LOZENGE TILINGS WITH GAPS IN A 90° WEDGE
DOMAIN WITH MIXED BOUNDARY CONDITIONS

Miua1 Ciucu

Department of Mathematics, Indiana University, Bloomington, Indiana 47405

Research supported in part by NSF grant DMS-1101670.



Correlation in a sea of dimers
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In bulk, for large separations, this is asymptotically 2D electrostatics



What about the interaction with boundary?

Two natural types:

free boundary constrained boundary




Previous examples
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“straight line” constrained boundary




straight line free boundary



60° angle, constrained boundary



120° angle, constrained boundary



Current talk: 90° angle, mixed boundary
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o M¢(D): # tilings of D with tiles allowed to protrude across free boundary
portions

o: w.(a,B) (correlation of the gap with the corner):
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The gap and its three images for

a=3, =4



The main result of this talk:

THEOREM. Let q be a fixed positive rational number. As o and B approach infinity
so that a = qfB, we have

we(a, B) 16 32 d(O1,02) d(Os, O4)
O rRa e+t ™\ d(01,05)d(01,04) d(0:,05) d(0:, 0)

where d 1s the Euclidean distance.
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It turns out we can reduce to enumerating tilings of such regions.



Great strike of luck: They are given by “round” formulas!



PROPOSITION. For any integers n,x > 0 and y > —1, and for any integers 1 <
1 < - <ip <n, we have

i1k T+yY+n-+ig W — 1q
M, (D) H( v ) |
a=1 1<a<b<lk
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Tilings and paths Starting and ending segments

The tilings are in bijection with non-intersecting families of paths of rhombi:

e starting points: fixed
e ending points: can vary among a specified set
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Regarding the paths of lozenges as lattice paths in Z?2



A result of Stembridge expresses this as a Pfaffian.

After using some combinatorial identities, this Pfaffian can be evaluated explicitly
using Schur’s Pfaffian Identity:

THEOREM (SCHUR’S PFAFFIAN IDENTITY). Let n be even, and let x1,...,x, be
indeterminates. Then we have

Pf [ilfj—él?i]n _ H Ij—ﬂfi

x. :l’/‘. L. x. x..
j Jj=1  1<i<j<n j T




Generalization of SSC plane partitions, even by even by even case.
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Generalization of SSC plane partitions, even by odd by odd case.



COROLLARY (GENERALIZATION OF SSC PLANE PARTITIONS). Let n,x > 0 and
1 <k < -+ < ks < n be integers. If ki > 1 set t = 0, otherwise define t
by requiring k; —i = 0, i = 1,...,t, and kyy1 — (t +1) > 0. Let {1,...,n}\
{k1,... kst ={i1,. .. in_s}

Then we have:
(a).
M_ |(Hon,2n,20 (K1, - .o ks)) = My(D,) 05, 7°)

_n_8<az+2t—|—n—|—ia—1> H iy — iy
o +2i, — 1 i 2+ iy — 1

a=1

(b).

M_ |(Hans1,2n41,20(F1y - oo ks)) = My (D)) 05" )
_”lif T+ 2t+n+i, H iy, — iy
_azl 2t + 2i, , 32t+z'a+z'b'

<a<b<n-—




A limit formula for regions with two dents

PROPOSITION. For any fixed integers 1 < i < 5, we have

(n)\{i.7)
; Mf(Dn,n,OJ)_4j—i 1 /2i—1\ 1 [(2j—1
nme (D) Cojri2\i—1)2%2\j 1)

n,n,0



To finish the proof:

e a double sum formula

e its asymptotic analysis
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Changing from («, ) to (R, v)-coordinates.



A double sum formula

LEMMA. Writea = 2v— R, B = R, with R and v non-negative integers. Then we
have

we(a, B) = we(2v — R, R)

R R
) iy (R+a—11(R+b—1)!
=4R |} ) ()™ (2a)! (R —a)! (2b)! (R = b)!

y (20" 4+ 2a 4+ 1) (20" + 20+ 1)! (b—a)?
22v'tatd) (v )l (v +a+ D (W +b)! (v +b+ 1) 20 +a+b+2]

where v/ = 2v — R — 1.
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Paths of lozenges
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Labeling starting and ending points Dé,’g:éﬁ({l, 2,6,8})



Outline of proof of double sum formula

e Free boundary is sum over constrained boundaries:

Mf(DnnO Z M nnO Bvs))

SCT
|S|=n—2

e Use Pfaffian formula for lattice paths and Laplace expansion to get

M( nnO( , B; ))

Z (—1)t (b (_25)(3 +a—-1!'(R+b—1)! M(D[n]\{Qv—R+a,2v—R—|—b}(S)>

0<a<b<R )N (R —a)! (2b)! (R — b)! n,m,0



e Sum over boundaries to get

My (Dn,n,O (o, B)) =

wapb—a)(R+a—-1)I(R+b—-1)! n\{2v— R+a,2v—
2R Z (=1) ! (2a))!((R —a)! (Q)b)(' (R —b)! | My (DL’]”\;({) o R+b})

0<a<b<R

e divide by M¢(D,, n0(1,1)), let n — oo, and use 2-dent limit formula



Reduction of the double sum to simple sums

e The double sum separates if we write

1 ! 2v" +a+b+1
21}’4—a—|—b+2:/03rj da

e Moment sums (k € Z, x € [0, 1]):
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LEMMA. We have that

we(2v — R, R) =

S8R

Y

1 ) 1 2 .,
/ T(R,v"; )T (R, v'; 2)2®” Hldx — / (T(l)(R, v’ :U)) 2V Ty
0 0

where v/ = 2v — R — 1.



The asymptotics of the integrals in the lemma

It follows from results in [C, Mem. AMS, 2005] that:

1
/ TR, W' 2)TO(R, v 2)2* T da
0

2 ! 1 1
~ — 2k CoS [2R arccos (1 — E) — arctan — * — 7T] dx
TR J, (4—2) /QZ‘Fﬁ 2 q\ 4—=x
and
1 2
/ (T(l)(R, v'; x)) dx ~
0
2 ! 1 1
— 2k {1 + cos [2R arccos (1 — E) — arctan — * — 7'('] } dx
2 q\ 4—=x
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Lemma then implies

16 | (! 1
we(2v — R, R) ~ 16 / p2aR dx
m 0 (4_I)\/q2+4f$

as R and v approach infinity so that 2v — R = ¢R.



We have

1
/ $2QR 1 dCU ~ 1 i)
0 4 — 24 Z 2o, 1R

Then we get
16 1

3rqy/q? + % R

we(2v— R, R) ~

which proves the Theorem.



A general conjecture for regions 2, on the triangular lattice









The corresponding steady state heat flow problem



o Ogn), e O,S,n): finite unions of unit triangles from the interior of Q2 ,, (the gaps)
e for fixed 7, O§n)’s are translates of one another for all n > 1

° O,En) shrinks to point a; € €} in scaling limit, 1 = 1,...,k

e (), -, n— o

e F: heat energy when sources/sinks are at positions a1, ..., ax

CONJECTURE. Let Og(n) 's be translations of the O,En) 's that shrink to distinct
points ay, ..., ay € Q in the scaling limit as n — co. Then

My (R, \ O U U0M) | exp(=E)
Mp(Q,\ O™ U-..u0, ™)  exp(—E)

where E’ is the heat energy of the system obtained from S by moving the point
heat sources to positions ai,...,a;.



