
Preliminaries The XXZ model: different scenarios Generalization to the XYZ model Eight-vertex model and TQ-relation Properties of the ground state for odd N τ -functions and Painlevé VI equation The XYZ chain with open boundaries Summary
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Preliminaries

In 1972 R. Baxter noticed that the ground state energy of the periodic XYZ
hamiltonian

HXYZ = −
N∑
i=1

(Jxσ
x
i ⊗ σx

i+1 + Jyσ
y
i ⊗ σ

y
i+1 + Jzσ

z
i ⊗ σz

i+1)

has the simple value

lim
N→∞

E

N
= −Jx + Jy + Jz , if JxJy + JxJz + JyJz = 0.

In the XXZ case it corresponds to Jx = Jy = 1, Jz = ∆ = −1/2.

In 2000 Stroganov noticed that this statement holds for finite odd N = 2n + 1
and the ground state wavefunction possesses some remarkable combinatorial
properties. For example, the properly normalized ground state wavefunction
has all integer coefficients with the largest component given by

An =
n−1∏
j=0

(3j + 1)!

(n + j)!
.
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Preliminaries

Many people have been working on different extensions of these
ideas for the XXZ case (connections to alternating sign matrices,
loop models, Temperley-Lieb processes, lattice sypersymmetry,
etc):
Batchelor, De Gier, Di Francesco, Fendley, Hagendorf, Ikhlef,
Jacobsen, Nienhuis, Mitra, Motegi, Pasquier, Pearce, Ponsaing,
Pyatov, Razumov, Rittenberg, Saleur, Stroganov, Zinn-Justin,
Zuber, ...

These ideas have also been extended to the periodic XYZ spin
chain at odd number of sites (connections to the three-coloring
problem, lattice sypersymmetry, Painlevé equations, etc):
Bazhanov, Fendley, Hagendorf, VM, Rosengren,...
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The XXZ model: different scenarios

There are three different cases to consider:

1. Periodic spin chain, odd number of sites N = 2n + 1.

The XXZ hamiltonian commutes with the 6-vertex model transfer-matrix with
∆ = −1/2 (disordered regime).
The Baxter’s TQ-relation

T (u)Q(u) = sinN(u + η/2)Q(u − η) + sinN(u − η/2)Q(u + η).

The ground state eigenvalue T (u) = (a + b)N = sin(u)N , N = 2n + 1,
η = 2π/3.
For f (u) = sinN(u)Q(u) we obtain the functional equation

f (u) + f (u +
2π

3
) + f (u +

4π

3
) = 0

which fixes (+periodicity conditions) the trigonometric polynomial Q(u)
uniquely (Stroganov, 2000).
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The XXZ model: different scenarios

2. Twisted boundary conditions, even number of sites N = 2n.

HXYZ = −
N∑
i=1

(σx
i ⊗ σx

i+1 + σy
i ⊗ σ

y
i+1 −

1

2
σz
i ⊗ σz

i+1)

σz
N+1 = σz

N , σ±N+1 = e iφσ±1 , φ =
2π

3
, σ± = σx ± iσy .

The hamiltonian is invariant under left-right reflection + complex conjugation,
the ground state energy is again

E0 = −3N/2, for even N = 2n.

2. Open boundary conditions, any number of sites. Uq(sl(2))-invariant

hamiltonian (Pasquier, Saleur, 1990)

HXYZ = −

[
N−1∑
i=1

(σx
i ⊗ σx

i+1 + σy
i ⊗ σ

y
i+1 +

q + q−1

2
σz
i ⊗ σz

i+1) +
q − q−1

2
(σz

1 − σz
N)

]
This hamiltonian can be rewritten in terms of the generators of Temperley-Lieb
algebra. For q = e iπ/3 the ground state energy is

E0 = −3

2
(N − 1)
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Eight-vertex model and TQ-relation

Zero-field symmetric eight-vertex model (R. Baxter, 1972)

ω1 ω2 ω3 ω4

ω5 ω6 ω7 ω8

ω1 = ω2 = a, ω3 = ω4 = b, ω5 = ω6 = c, ω7 = ω8 = d .

