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Correlation in a sea of dimers



[C, ’05–’10]

In bulk, for large separations, this is asymptotically 2D electrostatics



What about the interaction with boundary?

Two natural types:

free boundary constrained boundary



Previous examples



“straight line” constrained boundary



straight line free boundary



60◦ angle, constrained boundary



120◦ angle, constrained boundary



Current talk: 90◦ angle, mixed boundary
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Dn,x,y: n = 6, x = 5, y = 4 Dn,x,y(α,β): n = 6, x = 5, y = 4,α = 2,β = 4



• Mf (D): # tilings of D with tiles allowed to protrude across free boundary
portions

•: ωc(α,β) (correlation of the gap with the corner):

ωc(α,β) := lim
n→∞

Mf (Dn,n,0(α,β))

Mf (Dn,n,0(1, 1))



D10,10,0(3, 4). D10,10,0(1, 1).
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The gap and its three images for α = 3, β = 4



The main result of this talk:

Theorem. Let q be a fixed positive rational number. As α and β approach infinity
so that α = qβ, we have

ωc(α,β) ∼
16

3πRq
√

q2 + 1
3

∼ 32

π

√
d(O1, O2) d(O3, O4)

d(O1, O3) d(O1, O4) d(O2, O3) d(O2, O4)
,

where d is the Euclidean distance.
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Di1,...,ik
n,x,y for n = 6, x = 5, y = 4, k = 4, i1 = 1, i2 = 3, i3 = 5, i4 = 6.

It turns out we can reduce to enumerating tilings of such regions.



Great strike of luck: They are given by “round” formulas!



Proposition. For any integers n, x ≥ 0 and y ≥ −1, and for any integers 1 ≤
i1 < · · · < ik ≤ n, we have

Mf (D
i1,...,ik
n,x,y ) =

k∏

a=1

(
x+ y + n+ ia

y + 2ia

) ∏

1≤a<b≤k

ib − ia
y + ib + ia

.
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Tilings and paths Starting and ending segments

The tilings are in bijection with non-intersecting families of paths of rhombi:

• starting points: fixed
• ending points: can vary among a specified set
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Regarding the paths of lozenges as lattice paths in Z2



A result of Stembridge expresses this as a Pfaffian.

After using some combinatorial identities, this Pfaffian can be evaluated explicitly
using Schur’s Pfaffian Identity:

Theorem (Schur’s Pfaffian Identity). Let n be even, and let x1, . . . , xn be
indeterminates. Then we have

Pf

[
xj − xi

xj + xi

]n

i,j=1

=
∏

1≤i<j≤n

xj − xi

xj + xi
.



Generalization of SSC plane partitions, even by even by even case.



Generalization of SSC plane partitions, even by odd by odd case.



Corollary (Generalization of SSC plane partitions). Let n, x ≥ 0 and
1 ≤ k1 < · · · < ks ≤ n be integers. If k1 > 1 set t = 0, otherwise define t
by requiring ki − i = 0, i = 1, . . . , t, and kt+1 − (t + 1) > 0. Let {1, . . . , n} \
{k1, . . . , ks} = {i1, . . . , in−s}.
Then we have:
(a).

M−,|(H2n,2n,2x(k1, . . . , ks)) = Mf (D
i1,...,in−s

n,x,2t−1 )

=
n−s∏

a=1

(
x+ 2t+ n+ ia − 1

2t+ 2ia − 1

) ∏

1≤a<b≤n−s

ib − ia
2t+ ia + ib − 1

.

(b).

M−,|(H2n+1,2n+1,2x(k1, . . . , ks)) = Mf (D
i1,...,in−s

n,x,2t )

=
n−s∏

a=1

(
x+ 2t+ n+ ia

2t+ 2ia

) ∏

1≤a<b≤n−s

ib − ia
2t+ ia + ib

.



A limit formula for regions with two dents

Proposition. For any fixed integers 1 ≤ i < j, we have

lim
n→∞

Mf

(
D[n]\{i,j}

n,n,0

)

Mf

(
D[n]\{1,2}

n,n,0

) = 4
j − i

j + i

1

22i−2

(
2i− 1

i− 1

)
1

22j−2

(
2j − 1

j − 1

)
.



To finish the proof:

• a double sum formula

• its asymptotic analysis
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Changing from (α,β) to (R, v)-coordinates.



A double sum formula

Lemma. Write α = 2v−R, β = R, with R and v non-negative integers. Then we
have

ωc(α,β) = ωc(2v −R,R)

= 4R

∣∣∣∣∣

R∑

a=0

R∑

b=0

(−1)a+b (R+ a− 1)! (R+ b− 1)!

(2a)! (R− a)! (2b)! (R− b)!

× (2v′ + 2a+ 1)! (2v′ + 2b+ 1)!

