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Macdonald polynomials

I. What are Macdonald polynomials?
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Macdonald polynomials

Symmetric group

Let si (i = 1, . . . , n − 1) be generators of the symmetric group Sn:

sisi+1si = si+1sisi+1

s2
i = 1;

There exist a natural t-deformation of Sn:

(Ti − t
1
2 )(Ti + t−

1
2 ) = 0, (i = 1, . . . , n − 1),

TiTi+1Ti = Ti+1TiTi+1.

This is the Hecke algebra (of type An−1) and Sn is recovered when t → 1.
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Macdonald polynomials

Polynomial action

The generators si act naturally on polynomials:

si f (. . . , xi , xi+1, . . .) = f (. . . , xi+1, xi , . . .) i = 1, . . . n − 1

and the t-deformation also has an action:

T±1
i = t±

1
2 − t−

1
2

txi − xi+1

xi − xi+1
(1− si ).

The shifted operator,

Ti (u) = Ti +
t−

1
2

[u]
, [u] =

1− tu

1− t
.

satisfies the Yang–Baxter equation,

Ti (u)Ti+1(u + v)Ti (v) = Ti+1(v)Ti (u + v)Ti+1(u).
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Macdonald polynomials

Nonsymmetric Macdonald polynomials

We can extend to the affine Hecke algebra by adding a cyclic shift operator:

(ωf )(x1, . . . , xn) = f (qxn, x1, . . . , xn−1),

ωTi = Ti+1ω.

This algebra has a family of commuting operators (Abelian subalgebra) generated by
the Murphy elements:

Yi = Ti · · ·Tn−1ωT−1
1 · · ·T−1

i−1.

which commute:

[Yi ,Yj ] = 0.

Remark: Symmetric functions of {Yi} are central, i.e. commute with all elements in the
Hecke algebra.
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Macdonald polynomials

Nonsymmetric Macdonald polynomials

Since the Yi commute, they can be diagonalised simultaneously:

Definition (Nonsymmetric Macdonald polynomial Eλ)

YiEλ = yi (λ)Eλ,

The index λ = (λ1, . . . , λn) is a composition, λi ∈ N0, and

yi (λ) = tρ(λ)i qλi

Example:
If λ = (3, 0, 4, 4, 2), then define ρ = (2, 1, 0,−1,−2)

Dominant weight λ+ = (4, 4, 3, 2, 0)

Reorder ρ in the same way as reordering λ+ → λ
ρ(λ) = (0,−2, 2, 1,−1).
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Macdonald polynomials

Macdonald polynomials

Eλ forms a basis in the ring of polynomials with top-degree λ+,

Eλ(x1, . . . , xn) = xλ1
1 · · · x

λn
n +

∑
µ<λ

cλµxµ

(summation in dominance ordering)

Definition (Symmetric Macdonald polynomials)

Pλ+ =
∑
λ≤λ+

Eλ

Macdonald polynomials are (q, t) generalisations of Schur polynomials.
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Construction of Matrix Product form

II. Matrix Product Form
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Construction of Matrix Product form

Exchange relations

Let δ be the anti-dominant weight (δ1 ≤ δ2 ≤ . . . ≤ δn).

Definition (The exchange basis)

fδ := Eδ

f...,λi ,λi+1,... := t−
1
2 T−1

i f...,λi+1,λi ,... λi > λi+1.

Then f solves the exchange equations

Ti f...,λi ,λi+1,... = t
1
2 f...,λi ,λi+1,... λi = λi+1,

Ti f...,λi ,λi+1,... = t−
1
2 f...,λi+1,λi ,... λi > λi+1,

ωfλn,λ1,...,λn−1 = qλn fλ1,...,λn .

• Dynamics of the multispecies asymmetric exclusion process
• t1/2-deformed Knizhnik-Zamolodchikov equations
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Construction of Matrix Product form

Matrix product ansatz

Assume
fλ(x1, . . . , xn) = Tr

[
Aλ1 (x1) · · ·Aλn (xn)S

]
,

This implies a matrix product for Macdonald polynomials as also

Pλ+ =
∑
λ≤λ+

fλ

‘Normalisation of ASEP’.

The exchange relations imply the following algebra for the ‘matrices’ A:

Ai (x)Ai (y) = Ai (y)Ai (x),

tAj (x)Ai (y)− tx − y
x − y

(
Aj (x)Ai (y)− Aj (y)Ai (x)

)
= Ai (x)Aj (y),

SAi (qx) = q iAi (x)S,
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Construction of Matrix Product form

Zamolodchikov-Faddeev algebra

For λ ⊂ r n the algebra relations can be rephrased by writing

A(r)(x) = (A0(x), . . . ,Ar (x))T ,

as an (r + 1)-dimensional operator valued column vector.