Transfer-matrix and partition function

[T(u)]j1...jNi1...iN
= Tr

N∏
k=1

W (ik , jk), Z = Tr
[
T(u)M

]
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Weights

Baxter’s parameterization of the weights

a = ρ ϑ4(2η | q2) ϑ4(u − η | q2) ϑ1(u + η | q2),

b = ρ ϑ4(2η | q2) ϑ1(u − η | q2) ϑ4(u + η | q2),

c = ρ ϑ1(2η | q2) ϑ4(u − η | q2) ϑ4(u + η | q2),

d = ρ ϑ1(2η | q2) ϑ1(u − η | q2) ϑ1(u + η | q2),

and the normalization factor ρ

ρ = 2 ϑ2(0 | q)−1 ϑ4(0 | q2)−1.
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One can introduce a Q-operator commuting with T (u)

[T(u),Q(v)] = 0, ∀u, v

TQ-relation for eigenvalues of T(u) and Q(u)

T (u)Q(u) = φ(u − η)Q(u + 2η) + φ(u + η)Q(u − 2η)

φ(u) = ϑN1 (u | q)

Periodicity conditions

Q±(u + π) = ±Q±(u), Q±(u + πτ) = q−N/2 e−iNu Q∓(u)

Bethe-ansatz equations
Q(ui + 2η)

Q(ui − 2η)
= −φ(ui + η)

φ(ui − η)
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Quantum Wronskian

TQ-relation is a second order difference equation

T (u)Q±(u) = φ(u − η)Q±(u + 2η) + φ(u + η)Q±(u − 2η)

Quantum Wronskian relation

Q+(u + η)Q−(u − η)− Q+(u − η)Q−(u + η) = φ(u)W (q, η)

For odd values of N = 2n + 1 we don’t need the external field and
all states are double-degenerate.

Further we are interested in a disordered regime:

0 < η < π/2, η < u < π − η
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Ground state

For N = 2n + 1, η =
π

3
, the ground state eigenvalue

T (u) = (a + b)N = φ(u) = ϑN1 (u | q)

Ψ±(u) ≡ Ψ±(u, q, n) =
ϑ2n+1

1 (u | q)

ϑn1(3u | q3)
Q±(u, q, n),

TQ-relation becomes

Ψ±(u +
2π

3
) + Ψ±(u +

4π

3
) = −Ψ±(u)

There are exactly two solutions which satisfy the following PDE

6 q ∂
∂q Ψ(u, q, n) =

{
− ∂2

∂u2 + 9 n (n + 1)℘(3u | q3) + c(q, n)
}

Ψ(u, q, n)
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Hamiltonian

Parameters

γ =
(a− b + c − d)(a− b − c + d)

(a + b + c + d)(a + b − c − d)
= −

[
ϑ1(π/3 | q1/2)

ϑ2(π/3 | q1/2)

]2

ζ =
cd

ab
=
γ + 3

γ − 1
, ζ = 2ξ + 1

Hamiltonian

H = −
N∑
i=1

[
σx ⊗ σx −

ξ

ξ + 1
σy ⊗ σy + ξσz ⊗ σz

]

Ground state energy E0 = −N ξ
2 + ξ + 1

ξ + 1
, N = 2n + 1

Trigonometric limit γ → −3, ξ → − 1
2 corresponds to ∆ = −1/2

6-vertex model
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Polynomial eigenstate

There are two linearly independent solutions

Q1,2(u) =
1

2
[Q+(u)± Q−(u)], Q1,2(u + π) = (−1)nQ2,1(u)

x = γ
ϑ

2

3 (u)

ϑ
2

4 (u)
, ϑ3,4(u) = ϑ3,4(

u

2
| q1/2)

Q1(u) = ϑ4(u) ϑ
2n

3 (u) Pn(x , z), z = γ−2

Q2(u) = ϑ4(u) ϑ
2n

3 (u) Pn(
1

xz
, z), z = γ−2

Pn(x , z) =
n∑

k=0

r
(n)
k (z) xk , sn(z) = r

(n)
0 (z), sn(z) = r (n)

n (z)



Preliminaries The XXZ model: different scenarios Generalization to the XYZ model Eight-vertex model and TQ-relation Properties of the ground state for odd N τ -functions and Painlevé VI equation The XYZ chain with open boundaries Summary

Ground state eigenvectors

The spectrum of the transfer-matrix for odd N is double
degenerate and there are two ground state eigenvectors Ψ±
corresponding to different eigenvalues of the Q-operator.