22(2v′+a+b)(v′ + a)! (v′ + a+ 1)! (v′ + b)! (v′ + b+ 1)!

(b− a)2

2v′ + a+ b+ 2

∣∣∣∣ ,

where v′ = 2v −R− 1.



D6,6,0(3, 3; {1, 2, 6, 8}) Paths of lozenges
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Labeling starting and ending points D1,2,4,6
6,6,0 ({1, 2, 6, 8})



Outline of proof of double sum formula

• Free boundary is sum over constrained boundaries:

Mf (Dn,n,0(α,β)) =
∑

S⊂T
|S|=n−2

M(Dn,n,0(α,β;S))

• Use Pfaffian formula for lattice paths and Laplace expansion to get

M(Dn,n,0(α,β;S)) =∣∣∣∣∣∣

∑

0≤a<b≤R

(−1)a+b (b− a)(R+ a− 1)! (R+ b− 1)!

(2a)! (R− a)! (2b)! (R− b)!
M(D[n]\{2v−R+a,2v−R+b}

n,n,0 (S))

∣∣∣∣∣∣



• Sum over boundaries to get

Mf (Dn,n,0(α,β)) =

2R

∣∣∣∣∣∣

∑

0≤a<b≤R

(−1)a+b (b− a)(R+ a− 1)! (R+ b− 1)!

(2a)! (R− a)! (2b)! (R− b)!
Mf (D

[n]\{2v−R+a,2v−R+b}
n,n,0 )

∣∣∣∣∣∣

• divide by Mf (Dn,n,0(1, 1)), let n → ∞, and use 2-dent limit formula



Reduction of the double sum to simple sums

• The double sum separates if we write

1

2v′ + a+ b+ 2
=

∫ 1

0
x2v′+a+b+1 dx

• Moment sums (k ∈ Z, x ∈ [0, 1]):

T (k)(R, v;x) :=
1

R

R∑

a=0

(−R)a(R)a(3/2)v+a

(1)a(1/2)a(2)v+a

(x
4

)a
ak



Lemma. We have that

ωc(2v −R,R) =

8R

∣∣∣∣
∫ 1

0
T (2)(R, v′;x)T (0)(R, v′;x)x2v′+1dx−

∫ 1

0

(
T (1)(R, v′;x)

)2
x2v′+1dx

∣∣∣∣ ,

where v′ = 2v −R− 1.



The asymptotics of the integrals in the lemma

It follows from results in [C, Mem. AMS, 2005] that:

∫ 1

0
T (2)(R, v′;x)T (0)(R, v′;x)x2v′+1dx

∼ 2

πR

∫ 1

0
x2qR 1

(4− x)
√
q2 + x

4−x

cos

[
2R arccos

(
1− x

2

)
− arctan

1

q

√
x

4− x
+ π

]
dx

and

∫ 1

0

(
T (1)(R, v′;x)

)2
dx ∼

2

πR

∫ 1

0
x2qR 1

(4− x)
√
q2 + x

4−x

{
1 + cos

[
2R arccos

(
1− x

2

)
− arctan

1

q

√
x

4− x
+ π

]}
dx



Lemma then implies

ωc(2v −R,R) ∼ 16

π

∣∣∣∣∣∣

∫ 1

0
x2qR 1

(4− x)
√
q2 + x

4−x

dx

∣∣∣∣∣∣

as R and v approach infinity so that 2v −R = qR.



We have

∫ 1

0
x2qR 1

(4− x)
√

q2 + x
4−x

dx ∼ 1

3q
√

q2 + 1
3

1

R
, R → ∞

Then we get

ωc(2v −R,R) ∼ 16

3πq
√

q2 + 1
3

1

R
,

which proves the Theorem.



A general conjecture for regions Ωn on the triangular lattice



The two types of zig-zag corners in Ωn



An example of Ωn
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The corresponding steady state heat flow problem



• O(n)
1 , . . . , O(n)

k : finite unions of unit triangles from the interior of Ω n (the gaps)

• for fixed i, O(n)
i ’s are translates of one another for all n ≥ 1

• O(n)
i shrinks to point ai ∈ Ω in scaling limit, i = 1, . . . , k

• Ωn → Ω, n → ∞

• E: heat energy when sources/sinks are at positions a1, . . . , ak

Conjecture. Let O′
i
(n)’s be translations of the O(n)

i ’s that shrink to distinct
points a′1, . . . , a

′
k ∈ Ω in the scaling limit as n → ∞. Then

Mf (Ωn \O(n)
1 ∪ · · · ∪O(n)

k )

Mf (Ωn \O′
1
(n) ∪ · · · ∪O′

k
(n))

→ exp(−E)

exp(−E′)
,

where E′ is the heat energy of the system obtained from S by moving the point
heat sources to positions a′1, . . . , a

′
k.


