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Correlation functions of 1d lattice models

1d lattice models

Quantum many-body systems: Defined by a Hamiltonian H(L) depending on
the systems size L
Simple prototypical class: ‘spin models’ on a 1d lattice. These are ‘fully
regularized’:

1 Discrete space, lattice spacing a
2 Finite number of lattice sites L
3 Finite local Hilbert space ∼= Cd

1. and 2. imply that the space of states is finite dimensional ∼=
(
Cd
)⊗L

QFTs (relativistic and non-relativistic) as certain scaling limits involving
a→ 0, L→ ∞

Main example here the integrable XXZ Hamiltonian

H(L) = J
L/2

∑
j=−L/2+1

(
σx

j−1σx
j + σy

j−1σy
j + ∆

(
σz

j−1σz
j −1

))
− h

2

L/2

∑
j=−L/2+1

σz
j

∆ = (q + q−1)/2 = ch(γ), L even, σα
j , α = x ,y ,z, Pauli matrices acting on

factor j in
(
Cd
)⊗L
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Correlation functions of 1d lattice models

What needs to be calculated?

Quantum mechanics
1 H(L)|n〉= En|n〉 spectrum and eigenstates
2 E0 ∼ L for L→ ∞ (thermodynamic limit), e0 = limL→∞ E0/L ground state energy

per lattice site
3 Dispersion relation of elementary excitations ε(p) for L→ ∞

Typically known for integrable systems

Statistical mechanics and thermodynamics
1 Partition function of the canonical ensemble Z = Tr

{
e−H(L)/T

}
, T temperature

2 Z ∼ e−fL/T , f =− limL→∞ T ln(Z)/L free enery per lattice site

Not systematically known for integrable systems

Statistical mechanics and static correlation functions
1 Static correlation functions of local operators X , Y

〈X1Ym〉= lim
L→∞

Tr
{

e−H(L)/T X1Ym
}
/Z

have been studied by means of the (reduced) density matrix

Dm(T ) = lim
L→∞

Tr−L/2+1,...,0,m+1,...,L/2
{

e−H(L)/T}/Z

∈ End
(
Cd
)⊗m

well defined for every m ∈ N
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Correlation functions of 1d lattice models

What needs to be calculated?

Static correlation functions of local operators continued
2 Infinite chain formalism: X ∈ End

(⊗
n∈Z Vn

)
, where Vn ∼= Cd and X trivial

outside chain segment [1, `]: [X ,ej
β
α] = 0 for j ∈ {1, . . . , `}, local. Maximal such

` is called the length of X
3 Local operators span a vector space W
4 Local operators have a natural restriction X[1,m] to End

(⊗
n∈{1,...,m}Vn

)
∀m ≥ `

5 This allows us to properly define the expectation value of a local operator X on
the infinite chain

〈X〉= Tr1,...,`{D`(T )X[1,`]}
where ` is the length of X

6 Construction (in generalized form) nicely compatible with the integrable structure
of XXZ [BOOS, JIMBO, MIWA, SMIRNOV, TAKEYAMA 2006-09]

Dynamical (= time-dependent) correlation functions 〈X1(t)Xm+1〉
1 Most correlation functions encountered in experiments are of this type
2 By definition the time dependence is

X1(t) = eiH(L)t X1e−iH(L)t

Problem: X1(t) is not a local operator, does not fit into the formalism based on
reduced density matrix
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Correlation functions of 1d lattice models

What needs to be calculated?

Dynamical correlation functions continued
3 Alternative: Spectral (or Lehmann) representation. Keep L finite. Then

〈X1(t)Ym+1〉= ∑
k

e−Ek /T

Z
〈k |X1(t)Ym+1|k〉= ∑

k ,`

e−Ek /T

Z
〈k |X1(t)|`〉〈`|Ym+1|k〉

= ∑
k ,`

e−Ek /T

Z
e−i
(

(E`−Ek )t−(p`−pk )m
)
〈k |X1|`〉〈`|Y1|k〉

−→
T→0

∑̀e−i
(

(E`−E0)t−(p`−p0)m
)
〈0|X1|`〉〈`|Y1|0〉

4 Integrable case: eigenstates of H(L) are eigenstates of the transfer matrix
5 Matrix elements of the form 〈`|Y1|0〉 are often called form factors. They can be

calculated by ‘integrable methods’
6 So far form factors are the only way to access dynamical correlation functions of

integrable systems
7 Summation is a problem
8 Often interest is in asymptotic analysis e.g. m→ ∞, t → ∞
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Correlation functions of 1d lattice models

Example of a factor series

XXZ for ∆ > 1, 0 < h < h` from DUGAVE, FG, KOZLOWSKI, SUZUKI 2015 based on
Bethe Ansatz for finite L, then L→ ∞

〈σz
1σz

m+1(t)〉=
(q2;q2)4

∞
(−q2;q2)4

∞
(−1)m

+
1

∑
ι=0

∑
nh∈2N

(−1)ιm

nh!

