Airy diffusions and $N^{1/3}$ fluctuations in the 2D and 3D Ising models

Senya Shlosman

CPT - Marseille and ITTP - Moscow

joint work with Dima loffe (Haifa, Technion), Yvan Velenik (Univ. of Geneve)

- 1. 3D and 2D Ising models.
- 2. Random walks and Airy diffusion.
- 3. Airy diffusion as a limit of the transfer matrix semigroup.

・ロト ・回ト ・ヨト

3D Ising model with (±) boundary condition $\bar{\sigma}_{\pm} \equiv \pm 1$:

$$-H_V(\sigma_V|\bar{\sigma}_{\pm}) = \sum_{x \sim y \in V} \sigma_x \sigma_y \pm \sum_{x \in \partial V} \sigma_x.$$

The Gibbs state in V at the temperature β^{-1} is given by

$$\mu_{\pm}(\sigma_{V}) = \frac{1}{Z(V,\beta)} \exp\left\{-\beta H_{V}(\sigma_{V}|\bar{\sigma}_{\pm})\right\}.$$

We take $\beta > \beta_{cr}$.

(人間) (人) (人) (人)

We want to make the two phases to coexist in the same box. So we introduce the magnetization

$$M\left(\sigma_{V}\right) = \sum_{x \in V} \sigma_{x}$$

and consider the conditional distribution

$$\mu_{-}\left(\cdot|M\left(\cdot\right)=m\left|V\right|\right),$$

called 'canonical ensemble'. If $m=-\frac{1}{2},$ say, then the volume of the (+)-droplet is $\approx \frac{1}{4} |V|$.

We want to study the shape of the giant component of the (+)-phase.

2D case – Wulff construction: a global shape from local interaction, R. Dobrushin, R. Kotecký, S. S. 1992.
3D case – The Wulff construction in three and more dimensions, T. Bodineau, 1999; On the Wulff Crystal in the Ising Model, R. Cerf, A. Pisztora, 2000.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへぐ

We want to study the evolution of the droplet as m increases. To see it better we change the setting:

$$-H_V(\sigma_V|\bar{\sigma}_{pm}) = \sum_{x \sim y \in V} \sigma_x \sigma_y + \sum_{x \in \partial_{\downarrow} V} \sigma_x - \sum_{x \in \partial_{\uparrow} V} \sigma_x.$$

We consider

$$\mu_{pm}(\sigma_V) = \frac{1}{Z(V,\beta)} \exp\left\{-\beta H_V(\sigma_V | \bar{\sigma}_{pm})\right\},\,$$

and we study

$$\mu_{\mathit{pm}}\left(\cdot|\mathit{M}\left(\cdot
ight)=\mathit{aN}^{2}
ight)$$

as a function of $a \ge 0$; $V = N \times N \times N$.

Dima loffe, S. S.: Ising model fog drip: the first two droplets, In: "In and Out of Equilibrium 2", Progress in Probability 60, 2008. Dima loffe, S. S.: Ising model fog drip: the shallow puddle, o(N) deep. Actes des rencontres du CIRM, (2010) Dima loffe, S. S.: Formation of Facets for an Effective Model of Crystal Growth

Look on the blackboard.

・ロ・ ・回・ ・ヨ・ ・ヨ・

æ

2D Ising model with (-) boundary condition $\bar{\sigma}_{-} \equiv -1$ and competing magnetic field h > 0:

$$-H_V(\sigma_V|\bar{\sigma}_-) = \sum_{x \sim y \in V} \sigma_x \sigma_y + h \sum_{x \in V} \sigma_x - \sum_{x \in \partial V} \sigma_x.$$

The Gibbs state in V at the temperature β^{-1} is given by

$$\mu(\sigma_V) = \frac{1}{Z(V,\beta)} \exp\left\{-\beta H_V(\sigma_V|\bar{\sigma}_-)\right\}.$$

We take $\beta > \beta_{cr}$.

<回と < 目と < 目と

æ

In order that the magnetic field h and the boundary condition $\bar{\sigma}_{-}$ have the same influence in a box $V_N = N \times N$ it has to be that $hN^2 \sim N$, i.e. $h \sim 1/N$.

