

⇒ Classical solutions of the sigma model are parameterized by an
integral equation [Kazakov,Marshakov,Minahan,Zarembo]

− x

x2 − λ
16π2J2

∆

J
+ 2πk = 2 P

∫
C

dx ′
ρ(x ′)

x − x ′
x ∈ C

Reminds of the thermodynamic Bethe equations for the spin chain ...

In fact, it leads to the spin chain equations when λ/J2 → 0
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The previous string integral equations are
classical/thermodynamic equations

⇓
Assuming integrability survives at the quantum level, a discretization
would provide a quantum string Bethe ansatz [Arutyunov,Frolov,Staudacher]
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The quantum string Bethe ansatz is [Arutyunov,Frolov,Staudacher](
x+
j

x−j

)J

=
M∏

k 6=j

x+
j − x−k

x−j − x+
k

1− λ/16π2x+
j x−k

1− λ/16π2x−j x+
k

e2iθ(xj ,xk )

The string and gauge theory ansätze differ by a dressing phase factor!!
The phase factor is given by

θ12 = 2
∞∑
r=2

cr (λ)
(
qr (x1)qr+1(x2)− qr+1(x1)qr (x2)

)
(

qr (pi ) are the conserved magnon charges

qr (x±) =
i

r − 1

(
1

(x+)r−1
− 1

(x−)r−1

) )
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→ The dressing phase coefficients cr (λ) should interpolate from
the string to the gauge theory (strong/weak-interpolation)

→ To recover the integrable structure of the classical string the
coefficients must satisfy cr (λ)→ 1 as λ→∞

⇓
Explicit form of cr (λ) ...

To constrain the string Bethe ansatz and find the
structure of the dressing phase we can compare with

one-loop corrections to semiclassical strings

⇓
The classical limit cr (∞) = 1 needs to be modified in order to

include quantum corrections to the string
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The S-matrix of AdS/CFT

The S-matrices of the (discrete) quantum string and the long-range
gauge Bethe ansätze differ simply by a phase [Arutyunov,Frolov,Staudacher]

Sstring(p1, p2) = e i θ(p1,p2)Sgauge(p1, p2)

The S-matrix can be determined explicitly
⇓

The spin chain vacuum breaks the PSU(2, 2|4) symmetry
algebra down to (PSU(2|2)× PSU(2|2)′) n R,

with R a shared central charge

The S-matrix is determined up to a scalar (dressing phase) factor
[Beisert] [Klose,McLoughlin,Roiban,Zarembo]

S12 = S0
12 S

SU(2|2)
12 S

SU(2|2) ′

12

S0
12 =

x+
1 − x−2

x−1 − x+
2

1− 1/x−1 x+
2

1− 1/x+
1 x−2

e2iθ12
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Symmetries of the scattering matrix

One-loop corrections to semiclassical strings

→ One-loop corrections are obtained from the spectrum of quadratic
fluctuations around a classical solution [Frolov,Tseytlin] [Frolov,Park,Tseytlin]

→ They amount to empirical constraints on the string Bethe ansatz

→ Careful analysis of the one-loop sums over bosonic and fermionic
frequencies [Schäfer-Nameki,Zamaklar,Zarembo] [Beisert,Tseytlin] [RH,López] [Freyhult,Kristjansen]

provides a compact form of the first quantum correction

[RH,López] [Gromov,Vieira]

cr ,s = δr+1,s +
1√
λ

ar ,s

ar ,s = −8
(r − 1)(s − 1)

(r + s − 2)(s − r)
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Crossing symmetry and the dressing phase factor

Crossing symmetry

The structure of the complete S-matrix is [Beisert]

S12 = S0
12

[
S

SU(2|2)
12 S

SU(2|2) ′

12

]
◦ Term in the bracket: determined by the symmetries (Yang-Baxter)

◦ The scalar coefficient is the dressing factor: constrained by unitarity
and crossing (→ dynamics) [Janik], which implies