∫ π/2

−π/2

dnh ν
(2π)nh

F (2)
ι
(
{νa}nh

1

)
exp

{
i

nh

∑
a=1

[
ε(0)(νa)t−2πp(νa)m

]}
Previous work: JIMBO, MIWA 95, LASHKEVICH 03

where

F (2)
ι
(
{νa}nh

1

)
=

1
nχ!

∮
Γε({νa})

dnχ ψ
(2πi)nχ

· F
(2)
ι
(
{νha}

2nχ
1 ;{ψa}nχ

1

)
∏

nχ
a=1Y0

(
ψa
∣∣{ψb}nχ

1 ;{νhc}
2nχ
1

)
and

Γε({νa}) =
{

ψ ∈ Cnχ
∣∣Y0
(
ψa
∣∣{ψb}nχ

1 ;{νhc}
2nχ
1

)
= ε , a = 1, . . . ,nχ

}
with ε > 0 small enough
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Correlation functions of 1d lattice models

Example large-distance asymptotics for equal times

This (combined with a result of LASHKEVICH 03) allows one to obtain an
explicit formula for the next-to-leading term in the asymptotics of the static
longitudinal two-point function

〈
σz

1σz
m+1

〉
=

(q2;q2)4
∞

(−q2;q2)4
∞

(−1)m

+ A · k(q2)m

m2

(
(−1)m− th2(γ/2)

(q;q2)4
∞

(−q;q2)4
∞

)(
1 +O(m−1)

)
where

k(q2) =
ϑ2

2(0|q2)

ϑ2
3(0|q2)

, A =
1

πsh2(γ/2)

(−q;q2)4
∞

(q2;q2)2
∞

(q4;q4,q4)8
∞

(q2;q4,q4)8
∞

generalizing the result of the correlation length of JOHNSON, KRINSKY AND

MCCOY 73

Time dependent case can be analyzed in a similar way
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Correlation functions of 1d lattice models

Generalized reduced density matrix

Integrability of XXZ chain based on the underlying quantum group Uq(ŝl2)

From this: R-matrix, transfer matrix, quantum transfer matrix, reduced density
matrix

(
rather than H(L), e−H(L)/T

)

h+α

n
ξ

1
ξ000 00

h

−1/TN

1/TN

−1/TN

1/TN

︸ ︷︷ ︸
L

1
ξ

n
ξ

L to infinity
αh+ h

·Λ(0,h + α)L/2Λ(0,h)L/2−n

→ D[1,n](ξ1, . . . ,ξn|T ,h,α,N) =
〈h+α|T (ξ1|h)⊗·· ·⊗T (ξn|h)|h〉

〈h+α|∏n
j=1 t(ξj |h)|h〉

Generalized
reduced
density
matrix
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Correlation functions of 1d lattice models

Reduced density matrix and QTM form factor expansion

Here

T (ξ|h) = e
hσz

2T T (ξ) =

(
A(ξ|h) B(ξ|h)
C(ξ|h) D(ξ|h)

)
is the monodromy matrix corresponding to the staggered column-to-column
transfer matrix in the picture

Using the generalized density matrix we obtain e.g. the transverse two-point
functions of the XXZ chain as〈

σ−1 σ+
m+1

〉
N = Tr

{
D[1,m+1](0, . . . ,0|T ,h,0,N) σ−1 σ+

m+1

}
=
〈Ψ0|B(0|h)t(0|h)m−1C(0|h)|Ψ0〉

〈Ψ0|Ψ0〉Λ0(0)m+1 = ∑̀A−+
` ρm

` (∗)

where we have used the notation

ρ` = e−1/ξ` =
Λ`(0)

