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Main point

All three contexts
eigenvectors
eigenvalues of Q-operator
domain wall partition functions

lead to polynomials that
have positive coefficients
are Painlevé tau functions

We know what these polynomials "are",
but conceptual explanations are still lacking.

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 5 / 47



Main point

All three contexts
eigenvectors
eigenvalues of Q-operator
domain wall partition functions

lead to polynomials that
have positive coefficients
are Painlevé tau functions

We know what these polynomials "are",
but conceptual explanations are still lacking.

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 5 / 47



Solvable lattice models

elliptic SOS

three-colour trig SOS
?

.............
8V � - XYZ

6V

?

..............

� - XXZ

?

..............

elliptic models

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 6 / 47



Solvable lattice models

elliptic SOS

three-colour trig SOS
?

.............

8V � - XYZ

6V
?

..............
� - XXZ

?

..............

elliptic models

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 6 / 47



Solvable lattice models

elliptic SOS

three-colour trig SOS
?

.............

8V � -

�

-

XYZ

6V
?

..............
� - XXZ

?

..............

elliptic models

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 6 / 47



Solvable lattice models

elliptic SOS

three-colour
�....

.....
.....

.....
.....

.....
..

trig SOS
?

.............

8V � -

�

-

XYZ

6V
?

..............
� - XXZ

?

..............

elliptic models

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 6 / 47



Solvable lattice models

elliptic SOS

three-colour
�....

.....
.....

.....
.....

.....
..

trig SOS
?

.............
8V � -

�

-

XYZ

6V
?

..............
� -

�

-

XXZ
?

..............

elliptic models

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 6 / 47



Solvable lattice models

elliptic SOS

three-colour
�....

.....
.....

.....
.....

.....
..

trig SOS
?

.............
8V � -

�

-

XYZ

6V
?

..............
� - XXZ

?

..............

elliptic models

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 6 / 47



"Combinatorial" parameter values

� = 1/2:
ASM enumeration, three-colourings etc.

� = �1/2: supersymmetry
Magic in spectra, Razumov–Stroganov etc.

� = 0: free fermions
Domino tilings, arctic circle etc.

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 7 / 47



"Combinatorial" parameter values

� = 1/2:
ASM enumeration, three-colourings etc.

� = �1/2: supersymmetry
Magic in spectra, Razumov–Stroganov etc.

� = 0: free fermions
Domino tilings, arctic circle etc.

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 7 / 47



"Combinatorial" parameter values

� = 1/2:
ASM enumeration, three-colourings etc.

� = �1/2: supersymmetry
Magic in spectra, Razumov–Stroganov etc.

� = 0: free fermions
Domino tilings, arctic circle etc.

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 7 / 47



Outline

1 Introduction

2 Eigenvectors (Mangazeev & Bazhanov 2010, Razumov &
Stroganov 2010, Zinn-Justin 2013)

3 Eigenvalues of Q-operator (Bazhanov & Mangazeev 2005,
2006)

4 Three-coloured chessboards (R. 2011)

5 Towards a synthesis (R., to appear)

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 8 / 47



XYZ spin chain
Hamiltonian acting on (C2)⌦N ,

H = �1
2

NX

j=1

�
Jx�

j
x�

j+1
x + Jy�

j
y�

j+1
y + Jz�

j
z�

j+1
z
�
;

�x =

✓
0 1
1 0

◆
, �y =

✓
0 �i
i 0

◆
, �z =

✓
1 0
0 �1

◆
,

Periodic boundary conditions: �N+1 = �1.
If N is odd and

JxJy + JxJz + JyJz = 0

(� = �1/2) then H has lowest eigenvalue

�N
2
(Jx + Jy + Jz) .

Observed by Stroganov (2001), proved by Hagendorf (2013).
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Ground state eigenvectors

Consider cyclically symmetric eigenvector  
in sector e± ⌦ · · ·⌦ e± with even number of plus signs.
Unique up to normalization.

Razumov & Stroganov observed that if

Jx = 1 + ⇣, Jy = 1� ⇣, Jz =
⇣2 � 1

2
,

then
 =

X

k1···kN2{±}

 k1···kN ek1 ⌦ · · ·⌦ ekN ,

where  k1···kN seem to be polynomials in ⇣ with positive integer
coefficients.
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Example: N=7

 �+�+�++ = 7 + ⇣2,

 ��+�+++ = 3 + 5⇣2,

 ���++++ = 1 + 5⇣2 + 2⇣4,

 ��++�++ = 4 + 3⇣2 + ⇣4.

