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Percolation

On the planar lattice Z2, declare each bond open (resp. closed)
with probability p (resp. 1 � p). It is not difficult to prove that
there is a critical value p

c

such that:

If p < p

c

, then a.s. there is no infinite connected component
of open edges, while
If p > p

c

, then a.s. there is exactly one such infinite
component.

One can also prove that at criticality there is no infinite component,
and robust arguments show that the phase transition is sharp: there
is exponential decay of the two-point function below p

c

:
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p
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p
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Percolation

Getting more quantitative results is more difficult. On the square
lattice, the value of the critical point is known:

Theorem (Kesten, 1980)

p

c

(Z2) =
1
2

The main arguments of the proof are self-duality (specific) and a
sharp-threshold result (robust).

More details are provided by critical exponents, known to exist in
only very few cases. For instance, the optimal ⌘

p

behaves like
(p

c

� p)⌫ .
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The random-cluster model

The RC model is a dependent variant of bond percolation. On a
finite graph, the probability of a configuration is equal to

P

p,q,⇤({!}) =
p

o(!)(1 � p)c(!)qk(!)

Z

p,q,⇤

where:

o(!) is the number of open bonds,
c(!) is the number of closed bonds, and
k(!) is the number of connected components.

Notice that q = 1 gives exactly bond percolation.
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The random-cluster model : phase transition

One can define the FK model in a finite box with boundary
conditions (for now, either open or closed). Then, use monotonicity
in the boundary conditions to define the thermodynamical limit(s)
P

0
p,q and P

1
p,q in the whole plane.

There is monotonicity in p as well, so one can define the critical
point as in the case of percolation:

p

c

(q) := sup
�
p : P⇤

p,q(0 $ 1) = 0
 
= inf

�
p : P⇤

p,q(0 $ 1) > 0
 

Theorem (B., Duminil-Copin)

On Z2, p

c

(q) =

p
q

1 +
p
q

for all q > 1.
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Coupling with the Potts model

The random-cluster model is closely related to the q-state Potts
model (and in particular to the Ising model for q = 2), defined by

µ
q,�({�}) =

exp
h
�
P

x⇠y

�
�
y

�
x

i

Z

q,�

A classical coupling leads for 1 � p = e

�� to

µ
q,e�p(�

x

= �
y

)� 1
q

=
q � 1
q

P

p,q(x $ y)

Corollary (B., D.-C.)

�
c

(q) = log(1 +
p
q) for all q > 1.
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Planar duality and percolation

Easy to see: (P
p

)⇤ = P1�p

. The self-dual point is p
sd

=
1
2
:

Theorem (Kesten)

For bond-percolation on Z2, one has p

c

= p

sd

.
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Planar duality and the random-cluster model

The FK duality relation is
pp

⇤

(1 � p)(1 � p

⇤)
= q

Theorem (B., D.-C., restated)

For bond-percolation on Z2, one has p

c

= p

sd

.
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Loop representation of the FK model

ea

eb

a

b

v

NW NE

SESW

wired arc

free arc

P
G ,a,b({!}) =

x

o(!)
q

L(!)/2

Z̃ (p, q,G )
, where x =

p

(1 � p)
p
q

(so: x
sd

= 1)
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Definition of the parafermionic observable

Smirnov defines the observable F

e

a

for any edge e 2 E⇧ by

F

e

a

(e) := E
G ,a,b

⇣
e�i�W�(ea,e)

e2�
⌘
,

where � is the exploration path and � is given by the relation

cos(�⇡/2) =
p
q

2
.

On vertices: F (v) :=
P

{F (e) : v 2 e}.

Notice that the observable is real and positive if q > 4, “real” (but
not necessarily positive) if q = 2, and complicated in the other
cases.
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Glauber dynamics and the observable

a

b

v
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b

v

! s(!)

configuration NW SE NE SW

! NW! ei�⇡
NW! e�i�⇡/2
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Local relations

Pairing configurations, we get the local relation

F (NW ) + F (SE ) = ⇤(x) [F (SW ) + F (NE )]

around each vertex, where

⇤(x) :=
ei�⇡/2 + x

ei�⇡/2
x + 1

.

⇤(x) = 1 if and only if x = 1.

Goal: extract as much as possible from this relation.

Problem: too many variables ...
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At the critical point

In the Ising case, the observable is essentially real, in the sense that
the argument is determined by the edge type; so half as many
variables, and in principle the local relations are enough to know
everything about the model.

