Instabilities of finite density SYM theories from holography

Javier Tarrío University of Barcelona

with A. Faedo, A. Kundu, D. Mateos, C. Pantelidou

Florence, April 29th 2015

Context

Context

Motivation

To understand if

an instanton configuration on the worldvolume of a flavor brane triggers an instability in the dual field theory at finite charge density,

eventually breaking the gauge symmetry group.

Table of Contents

Introduction Context: Higgs branch Supergravity dual

etup D3/F1 background D7 probe

Results Instanton Other setu

Conclusions and outlook

Introduction

- \Rightarrow Let me consider for concreteness $\mathcal{N}=4$ SYM in 3+1.
- \Rightarrow In this talk we work in the presence of an external charge density and with fundamental matter in the 't Hooft limit

$$N_c
ightarrow \infty$$
 with $rac{n_q}{N_c^2}$ and N_f fixed.

Higgs branch in flavored $\mathcal{N}=4$ [Guralnik et al. '04] [Erdmenger et al. '05]

	$X^{0,1,2,3}$	$Y^{4,5,6,7}$	Z ^{8,9}
	(Minkowski)	$(\Phi_1 \text{ and } \Phi_2)$	(Φ ₃)
D3	×	—	_
D7	×	×	_

 \Rightarrow The superpotential reads

$$W = \tilde{Q}_i \Phi_3 Q^i + \operatorname{tr} \left[\Phi_1, \Phi_2 \right] \Phi_3$$

 \Rightarrow Two simple ways to extremize: Coulomb and Higgs branches of moduli spaces. Recall also the condition

$$\tilde{Q}_i Q^i + \text{tr}\left[\Phi_1, \Phi_2\right] = 0$$

The picture on the worldvolume of the D7

 $\Rightarrow\,$ The action as sum of two parts

$$S = -T_7 \int \mathrm{d}^4 x \, \mathrm{d}^4 y \, e^{-\phi} \, \mathrm{Str} \sqrt{\hat{G} + F} + \frac{T_7}{2} \int \mathrm{Str} \, \hat{C}_4 \wedge F \wedge F$$

with F depending only on the NS-D directions y^M .

 \Rightarrow If the field strength is self-dual F = *F then eom satisfied and

$$S = -T_7 N_f \int \mathrm{d}^4 x \, \mathrm{d}^4 y$$

Microscopic interpretation [Arean et al. '07]

 \Rightarrow The D7-branes carry some D3-charge on them

$$S_{WZ} = rac{T_7}{2} \int \mathrm{d}^4 x \, \mathrm{d}^4 y \, \hat{C}_4 \wedge F \wedge F = T_3 \, k \, \int \mathrm{d}^4 x \, \hat{C}_4$$

k dissolved D3-branes

 \Rightarrow Indeed, the description of D7-branes with instanton is equivalent to the study of k dielectric D3-branes (Myers effect)

Key points in the calculation

- ⇒ In field theory a moduli space exists only for non-abelian flavor group. This is seen also in the holographic dual (regularity of the solution).
- ⇒ In the gravity side one can solve the linear self-duality condition, which allows to find the solutions.
- $\Rightarrow\,$ The latter point is fortunate, since we do not know non-abelian DBI

$$S \simeq -\frac{T_7}{2} \int \mathrm{d}^4 x \, \mathrm{d}^4 y \, \hat{C}_4 \wedge \mathrm{Str} \left(F \wedge *F - F \wedge F\right) + \cdots$$

Abelian case [Ammon et al. '12]

 \Rightarrow A moduli space arises if one allows finite charge density

$$A = A_0(y^M) + A_M(y^M)$$

where the field strength must be self-dual F = *F w.r.t. an effective metric that includes the charge density d, where

$$\partial_r A_0 = \frac{d}{\sqrt{r^6 + d^2}}$$
; $A_M = \sum_{\ell=1}^{\infty} K_\ell \left(r^3 + \sqrt{r^6 + d^2}\right)^{-\frac{\ell+1}{3}} \mathcal{Y}_M^{\ell,-1}$

- ⇒ The charge density regularizes the solution, and furthermore it still alows to solve a linear equation!
- ⇒ Unfortunately the probe approximation breaks down near the origin. Some backreaction needed.