All other components are equal to one of these four,
up to multiplication by ⇣ or ⇣2.
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Conjectures

There are polynomials sn, s̄n, given by explicit recursions,
such that

 ��···� = ⇣n(n+1)/2sn(⇣
�2),  +···+� = N�1⇣n(n�1)/2s̄n(⇣

�2),

where N = 2n + 1.

Sum rule
X

k

 2
k1···kN

= (4/3)n⇣n(n+1)sn(⇣
�2)s�n�1(⇣

�2),

where sn is naturally extended to n < 0.
Proved by Zinn-Justin, up to certain conjecture.
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More conjectures
There are polynomials qn, rn, given by explicit recursions, such
that for n even (N = 2n + 1)

 �+�+�···+� = Constn(⇣(3 + ⇣))
n(n�2)

4 r n�2
2

✓
1� ⇣
3 + ⇣

◆
qn�2

2
(⇣�1).

and for n odd

 +�+�···+�+ = Constn(⇣(3 + ⇣))
n2�1

4 r n�1
2

✓
1� ⇣
3 + ⇣

◆
qn�3

2
(⇣�1).

Factorizations

s2n+1(y2) = Constn rn(y)rn(�y),

s2n(y2) = Constn(1 + 3y)n(n+1)r�n�1

✓
y � 1
3y + 1

◆
qn�1(y).
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Properties

All the polynomials seem to have positive integer coefficients
(for all n 2 Z or n 2 Z�0):

s3(y) = 1 + 3y + 4y2,

s̄3(y) = 7(5 + 3y),
q3(y) = 1 + 15y2 + 112y4 + 518y6 + 1257y8 + 1547y10

+ 646y12,

r3(y) = 1 + 3y + 15y2 + 35y3 + 105y4 + 195y5 + 435y6

+ 555y7 + 840y8 + 710y9 + 738y10 + 294y11 + 170y12.

All the polynomials are tau functions of Painlevé VI
(explained later).
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Q-operator
Same setting: periodic XYZ chain of odd length N.
Hamiltonian H commutes with transfer matrix T(z) of the
eight-vertex model and with Q-operators Q(z).

T(z)Q(z) = �(z � ⌘)Q(z + 2⌘) + �(z + ⌘)Q(z � 2⌘),

�(z) = ✓1(z|e2⇡i⌧ )N , ⌧ and ⌘ are parameters.
� = �1/2 means ⌘ = ⇡/3.
Evaluate at ground state eigenvector  .
T(z) has (conjecturally?) eigenvalue �(z).
Eigenvalue Q(z) of Q(z) satisfies

�(z)Q(z) = �(z � ⌘)Q(z + 2⌘) + �(z + ⌘)Q(z � 2⌘)

or equivalently

(�Q)(z) + (�Q)(z + 2⌘) + (�Q)(z � 2⌘) = 0.
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Solution space of the TQ relation

Solution space of TQ-relation, with appropriate analytic
properties, is two-dimensional. Basis Q(z), Q(z + ⇡).

Writing  (z) = �(2⇡z)Q(2⇡z),

 is entire,
 (z + 1) =  (z),  (z + ⌧) = e�6⇡iN(2z+⌧) (z)

 (�z) =  (z),
 (z) + (z + 1/3) + (z � 1/3) = 0,

i.e.  (z) =
P

n⌘±1 mod 3  n e2⇡inz

 (z) has zeroes of degree N at 0 and at 1/2.

The space of functions satisfying these conditions
is one-dimensional.
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Uniformization

Up to elementary multiplier,  is meromorphic function on

(C/(Z+ ⌧Z))/(z = �z).

This is a sphere. Thus, up to elementary factor,
 is polynomial in some variable x = x(z, ⌧).

As a function of ⌧ ,  can be normalized to live on
modular curve �0(6).
This is a sphere, so  is also polynomial in ⇣ = ⇣(⌧).

Can express eigenvalue Q(z) in terms of polynomial Pn(x , ⇣).
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The polynomials Pn(x , ⇣)

P0 = 1,
P1 = x + 3,
P2 = (⇣ + 1)x2 + 5(3⇣ + 1)x + 10,
P3 = (4⇣2 + 3⇣ + 1)x3 + 7(18⇣2 + 5⇣ + 1)x2

+ 7(18⇣2 + 19⇣ + 3)x + 7(3⇣ + 5),
. . .

Pn seems to have positive coefficients.

Pn satisfies a quantization of Painlevé VI
(non-stationary Lamé equation). Explained below.
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A remarkable coincidence?