T(u)Ψ± = φ(u)Ψ±, SΨ± = ±Ψ±, S =
N∏
i=1

σz ,

Q(u)Ψ± = Q±(u, q, n)Ψ±, Ψ+ = RΨ−, R =
N∏
i=1

σx

P1(x , z) = x + 3

Sz = 1/2 Sz = −3/2

ψ001 = 1 ψ111 = ζ

Table: Components of the Ψ− for N = 3.
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P2(x , z) = x2(1 + z) + 5x(1 + 3z) + 10

Sz = 3/2 Sz = −1/2 Sz = −5/2

ψ00001 = 2ζ ψ01011 = 2 ψ11111 = ζ(1 + λ)

ψ00111 = 1 + λ

Table: Components of the Ψ− for N = 5.

P3(x , z) = x3(1 + 3z + 4z2) + 7x2(1 + 5z + 18z2) + 7x(3 + 19z + 18z2) + 35 + 21z

Sz = 5/2 Sz = 1/2 Sz = −3/2 Sz = −7/2
ψ0000001 = ζ α1 ψ0001011 = α1 ψ0101111 = ζ α3 ψ1111111 = ζ2 α4

ψ0000111 = α2 ψ0110111 = ζ α3

ψ0010101 = α3 ψ0011111 = ζ α4

ψ0010011 = α4

Table: Components of the Ψ− for N = 7.

α1 = 3 + 5λ, α2 = 1 + 5λ+ 2λ2, α3 = 7 + λ, α4 = 4 + 3λ+ λ2
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Pn(x , z) = sn(z) + . . .+ sn(z)xn

Now a number of conjectures: (checked up to N = 25)

1. The component of the eigenvector Ψ− with one arrow down is
given by

Ψ0...001 =
1

N
ζ [ n

2
]λ([ n

2
][ n−1

2
])sn(λ−1), ζ =

cd

ab
, λ = ζ2

2. The component of the vector Ψ− with all arrows down is given by

Ψ11...11 = ζ [ n+1
2 ]λ([ n2 ][ n+1

2 ])sn(λ−1).

3. The norm of the vector Ψ−

|Ψ(λ)|2 =
∑
i1...iN

Ψ2
i1...iN = (4/3)n λn(n+1)/2 sn(λ−1) s−n−1(λ−1)
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4. Introduce the component with alternating arrows

An(λ) = Ψ00101...01, n odd, An(λ) = Ψ0101...011, n even

In the trigonometric limit λ→ 0 it gives the number of alternating sign
matrices.

A2k(λ) = 2p1,k−1 (λ)p2,k−1(λ), A2k+1(λ) = p1,k(λ) p2,k−1(λ)

p1,k(ξ2) =
(ξ + 3)k(k+1)

2k2 τk+1,k

[1− ξ
3 + ξ

]
, p2,k(ξ2) =

(ξ + 3)k(k+1)

2k(k+1)
τk+1,k+1

[1− ξ
3 + ξ

]

s2k+1(y 2) = τk,k−1(y)τk,k−1(−y), s2k(y 2) = τk−1,k−1(y)τ̃k,k(y), z = y 2
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τ -functions for Painlevé VI

Modified hamiltonian in Painlevé VI theory h(t) (Okamoto, 1987)
satisfies EVI equation

h′(t)
[
t(1−t)h′′(t)

]2

+
[
h′(t)[2h(t)−(2t−1)h′(t)]+b1b2b3b4

]2

=
4∏

k=1

(
h′(t)+b2

k

)
Starting with a solution h0(t) = h(b1, b2, b3, b4; t) one can construct a

series hn(t) = h(b1, b2, b3 − n, b4; t) applying a sequence Backlund
transformations. Introduce a family of tau-functions

τn(z) = exp{
∫

h̃n(z)dz}

They satisfy ‘Toda’ relations (Okamoto, 1987)

τn+1(z)τn−1(z)

τ 2
n (z)

+ ν2(z , n)[log τn(z)]′′z + ν1(z , n)[log τn(z)]′z + ν0(z , n) = 0
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The XYZ chain with open boundaries

In 1994 Inami and Konno constructed a general solution of the
Sklyanin’s reflection equation for the 8-vertex model. The
corresponding hamiltonian

HXYZ = −
N−1∑
i=1

(Jxσ
x
i ⊗σx

i+1 +Jyσ
y
i ⊗σ

y
i+1 +Jzσ

z
i ⊗σz

i+1) +
∑

α=x,y,z

(φ−ασ
α
1 −φ+

ασ
α
N )

where

Jx = 1, Jy = dn

(
4K

π
η

)
, Jz = cn

(
4K

π
η

)
and φ± are 6 arbitrary parameters. There is a natural elliptic parameterization