If in addition x = 1, we get a version of discrete holomorphicity (in
this case, s-holomorphicity). More precisely: if e = (xy) and `(e) is
the line of direction

p
e/e

a

, then F (x) and F (y) have the same
projection on `(e) (namely, F (e)).

Besides, along the domain boundary, the winding is known exactly,
so determining F turns into discrete Riemann-Hilbert BVP. These
go very well to the continuous limit.
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Scaling limit

Theorem (Smirnov)

Properly normalized by a factor ��1/2, the observable in a domain
⌦ discretized at mesh � converges to

p
�0, where

� : ⌦
⇠! R⇥ (0, 1).

Corollary
The critical Ising model is conformally invariant in the scaling limit.
The scaling limit of the curve � is chordal SLE(16/3).
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Massive harmonicity

If x 6= 1, inside the domain, we get massive harmonicity of F , in
the sense:

�F =
1 � cos 2↵

cos 2↵
F

where the real parameter ↵ is given by the relation

ei↵ =
ei⇡/4 + x

ei⇡/4
x + 1

= ⇤(x).

This implies a random ralk representation: F (X ) ' E

X [F (W⌧ )m⌧ ]
with m = cos 2↵ < 1. In particular, F is exponentially small away
from the domain boundary.
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Massive harmonicity

In terms of the Ising model two-point function in the bulk:

Theorem (Onsager; Messikh; B., D.-C.)

Let � < �
c

(q = 2) and a = (a1, a2) 2 R2. Then,

lim
n!1

�1
n

ln (E�[�(0)�(na)]) = a1 arcsinh sa1 + a2 arcsinh sa2,

where s solves the equation
q

1 + sa

2
1 +

q
1 + sa

2
2 = sinh 2� + sinh�1 2�

and E� is the (unique) infinite-volume Ising measure at
temperature �.



The model and the tools The case q = 2 and the Ising model The case q > 4

Computing the exponent

One can first study particular solutions of the massive harmonicity
equation, of the form exp(�v .x), v 2 R2. This solves it iff v lies on
an explicit curve around 0.

Then a duality argument (Wulff shape construction) provides the
asymptotic behavior of the “observable in the bulk” — or
equivalently, of the massive Green function.

To conclude, one has to prove that the observable and the
two-point function have comparable asymptotics. This involves
controlling the winding term in the observable, and can be done by
introducing a boundary again.
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What depends on q?

If q < 4, the winding factor in the definition of the observable has
modulus 1, so the observable is bounded above by the
corresponding two-point function.

If on the other hand q > 4, the prefactor can be very large or very
small, and no a priori bound holds, but the observable should be an
upper bound.

In fact, one expects to have a first-order phase transition if q > 4,
and uniform exponential decay of correlations all the way to p

c

.
But the mass in the previous equation does vanish at p

c

, so in this
case F and the two-point function really are of different order.
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q > 4: estimating the observable

Recall our main equation:

F (NW ) + F (SE ) = ⇤(x) [F (SW ) + F (NE )] .

Summing it over a finite domain A makes each inner bond occur
twice, once in each role. This leads to a relation like

X

e2A
F (e) =

1
1 � ⇤(x)

X

e2@A
c

e

F (e)

(where c

e

depends on the type of the bond e, and is ±1 or ±⇤(x)).

If S
n

is the sum of F over a box of size n, this leads to S

n

6 cS

n+1
with c 2 (0, 1). From this, exponential decays follows.
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Consequence: observable-based proof that p
c

= p
sd

From what we just did, the observable has exponential decay as
soon as x < 1. By positivity of the winding term, this implies
exponential decay for the connectivities.

From there: the dual model is super-critical, so p

⇤ > p

c

whenever
p < p

sd

. Letting p " p

sd

we get the bound

p

c

6 p

sd

.

On the other hand, it is known that there is no infinite cluster at
the self-dual point (Burton-Keane), so p

sd

is not super-critical: in
other words,

p

sd

6 p

c

.
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A few questions

Make the observable-based proof work for q < 4. This would
be more robust that the duality-based approach.

Other lattices. Everything works essentially the same way on
isoradial graphs with appropriate coupling constants. Beyond,
even the definition of the winding might be tricky.
First-order phase transition for q > 4. For q < 4, second-order
is known [Duminil-Copin–Sidoravicius–Tassion] based still on
the observable.
Say anything for q 2 (0, 4) \ {2}.
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