P3 = (4⇣2 + 3⇣ + 1)x3 + 7(18⇣2 + 5⇣ + 1)x2

+ 7(18⇣2 + 19⇣ + 3)x + 7(3⇣ + 5)

The highest and lowest coefficients in Pn are sn(⇣) and s̄n(⇣).
Not clear why the same polynomials appear also in the
eigenvector and in the sum rule.
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Three-coloured chessboards
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Rules

0 1 2 0
1 2 1 2
2 1 2 1
0 2 1 0

Chessboard of size (n + 1)⇥ (n + 1).
Paint squares with three colours
0, 1, 2 mod 3.

0 1 2 · · · n
1

2
...

... 2
1

n · · · 2 1 0

Adjacent squares have
distinct colour.
“Domain wall boundary
conditions” (DWBC).
Read entries mod 3.
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Example

When n = 3 there are seven chessboards.
0 = black, 1 = red, 2 = yellow.
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Bijection to “square ice"
(=Alternating sign matrices)

0

"

1

"

2

"

0

! • ! •  •  

1

"

2

#

1

"

2

! •  • ! •  

2

#

1

"

2

#

1

! • ! •  •  

0

#

2

#

1

#

0

Put arrows between
adjacent entries.
Larger entry to the right,
0 < 1 < 2 < 0.

"Rock – Paper – Scissors"

Each vertex has two incoming
and two outgoing edges.
Domain wall boundary conditions.

Vertex = oxygen, incoming edge = hydrogen.
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Bijection to “square ice"
(=Alternating sign matrices)

0 " 1 " 2 " 0
!

•

!

•

 

•

 
1 " 2 # 1 " 2
!

•

 

•

!

•

 
2 # 1 " 2 # 1
!

•

!

•

 

•

 
0 # 2 # 1 # 0

Put arrows between
adjacent entries.
Larger entry to the right,
0 < 1 < 2 < 0.

"Rock – Paper – Scissors"

Each vertex has two incoming
and two outgoing edges.
Domain wall boundary conditions.

Vertex = oxygen, incoming edge = hydrogen.
Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 25 / 47



Bijection to “square ice"
(=Alternating sign matrices)

0 " 1 " 2 " 0
! • ! •  •  
1 " 2 # 1 " 2
! •  • ! •  
2 # 1 " 2 # 1
! • ! •  •  
0 # 2 # 1 # 0

Put arrows between
adjacent entries.
Larger entry to the right,
0 < 1 < 2 < 0.

"Rock – Paper – Scissors"

Each vertex has two incoming
and two outgoing edges.
Domain wall boundary conditions.

Vertex = oxygen, incoming edge = hydrogen.
Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 25 / 47



Bijection to “square ice"
(=Alternating sign matrices)

0 " 1 " 2 " 0
! • ! •  •  
1 " 2 # 1 " 2
! •  • ! •  
2 # 1 " 2 # 1
! • ! •  •  
0 # 2 # 1 # 0

Put arrows between
adjacent entries.
Larger entry to the right,
0 < 1 < 2 < 0.

"Rock – Paper – Scissors"

Each vertex has two incoming
and two outgoing edges.
Domain wall boundary conditions.

Vertex = oxygen, incoming edge = hydrogen.
Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 25 / 47



Square ice exists!

G. Algara-Siller et al., Square ice in graphene nanocapillaries,
Nature (2015).
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ASM Theorem
Three-coloured chessboards are in bijection with alternating
sign matrices. Their number is

Zn(1, 1, 1) =
1! 4! 7! · · · (3n � 2)!

n!(n + 1)!(n + 2)! · · · (2n � 1)!
.

Kuperberg found a proof of this using the six-vertex model.

elliptic SOS ...............- 6V

three-colour
?

..............
....- enumeration

?

..............
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Three-colour model

Domain wall partition functions
= Generating function for colours:

Z 3C
n (t0, t1, t2)

=
X

chessboards
of size (n+1)⇥(n+1)

t# squares coloured 0
0 t# squares coloured 1

1 t# squares coloured 2
2
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Elliptic SOS model
Inhomogeneous domain wall partition function

Z SOS
n (x1, . . . , xn; y1, . . . , yn; p, q,�),

xj , yj spectral parameters,
� parameter of face weight,
p = e2⇡i⌧ , q = e2⇡i⌘ further parameters.

With ! = e2⇡i/3,

Z SOS
n (!, . . . ,!; 1, . . . , 1; p,!,�)

= elementary factor⇥ Z 3C
n (t0, t1, t2),

tj =
1

✓1(�+ 2⇡j/3; p)3 .
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Specialized SOS partition function

Keep x1 free, but specialize other parameters as above.
As function of x1, Z SOS

n satisfies similar analytic conditions as
eigenvalue Q(z).