φ±1 = k2sn

(
4Kη

π

) 3∏
i=1

cn(α±i )

dn(α±i )

φ±2 = k2k ′2sn

(
4Kη

π

) 3∏
i=1

sn(α±i )

dn(α±i )

φ±3 = ik ′2sn

(
4Kη

π

) 3∏
i=1

1

dn(α±i )
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The XYZ chain with open boundaries

Now we choose η = π/3. We expect that

lim
N→∞

E0

N
= −ξ

2 + ξ + 1

ξ + 1
.

Similarly to the 6-vertex model we conjecture

E0 = −(N − 1)
ξ2 + ξ + 1

ξ + 1
.

Let us choose φ−i = φ+
i = φi and impose φ2 = 0.

There exists a unique solution for N = 2, 3

φ1 =
2ξ + 1√

1− ξ2
, φ3 = i

ξ(ξ + 2)√
1− ξ2

.

With such a choice of parameters E0 is the ground state energy for all
N = 2, 3, 4, 5, 6, 7 !
For N = 2 the ground state eigenvector

v±,± = ±(1 + 2ξ), v±,∓ = −i(2 + ξ)±
√

1− ξ2.
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The XYZ chain with open boundaries

Once we know the ground state energy, we can try to choose φ2 6= 0.

For N = 2 there is a one-parametric family of eigenvectors corresponding to the
same eigenvalue E0. It obtained by

α±1 = 2K

(
φ+

1

3

)
, α±2 = 2K

(
φ− 1

3

)
, α±3 = 2Kφ.

The eigenvector is highly nontrivial

v±,± = i
21/3 (1 + ξ)

√
1− ξ2 k θ2

(e2πiτθ2θ3θ4)1/3
θ1

(
3φ± τ

2

∣∣∣ q6
)
θ4

(
3φ∓ τ

2

∣∣∣q6
)

v∓,± = ±θ2

(
3φ+

3τ

2

∣∣∣ q6

)
θ2

(
3φ− 3τ

2

∣∣∣q6

)
+

+i
θ1

(
π
3

∣∣∣q)
θ2

(
π
3

∣∣∣q)θ1

(
3φ+

3τ

2

∣∣∣ q6

)
θ1

(
3φ− 3τ

2

∣∣∣q6

)
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The XYZ chain with open boundaries

Now let us look at the eigenvalues of the transfer-matrix. For convenience we
shift u → u + π

3
in a, b, c, d .

The transfer-matrix is defined by

t(u) = tr(K+
0 (u)T0(u)K−0 (u)T̂0(u))

where we choose

K+(u) = K−(−u−2η), T0(u) = R0,N(u)...R0,1(u), T̂0(u) = R1,0(u) . . .RN,0(u),

and

K−(u) =
θ1(2u|q)

θ1(u|q)

(
I +

sn
(

2Ku
π

)
sn
(

4K
3

) [φxσx + φyσy + φzσz

])
This double transfer-matrix commutes with the HXYZ with boundary conditions
described above.
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The XYZ chain with open boundaries

For N = 2 the ground state eigenvalue of the transfer-matrix T (u)
is

T (u) =
θ3(3(u + φ)|q6)θ3(3(u − φ)|q6)

θ3(3φ|q6)2
θ1

(
u +

π

3

∣∣∣q)4
.

Conjecture
For any N = 2, 3, ... the ground state eigenvalue of T (u) is

T (u) =
θ3(3(u + φ)|q6)θ3(3(u − φ)|q6)

θ3(3φ|q6)2
θ1

(
u +

π

3

∣∣∣q)2N
.

(checked numerically up to N = 7).
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Summary and outlook

We found the open XYZ spin chain where the ground state
energy is preserved by a hidden supersymmetry.

In the trigonometric limit it degenerates into the
Uq(sl(2))-invariant spin hamiltonian at η = π/3

The ground state eigenvectors nontrivially depend on the
extra boundary parameter.

Is their a hidden algebraic structure which generalizes the
Temperley-Lieb algebra ? There is no difference between odd
and even values of N.

Is it possible to generalize the twisted case of the XXZ model
?

The special case φ2 = 0 is “almost” polynomial. Can it be
treated similarly to the periodic case ?
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Thank you for your attention
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