- ⇒ Thus: is there a moduli space in a system with backreacted charge density for dynamic fundamental matter? (Nope)
- ⇒ But is there a calculation in a system with backreacted charge density for dynamic fundamental matter at all? (Nope, this is work in progress)
- ⇒ I introduce now preliminary results for the case in which the fundamental matter is non-dynamic.

Table of Contents

Introduction

Context: Higgs branch Supergravity dual

Setup D3/F1 background D7 probe

Results Instanton Other set

Conclusions and outlook

The external charge case [Kumar '12] [Faedo et al. '14]

Charge with non-dynamic quarks \rightarrow only strings in the holographic description.

In SUGRA we have the RR forms

$$F_5 = 4L^4(1+*)\omega_5$$
 ; $F_3 \sim \lambda \frac{n_q}{N_c^2} \,\mathrm{d}x^1 \wedge \mathrm{d}x^2 \wedge \mathrm{d}x^3$

(Part of the) numeric solution

Crossover at a scale $n_q^{1/3}$.

IR geometry [Azeyanagi et al. '09] [Kumar '12]

There is an exact solution with a dimensionally reduced metric

$$ds^{2} = -r^{2z}dt^{2} + r^{2}d\vec{x}^{2} + \frac{1}{r^{2}}dr^{2} ,$$

with z = 7, which means

$$t \to \Lambda^7 t$$
, $x^i \to \Lambda x^i$,

and running dilaton

$$e^{\phi} \sim n_q^{-2} r^6,$$

In this numeric background solution we introduce $N_f \ll N_c$ probe D7-branes...

...and the quenched approximation is parametrically valid for all radii!

Embedding the probe and ansatz [Karch et al. '02]

	<i>x</i> ⁰	x ^{1,2,3}	r	$S^3 \subset S^5$	$ heta,\phi$	
D3	×	×	_	_	—	
F1	×	—	\times	_	—	
D7	×	×	\times	×	_	

We pick an ansatz like the one at the beginning of the talk

$$A = A_0(y) \mathrm{d}t + A_M(y) \mathrm{d}y^M$$

and the system is described by the action

$$S = -T_7 \int \mathrm{d}^4 x \, \mathrm{d}^4 y \, e^{-\phi} \, \sqrt{\hat{G} + F} + \frac{T_7}{2} \int \hat{C}_4 \wedge F \wedge F + \frac{T_7}{3!} \int A \wedge \hat{F}_3 \wedge F \wedge F$$

(No exact linearization of the problem is possible.)

Taming those nasty angles

- $\Rightarrow\,$ Nightmarish action leading to pde's with four coupled fields
- ⇒ Invoke group theory arguments to reduce to one tractable ordinary differential equation: $SO(4) \simeq SU(2)_L \times SU(2)_R$

Harmonic	transformation	quantum number
\mathcal{Y}^ℓ	$\left(\frac{\ell}{2},\frac{\ell}{2}\right)$	$\ell \geq 0$
$ abla_i \mathcal{Y}^\ell$	$\left(\frac{\ell}{2},\frac{\ell}{2}\right)$	$\ell \geq 1$
$\mathcal{Y}^{\ell,\pm}_i$	$\left(\frac{\ell\mp1}{2},\frac{\ell\pm1}{2}\right)$	$\ell \geq 1$

 \Rightarrow Consider the $SU(2)_R$ singlets

$$A = A_0(y) \mathrm{d}t + A_M(y) \mathrm{d}y^M = A_0(r) \mathrm{d}t + \Psi(r) \mathcal{Y}_i^{1,-} \mathrm{d}y^i$$

Numeric strategy

 \Rightarrow Take

$$A = A_0(r) dt + \Psi(r) \mathcal{Y}_i^{1,-} dy^i = A_0(r) dt + \Psi(r) \alpha_i w^i$$
$$\left(dw^i = \frac{1}{2} \epsilon^{ijk} w^j \wedge w^k \right)$$