Specialized Z SOS
n can be expressed in terms of Pn(x , ⇣).

Z 3C
n can be expressed in terms of Pn(x , ⇣) for special x .

Relates 8V model with � = �1/2 on chain of length 2N + 1
to SOS model with � = +1/2 on (N + 1)⇥ (N + 1) square.

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 30 / 47



Specialized SOS partition function

Keep x1 free, but specialize other parameters as above.
As function of x1, Z SOS

n satisfies similar analytic conditions as
eigenvalue Q(z).

Specialized Z SOS
n can be expressed in terms of Pn(x , ⇣).

Z 3C
n can be expressed in terms of Pn(x , ⇣) for special x .

Relates 8V model with � = �1/2 on chain of length 2N + 1
to SOS model with � = +1/2 on (N + 1)⇥ (N + 1) square.

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 30 / 47



Specialized SOS partition function

Keep x1 free, but specialize other parameters as above.
As function of x1, Z SOS

n satisfies similar analytic conditions as
eigenvalue Q(z).

Specialized Z SOS
n can be expressed in terms of Pn(x , ⇣).

Z 3C
n can be expressed in terms of Pn(x , ⇣) for special x .

Relates 8V model with � = �1/2 on chain of length 2N + 1
to SOS model with � = +1/2 on (N + 1)⇥ (N + 1) square.

Hjalmar Rosengren (Chalmers University) Firenze, 22 May 2015 30 / 47



Polynomials pn

The domain wall three-colour partition function Z 3C
n can be

expressed in terms of polynomials pn�1.
n pn(⇣)
0 1
1 3⇣ + 1
2 5⇣3 + 15⇣2 + 7⇣ + 1
3 1

2(35⇣6 + 231⇣5 + 504⇣4 + 398⇣3 + 147⇣2 + 27⇣ + 2)
4 1

2(63⇣10 + 798⇣9 + 4122⇣8 + 11052⇣7 + 16310⇣6

+13464⇣5 + 6636⇣4 + 2036⇣3 + 387⇣2 + 42⇣ + 2)

Seem to have positive coefficients.
Known to be Painlevé tau functions (see below).
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The 105 complex zeroes of p14.
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Relation between Z 3C
n and pn�1

Suppose n ⌘ 0 mod 6 and

(t0t1 + t0t2 + t1t2)3

(t0t1t2)2 =
2(⇣2 + 4⇣ + 1)3

⇣(⇣ + 1)4

Z 3C
n (t0, t1, t2) = (t0t1t2)

n(n+2)
3

✓
2

⇣(⇣ + 1)4

◆ n2
12

⇥
 

t0
pn�1(⇣)� ⇣

n2
2 +1pn�1(1/⇣)

1� ⇣

� t0t1t2(⇣2 + 4⇣ + 1)
t0t1 + t0t2 + t1t2

pn�1(⇣)� ⇣
n2
2 pn�1(1/⇣)

1� ⇣2

!

Doesn’t explain why pn has positive coefficients.
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Outline

1 Introduction

2 Eigenvectors (Mangazeev & Bazhanov 2010, Razumov &
Stroganov 2010, Zinn-Justin 2013)

3 Eigenvalues of Q-operator (Bazhanov & Mangazeev 2005,
2006)

4 Three-coloured chessboards (R. 2011)

5 Towards a synthesis (R., to appear)
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A space of theta functions

Consider space V of functions that are analytic except for
possible poles at (1/6)Z+ (⌧/2)Z, such that

f (z + 1) = f (z), f (z + ⌧) = e�6⇡in(2z+⌧)f (z),
f (�z) = �f (z),

f (z) + f (z + 1/3) + f (z � 1/3) = 0,
limz!�j (z � �j)1�2kj f (z) = 0,
limz!�j (z � �j)2 (f (z + 1/3) + f (�z + 1/3)) = 0.

Here,
�0 = 0, �1 =

⌧

2
, �2 =

⌧ + 1
2

, �3 =
1
2
.

The integers n, k0, k1, k2, k3 can be negative, but we assume
m = 2n �

P
j kj � 0. Then, dim V = m.
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Uniformization

Uniformizing the one-dimensional space V^m, we obtain
functions

T (k0,k1,k2,k3)
n (x1, . . . , xm; ⇣).

Can normalize them to be symmetric polynomials in xj and
polynomials in ⇣.

Increasing kj 7! kj + 1 corresponds to specializing one of the
variables to �j .