Λ0(0)
, A−+

` =
〈Ψ0|B(0|h)|Ψ`〉
Λ`(0)〈Ψ0|Ψ0〉

〈Ψ`|C(0|h)|Ψ0〉
Λ0(0)〈Ψ`|Ψ`〉

(∗) is a large-distance asymptotic expansion for static correlation functions at
finite temperature. Expressions for A−+

` in the Trotter limit N→ ∞ were obtained
in [DUGAVE, FG, KOZLOWSKI 2013]
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Statement of the problem

Hamiltonian and ground state phase diagram of the XXZ chain

Low-temperature spectrum of correlation lengths of the XXZ chain in the massive
antiferromagnetic regime [joint work with M. DUGAVE, K. KOZLOWSKI AND J. SUZUKI,
ARXIVE:1504.07923]

 0

 2

 4

 6

 8

 10

 12

-2 -1  0  1  2  3  4  5

h 
/ J

∆

ferromagnetic 
massive

antiferromagnetic 
massive

antiferromagnetic 
critical

H(L) = J
L/2

∑
j=−L/2+1

(
σx

j−1σx
j + σy

j−1σy
j + ∆

(
σz

j−1σz
j −1

))
− h

2

L/2

∑
j=−L/2+1

σz
j

Large-distance asymptotics for T → 0 in the critical regime for |∆|< 1 in
[DUGAVE, FG, KOZLOWSKI 2013, 14]
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Statement of the problem

Bethe Ansatz solution for eigenvalue problem of the QTM

For any finite Trotter number the eigenvalues of the quantum transfer matrix are
determined by the algebraic Bethe Ansatz

Λ(x) = e
h

2T

(
sin(x + iβ/N)

sin(x + iβ/N + iγ)

) N
2
[ M

∏
j=1

sin(x− x r
j + iγ/2)

sin(x− x r
j − iγ/2)

](
1 +a(x− iγ/2)

)
where the auxiliary function a is defined by

a(x) = a
(
x
∣∣{x r

k}M
k=1
)

= e−
h
T

(
sin(x + iγ/2− iβ/N)sin(x + 3iγ/2 + iβ/N)

sin(x + iγ/2 + iβ/N)sin(x− iγ/2− iβ/N)

) N
2 M

∏
k=1

sin(x− x r
k − iγ)

sin(x− x r
k + iγ)

and where the Bethe roots x r
j are subject to the Bethe Ansatz equations

a
(
x r

j

∣∣{x r
k}M

k=1
)

=−1 , j = 1, . . . ,M

Goal: analyse above equations in the Trotter limit N→ ∞ for small T , for h below
the lower critical field, and for fixed value of the ‘spin’

s = N/2−M
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s = N/2−M
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Low-T analysis

Taking the logarithm

Logarithms: for every δ > 0

K (x |δ) =
1

2πi
(

ctg(x− iδ)− ctg(x + iδ)
)

θ(x |δ) = 2πi
∫

Γx

dy K (y |δ)

θ(x |δ) is defined in the cut complex plane with cuts along the line segments
(−∞± iδ,−π± iδ]∪ [±iδ,±iδ + ∞). We write K (x) = K (x |γ) and θ(x) = θ(x |γ)

We keep in mind the following properties of these functions

K (x |δ) =
1

2π
sh(2δ)

sh2(δ) + sin2(x)
> 0 , for x ∈ R

K (x + π|δ) = K (x |δ) , K (−x |δ) = K (x |δ)

θ(x + π|δ) = θ(x |δ) +

{
2πi |Imx |< δ
0 |Imx |> δ
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Low-T analysis

Taking the logarithm

Using θ we can define the function lna as

lna(x) =− ε(N)
0 (x)

T
− N

2
θ(x + iγ/2 + iβ/N) +

M

∑
j=1

θ(x− x r
k )

where

ε(N)
0 (x) = h− NT

2

[
θ(x + iβ/N|γ/2)−θ(x− iβ/N|γ/2)

]

Contour C

x f
k far particle roots

xc
k close particle roots

xh
k hole roots

Singularities of ∂x ln(1 + a(x))
inside C are simple poles at x r

k if
x r

k is not a particle root, at xh
k and

at −i(γ/2 + β/N)
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Low-T analysis

Nonlinear integral equation and subsidiary conditions

LEMMA. The auxiliary function a satisfies the nonlinear integral equation

lna(x) =− ε(N)
0 (x)

T
−

nh

∑
j=1

θ(x− xh
j ) +

nc

∑
j=1

(
θ(x− xc

j ) + θ(x− xc
j + iγ)