Lemma (ZF algebra)

The exchange relations are equivalent to

Ř(x , y) · [A(x)⊗ A(y)] = [A(y)⊗ A(x)]

Ř(x , y) is the U
t

1
2

(slr+1) R-matrix of dimension (r + 1)2 (r = 1 is the 6-vertex model).
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Construction of Matrix Product form

Yang-Baxter algebra and Nested Matrix Product Form

More familiar is rank r Yang-Baxter algebra:

Ř(x , y) · [L(x)⊗ L(y)] = [L(y)⊗ L(x)] · Ř(x , y)

Assume a solution of the following modified RLL relation

Ř(r)(x , y) ·
[
L̃(x)⊗ L̃(y)

]
=
[
L̃(y)⊗ L̃(x)

]
· Ř(r−1)(x , y)

sL̃ij (qx) = q i−j L̃ij (x)s.

in terms of an (r + 1)× r operator-valued matrix L̃(x) = L̃(r)(x).

Then

A(r)(x) = L̃(r)(x) · L̃(r−1)(x) · · · L̃(1)(x)

S(r) = s(r) · s(r−1) · · · s(1)

Solves the ZF algebra

Ř(x , y) · [A(x)⊗ A(y)] = [A(y)⊗ A(x)]
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Construction of Matrix Product form

Rank 1 solution


1 0 0 0
0 c− b+ 0
0 b− c+ 0
0 0 0 1

 · [( 1
x

)
⊗
(

1
y

)]
=

[(
1
y

)
⊗
(

1
x

)]
.

The corresponding solution to the Yang–Baxter algebra is equal to

L(1)(x) =

(
1 a†

xa x

)
,

where the operators a, a† and k satisfy the t-oscillator relations

a†k = tka†, ak = t−1ka,

taa† − a†a = t − 1.

Trivialising reduces the rank, and thus obtain the solution A(1)(x) = L̃(1)(x):(
1 a†

xa x

)
7→
(

1 1
x x

)
.
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Construction of Matrix Product form

Rank 2 solution



1 0 0 0 0 0 0 0 0
0 c− 0 b+ 0 0 0 0 0
0 0 c− 0 0 0 b+ 0 0
0 b− 0 c+ 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 c− 0 b+ 0
0 0 b− 0 0 0 c+ 0 0
0 0 0 0 0 b− 0 c+ 0
0 0 0 0 0 0 0 0 1


·

 1 a†

xk 0
xa x

⊗
 1 a†

yk 0
ya y

 =

 1 a†

yk 0
ya y

⊗
 1 a†

xk 0
xa x

 ·


1 0 0 0
0 c− b+ 0
0 b− c+ 0
0 0 0 1

 ,
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Construction of Matrix Product form

We construct a solution of the ZF algebra in the following way:

A(2)(x) = L̃(2)(x) · L̃(1)(x) =

 1 a†

xk 0
xa x

(1
x

)
=

1 + xa†

kx
xa + x2

 .

The associated rank 2 solution to the Yang–Baxter algebra is

L(2)(x) =

 1 a†1 a†2
xa1k2 xk2 0
xa2 xa†1a2 x

 ,

where {a1, a†1, k1} and {a2, a†2, k2} are two commuting copies of the t-oscillator algebra.

The map a†1, a1 7→ 1 and k1 7→ 0 reduces the rank of L(2)(x) by one

L(2)(x) 7→

 1 1 a†2
xk2 xk2 0
xa2 xa2 x

 ⇒ L̃(2)(x) =

 1 a†2
xk2 0
xa2 x

 ,

Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 16 / 26



Construction of Matrix Product form

We construct a solution of the ZF algebra in the following way:

A(2)(x) = L̃(2)(x) · L̃(1)(x) =

 1 a†

xk 0
xa x

(1
x

)
=

1 + xa†

kx
xa + x2

 .

The associated rank 2 solution to the Yang–Baxter algebra is

L(2)(x) =

 1 a†1 a†2
xa1k2 xk2 0
xa2 xa†1a2 x

 ,

where {a1, a†1, k1} and {a2, a†2, k2} are two commuting copies of the t-oscillator algebra.

The map a†1, a1 7→ 1 and k1 7→ 0 reduces the rank of L(2)(x) by one

L(2)(x) 7→

 1 1 a†2
xk2 xk2 0
xa2 xa2 x

 ⇒ L̃(2)(x) =

 1 a†2
xk2 0
xa2 x

 ,

Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 16 / 26



Construction of Matrix Product form

We construct a solution of the ZF algebra in the following way:

A(2)(x) = L̃(2)(x) · L̃(1)(x) =

 1 a†

xk 0
xa x

(1
x

)
=

1 + xa†

kx
xa + x2

 .

The associated rank 2 solution to the Yang–Baxter algebra is

L(2)(x) =

 1 a†1 a†2
xa1k2 xk2 0
xa2 xa†1a2 x

 ,

where {a1, a†1, k1} and {a2, a†2, k2} are two commuting copies of the t-oscillator algebra.