Permuting kj corresponds to rational transformation of variables.
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Special cases

The following polynomials agree
(up to elementary prefactor and change of variables)

m
Pn T (n,n,0,�1)

n 1
pn T (n+1,n,0,�1)

n 0
sn T (n,n,0,0)

n 0
s̄n T (n,n,1,�1)

n 0
qn T (0,2n+2,0,0)

n+1 0
rn T (�1,2n+1,0,0)

n 0
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Example: N=7 eigenvectors

 �+�+�++ = 7 + ⇣2,  ��+�+++ = 3 + 5⇣2,

 ���++++ = 1 + 5⇣2 + 2⇣4,  ��++�++ = 4 + 3⇣2 + ⇣4.

If ⇣2 = 2(y + y�1) + 5,

3 + 5⇣2 ⇠ T (3,3,1,�1)
3 (y),

4 + 3⇣2 + ⇣4 ⇠ T (3,3,0,0)
3 (y).

If ⇣ = (y + 2)/y ,

7 + ⇣2 ⇠ T (0,3,�1,0)
1 (y)T (0,2,0,0)

1 (y),

4 + 3⇣2 + ⇣4 ⇠ T (0,3,0,�1)
1 (y)T (�1,3,0,0)

1 (y).

I don’t understand 1 + 5⇣2 + 2⇣4.
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Properties of T (k0,k1,k2,k3)
n

Explicit Izergin–Korepin-type determinant formulas.
Can be viewed (when all kj � 0) as specialized characters
of affine Lie algebra of type C(1)

n .
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Properties of T (k0,k1,k2,k3)
n :

Schrödinger equation
T (k0,k1,k2,k3)

n gives solution to Schrödinger equation

m
@ 

@t
=

mX

j=1

1
2
@2 

@x2
j
� V (xj , t) ,

V (x , t) =
3X

j=0

kj(kj + 1)
2

}(x � �j |1, 2⇡it).

Case m = 1 appears in several contexts:
KZB heat equation from CFT (Bernard, Etingof & Kirillov).
Radial part of bsl(2) Casimir operator (Kolb).
Canonical quantization of Painlevé VI (Nagoya, Suleimanov,
Zabrodin & Zotov).
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Painlevé VI

Painlevé VI is the most general second order ODE
such that all movable singularities are poles.

Painlevé VI for q = q(t) is equivalent to Hamiltonian system

@q
@t

=
@H
@p

,
@p
@t

= �@H
@q

,

H(p, q, t) = p2 + V (q, t)

with the same potential as in Schrödinger equation,
but with kj replaced by complex parameters.
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Bäcklund transformations

Painlevé VI has a group of symmetries
(Bäcklund transformations) containing Z4.

Knowing one solution, we can create Z4 lattice of solutions.
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Tau functions

Tau functions satisfy

⌧ 0

⌧
= H(p(t), q(t), t),

where p(t), q(t) solve Painlevé VI.

Formally
q =

⌧1⌧2

⌧3⌧4
,

where ⌧i are obtained from ⌧ by Bäcklund transformations.
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Properties of T (k0,k1,k2,k3)
n : Painlevé VI

The case m = 0 (depending only on ⇣)
are tau functions of Painlevé VI.

They are precisely the solutions obtained from a known
algebraic solution of Picard, acting with the Z4 lattice of
Bäcklund transformations.

Polynomials sn, s̄n, qn, rn, pn are different lines in this lattice.
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Proof that case m = 0 are Painlevé tau
functions (sketch)

Jacobi–Desnanot relation for determinants
=) Differential recursions for T (k0,k1,k2,k3)

n .
Involve derivatives in xj .

Schrödinger equation =)
Can trade specialized xj-derivatives for
⇣-derivatives of specialization.

This leads to differential recursions for case m = 0.
Can (miraculously?) be identified with recursions
characterizing Painlevé tau functions.
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Application of Painlevé connection

Each of the systems pn, qn, rn, sn, s̄n satisfies a bilinear
recursion like

pn+1(⇣)pn�1(⇣) = An(⇣)pn(⇣)
2 + Bn(⇣)pn(⇣)p0

n(⇣)

+ Cn(⇣)p0
n(⇣)

2 + Dn(⇣)pn(⇣)p00
n(⇣),

with explicit coefficients.

For pn, this gives a fast way of computing Z 3C
n .

Easily gives conjecture for the free energy limn!1 log(Z 3C
n )/n2.

Can probably be used to prove this conjecture.
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Future questions

Rigorous study of eigenvectors.
Why do all interesting polynomials have positive
coefficients? What do they count?
Tau functions for one very special solution of Painlevé VI
are specialized affine Lie algebra characters.
Can this happen for other solutions?
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