)
+

nf

∑
j=1

θ(x− x f
j ) + dθ(x + π/2) +

∫
C

dy K (x− y) lnC(1 +a)(y)

This equation determines a directly inside the strip −γ < Imx < 0 and, by
analytic continuation, in the entire complex plane. For x ∈ C± the integral term
should be understood as an appropriate boundary value of a Cauchy-like operator

The particles and holes have to be determined such that they satisfy the
subsidiary conditions

1 +a
(
xh,p,f

j

)
= 0

with xh,p,f
j in their respective domains of definition

d =
∫
C

dy
2πi

∂y ln(1 +a(y)) = nh−2nc−nf − s , lnC f (x) =
∫
Cx

dy ∂y ln f (y)
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Low-T analysis

Low-T solution on the contour

Send N→ ∞ and switch notation

u(x) =−T lna(x)

LEMMA. In the strip −γ < Imx ≤ 0 the nonlinear integral equations have
self-consistent low-temperature solutions of the form

u(x) = u1(x) +O(T ∞)

where

u1(x) = ε(x)+T
{

iπk +
nh

∑
j=1

ϕ(x ,xh
j )−

nc

∑
j=1

(
ϕ(x ,xc

j )+ϕ(x ,xc
j −iγ)

)
−

nf

∑
j=1

ϕ(x ,x f
j )
}

and where the numbers of particles and holes are related to the spin by the
condition

nh−2nc−2nf = 2s

This being valid in the antiferromagnetic massive regime

0 < h < h` =
1
π

8JK sh
(πK ′

K

)
dn(K |k)
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Low-T analysis

Momentum, dressed energy and dressed phase

Momentum

p(x) =
1
4

+
x

2π
+

1
2πi

ln

(
ϑ4(x + iγ/2|q2)

ϑ4(x− iγ/2|q2)

)
Dressed energy

ε(x) =
h
2
− 4JK sh(γ)

π
dn

(
2Kx

π

∣∣∣∣k)
Dressed phase

ϕ(x1,x2) = i
(π

2
+ x12

)
+ ln

{
Γq4

(
1 + ix12

2γ
)
Γq4

( 1
2 − ix12

2γ
)

Γq4

(
1− ix12

2γ
)
Γq4

( 1
2 + ix12

2γ
)}

where x12 = x1− x2 and |Imx2|< γ. For |Imz|> γ we have the explicit
representation

eϕ(x ,z) =


sin(x− z)

sin(x− z + iγ)
if Imz > γ

sin(x− z− iγ)

sin(x− z)
if Imz <−γ .
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Low-T analysis

Functional equations

Γq is defined by the infinite product

Γq(x) = (1−q)1−x
∞

∏
n=1

1−qn

1−qn+x−1

q-numbers are defines as

[x]q =
1−qx

1−q

Using q-numbers the fundamental recursion relation of the q-Γ functions
becomes

Γq(x + 1) = [x]qΓq(x) , Γq(1) = 1

It implies that the dressed phase obeys the functional equation

eϕ(x1,x2)+ϕ(x1+iγ,x2) =
sin(x1− x2)

sin(x1− x2 + iγ)

The dressed energy obeys the simpler relation

ε(x) + ε(x + iγ) = h
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Low-T analysis

Auxiliary function in the entire complex plane

LEMMA. Low-temperature form of the auxiliary function in the complex plane.

a(x) =



e−
1
T (u1(x)+u1(x−iγ)) Imx > γ

e−
1
T u1(x) + e−

1
T (u1(x)+u1(x−iγ)) 0 < Imx < γ

e−
1
T u1(x) −γ < Imx < 0[

e
1
T u1(x) + e

1
T (u1(x)+u1(x+iγ))

]−1
−2γ < Imx <−γ

e−
1
T (u1(x)+u1(x+iγ)) Imx <−2γ

up to multiplicative corrections of the form 1 +O(T ∞) (in front of each
exponent)

This lemma allows us to discuss the subsidiary conditions for T → 0
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Low-T analysis

Using the functional equations

There are only two independent functions occurring on the right hand side. These can
be expressed in terms of special functions. For this purpose we split the far roots into
two sets {x f

j }nf
j=1 = {x+

j }
n+

j=1∪{x−j }
n−
j=1, where the x+

j have imaginary parts greater

than γ while the x−j have imaginary parts less than −γ. Then

a(+)(x) = e−
1
T (u1(x)+u1(x−iγ)) = e−

h
T

[ nh

∏
j=1

sin(x− xh
j )

sin(x− xh
j − iγ)