The map a†1, a1 7→ 1 and k1 7→ 0 reduces the rank of L(2)(x) by one

L(2)(x) 7→

 1 1 a†2
xk2 xk2 0
xa2 xa2 x

 ⇒ L̃(2)(x) =

 1 a†2
xk2 0
xa2 x

 ,

Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 16 / 26



Construction of Matrix Product form

Example

Eδ(x1, . . . , x6; q = tu, t) = Tr
[
A0(x1)A0(x2)A1(x3)A1(x4)A2(x5)A2(x6)S

]
,

A0(x) = 1 + xa†,

A1(x) = xk ,

A2(x) = xa + x2,

S has the form

S = ku = diag{1, t−u, t−2u, . . .} = diag{1, q−1, q−2, . . .}.

Tr
[(

1 + x1a†
)(

1 + x2a†
)

x3kx4kx5 (a + x5) x6 (a + x6) S
]

= x3x4x5x6 Tr
[(

x5x6k2 + (x1 + x2)(x5 + x6)a†k2a + x1x2(a†)2k2a2
)

S
]
,

where other terms involving unequal powers of a† and a have zero trace.
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Construction of Matrix Product form

Example

Normalising with Tr(k2S) we finally get

Eδ(x1, . . . , x6; q = tu, t) = x3x4x2
5 x2

6

+ x3x4x5x6(x1 + x2)(x5 + x6)t2 Tr a†ak2S
Tr k2S

+ x1x2x3x4x5x6t4 Tr(a†)2a2k2S
Tr k2S

Traces can be easily calculated using a Fock space representation.

a†|m〉 = (1− t−m−1)
1
2 |m + 1〉 a|m〉 = (1− t−m)

1
2 |m − 1〉

k = diag{1, t−1, t−2, . . .}.
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General solution and combinatorics

III. General solution and combinatorics
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General solution and combinatorics

General L-matrix

Related work (x = 1) by (Ferrari& Martin), (Evans, Ferrari & Mallick), (Prolhac, Evans &
Mallick), (Arita, Ayyer, Mallick & Prolhac), (Linusson&Ayyer),. . .

Theorem

The matrix L(r)(x) is given by

L(r)
ij (x) =


x
∏r

m=i+1 km, i = j

xaia†j
∏r

m=i+1 km, i > j

0, i < j

for all 1 ≤ i, j ≤ r , and

L(r)
0j = a†j , 1 ≤ j ≤ r , L(r)

i0 (x) = xai

r∏
m=i+1

km, 1 ≤ i ≤ r , L(r)
00 = 1,

where {ai , a†i , ki}, 1 ≤ i ≤ r are r commuting copies of the t-oscillator algebra.
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General solution and combinatorics

L(3)(x) =




=


1 a†1 a†2 a†3

xk3k2a1 xk3k2 0 0
xk3a2 xk3a2a†1 xk3 0
xa3 xa3a†1 xa3a†2 x



corresponds with L(3)
1,0 = k3k2a1,
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General solution and combinatorics

Trivialising a1

a1 = a†1 = 1, k1 = 0.

L̃(3)(x) =




=


1 a†2 a†3

xk3k2 0 0
xk3a2 xk3 0
xa3 xa3a†2 x

 .
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General solution and combinatorics

Solution of ZF algebra

A(3)(x) =


1 a†2 a†3

xk3k2 0 0
xk3a2 xk3 0
xa3 xa3a†2 x


(3)

·

 1 a†2
xk2 0
xa2 x

(2)

·
(

1
x

)(1)

=


A0(x)
A1(x)
A2(x)
A3(x)

 .

A(3)(x) =




(3)

·




(2)

·

 (1)

=


A0(x)
A1(x)
A2(x)
A3(x)

 . (1)

From this it is easy to extract individual components, for example:

A2(x) = (3) (2) (1)

+
(3) (2) (1)

xk (3)
3 a(3)

2 x2k (3)
3 k (2)

2
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General solution and combinatorics

Combinatorial rule

For r = 3 and λ = (0, 2, 3, 1, 0, 2), the matrix product can be represented in the
following way:

Tr(A0(x1)A2(x2)A3(x3)A1(x4)A0(x5)A2(x6)S) =

(3) (2) (1)

x6

x5

x4

x3

x2

x1
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General solution and combinatorics

Column by column transition

With λ = (3, 1, 0, 2). We obtain the following four terms:

x4

x3

x2

x1

(3) (2) (1)

x4

x3

x2

x1

(3) (2) (1)
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General solution and combinatorics

Macdonald polynomials

Recall symmetric Macdonald polynomials:

Pλ+ =
∑
λ≤λ+

fλ

Theorem (Cantini, dG, Wheeler)

For λ ⊂ r n

Pλ(x1, . . . , xn; q, t) =
∑

µ|µ+=λ

Tr

[
S

n∏
i=1

Aµi (xi )

]
,

where the sum is over all permutations µ of λ.
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