θ(x±1 , x
±
2 ) + θ(1/x±1 , x

±
2 ) = −2i log h(x±1 , x

±
2 )

with

h(x1, x2) =
x−2
x+

2

x−1 − x+
2

x+
1 − x+

2

1− 1/x−1 x−2
1− 1/x+

1 x−2

An expansion of both sides has been shown to agree, using the explicit
form of the one-loop correction in θ(x1, x2) [Arutyunov,Frolov]

⇓
The θone-loop(λ) phase is a solution of the crossing equations
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Higher corrections

Idea: Search for coefficients to fit the expansion of the crossing function
h(x1, x2)

This provides a strong-coupling expansion [Beisert,RH,López]

cr ,s =
∞∑

n=0

c(n)
r ,s g1−n

for the coefficients in the dressing phase
(
g ≡
√
λ/4π

)
The all-order proposal is

c(n)
r ,s = (r − 1)(s − 1) Bn A(r , s, n)

with

A(r , s, n) =

(
(−1)r+s − 1

)
4 cos( 1

2πn) Γ[n + 1] Γ[n − 1]
×

Γ[ 1
2 (s + r + n − 3)]

Γ[ 1
2 (s + r − n + 1)]

Γ[ 1
2 (s − r + n − 1)]

Γ[ 1
2 (s − r − n + 3)]



Integrability and magnon kinematics in the AdS/CFT correspondence

→ Includes the classical and one-loop terms

→ An expansion dressed with the Bernoulli numbers

→ The one-loop contribution alone satisfies part of the crossing
relation (odd crossing)

→ The remaining piece of the crossing condition is satisfied by the
n-loop contribution, with n even(

The solution is however not unique: it is possible to include additional

homogeneous solutions to the crossing constraints
)

→ The phase shows agreement with perturbative string theory
(semiclassical scattering of giant magnons [Hofman,Maldacena])
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Weak-coupling expansion

→ The previous (strong-coupling) asymptotic expansion

cr ,s =
∞∑

n=0

c(n)
r ,s g1−n

agrees with the string theory regime

→ The weak-coupling regime is constrained by perturbative
computations:

◦ Up to three-loops the phase θ(x1, x2) should remain zero

◦ A recent four-loop computation requires a first non-vanishing
piece in the dressing phase [Bern,Czakon,Dixon,Kosower,Smirnov]

→ The four-loop result can be recovered from a long-range Bethe
ansatz computation [Beisert,Eden,Staudacher] (See also [Benna,Benvenuti,Klebanov,

Sardicchio] [Alday,Arutyunov,Benna,Eden,Klebanov] [Beccaria,DeAngelis,Forini] ... )
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Quantum–deformed magnon kinematics

The previous succesful interpolation from the strong to the weak-coupling
regime relies strongly on the long-range Bethe ansatz of [Beisert,Dippel,Staudacher]

We will now try to address two questions

→ What is the magnon kinematics underlying the long-range ansatz?

→ Is the gauge theory (the correspondence) really integrable?

Clarifying the features of magnon kinematics is indeed of great
importance

⇓
→ In 1 + 1 relativistic theories physical conditions are used to constrain

the S-matrix: unitarity, bootstrap principle, crossing symmetry

→ The remaining traditional condition is Lorentz covariance ⇒ Forces
dependence on the diference of rapidities
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Let us briefly recall the way the long-range Bethe ansatz is constructed

→ The (one-loop) Heisenberg chain has dispersion relation

E = 4 sin2
(p

2

)
→ The Bethe ansatz can be deformed to include the magnon

dispersion relation for planar N = 4 Yang-Mills,

E 2 = 1 +
λ

π2
sin2

(p

2

)
The extension/deformation is the long-range Bethe ansatz

[Beisert,Dippel,Staudacher]
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We will now try to uncover the magnon kinematics
underlying planar N = 4 Yang-Mills

→ In a 1 + 1-dimensional relativistic theory particles transform in irreps
of the Poincaré algebra, E (1, 1),

[J,P] = E , [J,E ] = P , [E ,P] = 0

An irrep is specified by a value of the Casimir operator

m2 = E 2 − p2

→ The dispersion relation in planar N = 4 is a deformation of the
usual relativistic relation ⇒ There is an algebra whose Casimir
has the adequate form!!