][ nc

∏
j=1

sin(x− xc
j − iγ)

sin(x− xc
j + iγ)

]

×
[ n+

∏
j=1

sin(x− x+
j − iγ)

sin(x− x+
j + iγ)

][ n−

∏
j=1

sin(x− x−j −2iγ)

sin(x− x−j )

]
and

a(0)(x) = e−
1
T u1(x) = (−1)k e−

ε(x)
T −∑nh

j=1 ϕ(x ,xh
j )

[ nc

∏
j=1

sin(x− xc
j )

sin(x− xc
j + iγ)

]

×
[ n+

∏
j=1

sin(x− x+
j )

sin(x− x+
j + iγ)

][ n−

∏
j=1

sin(x− x−j − iγ)

sin(x− x−j )

]
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Low-T analysis

Root patterns for h > 0

Based on the previous Lemma and on the explicit form of a(+) and a(0)

1 Far roots x+
j cannot exist

2 Far roots x−j do not exist
3 Close particles couple to holes in particle-hole strings

xc
j = xh

j + iγ + iδj , j = 1, . . . ,nc

where δj = O(e−h/T )

The validity of 2 and 3 rests on the technical assumption that two roots of the
same type cannot come exponentially close to each other. In other words: For all
solutions satifying the above technical assumptions points 1 - 3 hold true
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Low-T analysis

The higher-level Bethe Ansatz equations for h > 0

LEMMA. Up to corrections of the order T ∞ the independent holes xj ,
j = 1, . . . ,nc + 2s and the particles in particle-hole strings y`, ` = 1, . . . ,nc are
determined by the higher-level Bethe Ansatz equations

ε(xj )

T
= πin +

nc

∑
k=1

ϕ(xj ,yk )−
nc+2s

∑
k=1

ϕ(xj ,xk )

ε(y`)
T

= πim +
nc

∑
k=1

ϕ(y`,yk )−
nc+2s

∑
k=1

ϕ(y`,xk )

where n,m are even if k is odd, while n,m are odd if k is even, and where
−γ < Imxj < 0, 0 < Imy` < γ by definition.

For the calculation of correlation lengths we need to calculate integrals over C that
involve the auxiliary function a. Our low-temperature picture implies

a(x) = (−1)k e−
ε(x)

T +∑nc
k=1 ϕ(x ,yk )−∑nc +2s

k=1 ϕ(x ,xk )
(
1 +O(T ∞)

)
for x ∈ C
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Low-T analysis

Example particle-hole pairs

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2
Re x

-0.4

-0.2

0.2

0.4

0.6
Im x

Single particle-hole pair excitations (s = 0, nc = 1) according to the higher-level
Bethe Ansatz equations. T/J = 0.1, h/h` = 2/3, ∆ = 1.7, h`/J = 0.76. Shown
are particle-hole pairs for n = 1 fixed and m running from −1 to −70. The inter-
action with the particles slightly influences the hole position. The blue lines are the
curves Reε(x) = 0.
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Low-T analysis

Loci of particles and holes for T = 0

In the limit T → 0+ at finite s and nc the higher-level Bethe Ansatz equations
decouple, iπnT and iπmT turn into independent continuous variables, and the
particles and holes become free parameters on the curves

Reε(y) = 0 , 0 < Imy < γ , Reε(x) = 0 , −γ < Imx < 0

-1.5 -1.0 -0.5 0.5 1.0 1.5
Re x

-0.6

-0.4

-0.2

0.2

0.4

0.6

Im x

Curves Reε(x) = 0 for
h/h` = 1.34,1,2/3,1/3,0
and ∆ = 1.7, h`/J =
0.76. The massive regime
is distinguished from the
massless regime by the
opening of a ‘band gap’ at
the critical field h`.
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Low-T analysis

Dominant state

For s = nh = 0 there are no higher-level Bethe Ansatz equations, and the
auxiliary function is a(x) =±e−ε(x)/T . Corresponding Bethe roots are
determined by a(x) =∓1 for −γ < Imx < 0, or