- $\Rightarrow A_0'$ can be solved for and plugged in Ψ 's equation, this introduces parameter d
- \Rightarrow Impose regularity at the horizon and integrate numerically for given value of d

Numeric strategy

Integration with fixed d

Numeric strategy

Integration with fixed d

Table of Contents

Introduction

Context: Higgs branch Supergravity dual

etup D3/F1 background D7 probe

Results Instanton Other setups

Conclusions and outlook

Holographic dual [Kruczenski '03]

$$\Psi \simeq \frac{\beta}{r^2} + \frac{\alpha}{r^2} \log[r] + \cdots \quad \Leftrightarrow \quad m^2 L^2 = -4$$

 \Rightarrow This tells us that $\Psi \alpha_i$ is dual to operator with $\Delta = 2$

$${\cal O}^i \sim {\cal Q}^\dagger \sigma^i \, {\cal Q}$$

 \Rightarrow The mode β dual to VEV and α to source [Bianchi et al. '01] [Karch et al. '05]

$$\frac{\delta \mathcal{F}}{\delta \alpha} = -\frac{8\pi^2 T_7}{L^4}\beta$$

Unsourced operator

The mode β dual to VEV and α to source

Unsourced operator

Unsourced operator

Double-trace deformation

$$\Psi \simeq \frac{\beta}{r^2} + \frac{\alpha}{r^2} \log[r] + \cdots \quad \Leftrightarrow \quad m^2 L^2 = -4$$

 \Rightarrow Alternative quantization possible. If $\alpha = f \beta$ double trace deformation [Witten '01]

$$S \rightarrow S + rac{f}{2} \int \mathrm{d}^4 x \, \mathcal{O}_{\Psi}^2$$

⇒ The mode α dual to VEV and $\beta - \frac{\alpha}{f}$ to source [Papadimitriou '07] and loannis' talk

$$\frac{\delta \mathcal{F}}{\delta\left(\beta - \frac{\alpha}{f}\right)} = \frac{8\pi^2 T_7}{L^4} \alpha$$

Double-trace deformation

Going to 2 + 1 dimensions

- ⇒ Similar construction possible for 2+1 dimensional SYM with external charge density, z = 5 and $\theta = 1$
- $\Rightarrow\,$ Instanton dual to $\Delta=1$ operator in alternative quantization

$$\Psi \alpha_i \simeq \left(\frac{\alpha}{r^2} + \frac{\beta}{r^3} + \cdots\right) \alpha_i \quad \leftrightarrow \quad \mathcal{O}^i \sim \mathcal{Q}^{\dagger} \sigma^i \mathcal{Q}$$

 \Rightarrow Double trace deformation also possible

$$\frac{\delta \mathcal{F}}{\delta \left(\beta - f \alpha\right)} = \frac{8\pi^2 T_6}{L^5} \alpha$$

Table of Contents

Introduction

Context: Higgs branch Supergravity dual

etup D3/F1 background D7 probe

Results Instanton Other setu

Conclusions and outlook

Conclusions

 \Rightarrow Things we have shown in this talk

- Included a massless flavor in a setup with an external charge density (∞-ly massive flavors).
- ► The setup seems thermodynamically unstable towards condensation of $\mathcal{O}^{I} \sim Q^{\dagger} \sigma^{I} Q$.
- \Rightarrow Things we have not shown in this talk
 - We have not singled out a charged massless flavor of the background.
 - We have not shown that a theory with charged dynamic quarks is unstable.

Outlook

Outlook

- ⇒ We want to repeat the calculation in a system with dynamic flavor [Work in progress]
- \Rightarrow In the background supergravity solution new RR fluxes turned on.
- \Rightarrow This reflects in an effective charge density on the brane

$$d \longrightarrow d + \mathcal{B}(r)$$

Thank you

Work supported by the Juan de la Cierva program of the Spanish Ministry of Economy and by ERC StG HoloLHC - 306605