⇓
It is a quantum deformation of the 1 + 1 Poincaré algebra, Eq(1, 1)

[Gómez,RH] [Young]
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Eq(1, 1) is the algebra

KEK−1 = E , KJK−1 = J + iaE ,

KK−1 = 11 , JE − EJ =
K − K−1

2ia

with deformation parameter q = e ia and K = e iaP (the limit a→ 0
corresponds to the usual Poincaré algebra)

Furthermore, the boost generator J can be used to introduce a
uniformizing rapidity through J = ∂

∂z . Then the algebra implies

∂p

∂z
=

√
1 +

λ

π2
sin2

(p

2

)
which provides a elliptic uniformization in terms of Jacobi functions

[Beisert] [RH,Gómez] [Kostov,Serban,Volin]

sin
(p

2

)
= k ′sd(z) , E (z) =

1

2dn(z)

(The relativistic uniformization is p(z) = m sinh z , E (z) = m cosh z)
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Semi-continuum limit in the Ising model

The quantum-deformed Poincaré, or the dispersion relation in planar
N = 4 Yang-Mills, can in fact be obtained from the Ising model

→ The lattice spacings ax and at can be mapped to the Ising couplings
K and L (∗ stands for the Kramers-Wannier dual)

sinh 2L sinh 2K∗ =

(
ax

at

)2

, 2 sinh(L− K∗) = µax

→ Define γ ≡ pax , ω ≡ Eat . Then Onsager´s hypergeometric
relation becomes

cosh γ = cosh 2L cosh 2K∗ − sinh 2L sinh 2K∗ cosω
⇓

a2
t

(
cosh pax − 1

)
+ a2

x

(
cos Eat − 1

)
= 1

2µ
2a2

t a
2
x
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→ In the continuum limit ax , at → 0 we get p2 + E 2 = µ2

The semi-continuum limit at → 0 leads to the dispersion relation
in planar N = 4 Yang-Mills (after analytical continuation of p and
the introduction of an effective scale through ax)

In fact, the uniformization in planar N = 4 is the same as that
in the Ising model (cf [Baxter])

The Boltzmann weights are indeed made out from x±

x± = e2Le∓2K

(map by [Kostov,Serban,Volin])

and integrability from the star-triangle relation implies
Beisert´s algebraic constraint

x+ +
1

x+
− x− − 1

x−
=

1

4ig
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Conclusions

• Testing AdS/CFT in large spin sectors ⇒ Integrability in the planar
limit of N = 4 Yang-Mills: Precision tests of the correspondence

• Quantum corrections constrain the string Bethe ansatz

◦ Simple form of the first correction

◦ A crossing-symmetric phase has been suggested to higher orders

• A proof of the the AdS/CFT correspondence requires identification
of spectra, together with interpolation as the coupling evolves

◦ The dressing factor interpolates from the string to the gauge
theory, and strong to weak-coupling

Sst(pj , pk) = e iθ(pj ,pk )Sg (pj , pk)

• The quantum–deformed plane of magnon kinematics in planar
N = 4 Yang-Mills has been identified
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Open questions

• Algebraic origin of the structure of the dressing phase factor

⇓
Underlying quantum group symmetry pattern organizing

the gauge coupling evolution
[Gómez,RH] [Plefka,Spill,Torrielli] [Arutyunov,Frolov,Plefka,Zamaklar] [Torrielli] [Beisert]

[Moriyama,Torrielli] ...

• Is the AdS/CFT correspondence really integrable?

⇓
What is the origin and meaning of integrability in the

correspondence?
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