ε(x) = iπnT , −γ < Imx < 0

where the n are odd integers if a(x) = e−ε(x)/T and even integers else

-1.5 -1.0 -0.5 0.5 1.0 1.5
Re x

-1.0

-0.8

-0.6

-0.4

-0.2

Im x

Bethe roots of the dominant state depicted as the intersections of the curves
Reε(x) = 0 and Imε(x) = nπT for T/J = 0.01, n =±1,±3, . . . ,±11,
h/h` = 2/3, ∆ = 1.7, h`/J = 0.76
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Low-T analysis

Eigenvalues

Starting from the equation that expresses the quantum transfer matrix
eigenvalues in terms of Bethe roots and employing a similar reasoning as in the
derivation of the nonlinear integral equations we obtain the representation

Λ(x) =

(
cos(iγ/2 + x)

cos(iγ/2− x)

)d[ nh

∏
j=1

sin(x− xh
j − iγ/2)

sin(x− xh
j + iγ/2)

][ nc

∏
j=1

sin(x− xc
j + 3iγ/2)

sin(x− xc
j − iγ/2)

]
×exp

{
h

2T
−

∫
C

dy K (x− y |γ/2) lnC(1 +a(y))

}
valid for −γ/2 < Imx < γ/2. This is the general expression for Λ, still valid for any
temperature and magnetic field h ≥ 0, in the case that there are no far roots

At low T

Λ(x) =

(
cos(iγ/2 + x)

cos(iγ/2− x)

)d[nc+2s

∏
j=1

sin(x− xj − iγ/2)

sin(x− xj + iγ/2)

][ nc

∏
j=1

sin(x− yj + iγ/2)

sin(x− yj − iγ/2)

]
×exp

{
h

2T
+

∫ π/2

−π/2
dy K (x− y |γ/2) lna(y)

}(
1 +O(T ∞)

)
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Low-T analysis

Main result

THEOREM. For small T the following eigenvalue ratios ρ` occurr in the
antiferromagnetic massive regime at finite magnetic field

ρ` = (−1)k exp

{
2πi
[ nc

∑
j=1

p(yj )−
nc+2s

∑
j=1

p(xj )
]}

= (−1)k
[ nc

∏
j=1

ϑ1(yj − iγ/2|q2)

ϑ4(yj − iγ/2|q2)

][nc+2s

∏
j=1

ϑ4(xj − iγ/2|q2)

ϑ1(xj − iγ/2|q2)

]
this being valid up to multiplicative corrections of the order

(
1 +O(T ∞)

)
.

Here yj and xk are particle and holes determined by the higher-level Bethe
Ansatz equations

CONJECTURE. All eigenvalue ratios are of this form, i.e. all of them are
parameterized by particle-hole excitations
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Low-T analysis

Large-distance asymptotics

1 ·10−2 3 ·10−2 5 ·10−2 7 ·10−2
0.75

0.8

0.85

0.9

0.95

1

T/J

|ρ
|

∆ = 1.7, h/h` = 2/3

The behaviour of |ρ| as a function of temperature for one hole and one particle.
The particle and hole roots are obtained from the higher-level Bethe Ansatz for
n = 1, m =−1,−3,−5,−7,−9 (from top to bottom). The parameters are chosen
as h/h` = 2/3, ∆ = 1.7, h`/J = 0.76, α = 0
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Summary and further outlook

Summary and further outlook

Summary
We have analyzed the spectrum of the quantum transfer matrix of the XXZ chain in the
massive antiferromagnetic regime at finite magnetic field and for small temperature
We have obtained an explicit formula for an infinite set of correlation lengths,
parameterized by solutions of a set of higher level Bethe Ansatz equations
These solutions habe been interpreted as particle-hole excitations
For T → 0 the particle and hole parameters become free on two curves in the
complex plane (no higher leves Bethe equations remain!)
We conjecture that for h > 0 ALL correlation lengths are of this form

If h = 0 the following equations remain for T → 0

−1 =

[ nh

∏
k=1

sin(χj − xh
k + iγ/2)

sin(χj − xh
k − iγ/2)

][ nχ

∏
j=1

sin(χj −χk − iγ)

sin(χj −χk + iγ)

]
j = 1, . . . ,nχ, where

nχ = nc + nf =
nh

2
− s

and where we performed the following change of variables

{χj}nχ
j=1 = {xc

j − iγ/2}nc
j=1 ∪{x+

j − iγ/2}n+
j=1 ∪{x−j + iγ/2}n−

j=1

Outlook
Calculate amplitudes and analyze form-factor series
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