In R.H. Schonmann and S.S:

Constrained variational problem with applications to the Ising model, J. Stat. Phys. (1996)

we have shown that there exists a function $B_c(\beta)$, such that the following happens:

if h = B/N with $B < B_c(\beta)$, then the boundary condition wins, and we see in V_N the 'minus-phase';

if h = B/N with $B > B_c(\beta)$, then the magnetic field wins, and we see in V_N a droplet W_N of 'plus-phase'. This droplet has its asymptotic shape.

イロン イヨン イヨン イヨン

In order that the magnetic field h and the boundary condition $\bar{\sigma}_{-}$ have the same influence in a box $V_N = N \times N$ it has to be that $hN^2 \sim N$, i.e. $h \sim 1/N$.

In R.H. Schonmann and S.S:

Constrained variational problem with applications to the Ising model, J. Stat. Phys. (1996)

we have shown that there exists a function $B_c(\beta)$, such that the following happens:

if h = B/N with $B < B_c(\beta)$, then the boundary condition wins, and we see in V_N the 'minus-phase';

if h = B/N with $B > B_c(\beta)$, then the magnetic field wins, and we see in V_N a droplet W_N of 'plus-phase'. This droplet has its asymptotic shape.

< 日 > < 回 > < 回 > < 回 > < 回 > <

In order that the magnetic field h and the boundary condition $\bar{\sigma}_{-}$ have the same influence in a box $V_N = N \times N$ it has to be that $hN^2 \sim N$, i.e. $h \sim 1/N$.

In R.H. Schonmann and S.S:

Constrained variational problem with applications to the Ising model, J. Stat. Phys. (1996)

we have shown that there exists a function $B_c(\beta)$, such that the following happens:

if h = B/N with $B < B_c(\beta)$, then the boundary condition wins, and we see in V_N the 'minus-phase';

if h = B/N with $B > B_c(\beta)$, then the magnetic field wins, and we see in V_N a droplet W_N of 'plus-phase'. This droplet has its asymptotic shape.

◆□> ◆□> ◆国> ◆国>

The droplet in the box.

・ロト ・回ト ・ヨト ・ヨト

æ

The fluctuations of the droplet boundary along the wall are of the order of $N^{1/3}$. This was established in Pietro Caputo, Eyal Lubetzky, Fabio Martinelli, Allan Sly and Fabio Lucio Toninelli: The shape of the (2 + 1)D SOS surface above a wall, http://arxiv.org/pdf/1207.3580.pdf for SOS model, and the same methods apply for the Ising model at low temperatures.

They were able to show that for every $\varepsilon > 0$ the contour stays in the strip $N^{1/3+\varepsilon}$, and does not fit the strip $N^{1/3-\varepsilon}$, as $N \to \infty$. Together with Dima loffe and Yvan Velenik we are working on the scaling behavior of the interface ∂W_N along the boundary ∂V_N .

(人間) (人) (人) (人)

The fluctuations of the droplet boundary along the wall are of the order of $N^{1/3}$. This was established in Pietro Caputo, Eyal Lubetzky, Fabio Martinelli, Allan Sly and Fabio Lucio Toninelli: The shape of the (2 + 1)D SOS surface above a wall, http://arxiv.org/pdf/1207.3580.pdf for SOS model, and the same methods apply for the Ising model at low temperatures.

They were able to show that for every $\varepsilon > 0$ the contour stays in the strip $N^{1/3+\varepsilon}$, and does not fit the strip $N^{1/3-\varepsilon}$, as $N \to \infty$. Together with Dima loffe and Yvan Velenik we are working on the scaling behavior of the interface ∂W_N along the boundary ∂V_N .

We show that after the vertical scaling by $\frac{N^{1/3}}{(\beta e^{\beta})^{1/3}}$ and horizontal scaling by $\frac{N^{2/3}e^{\beta/3}}{(\beta)^{2/3}}$ we will see in the limit $N \to \infty$ the stationary diffusion process

$$dX(t) = a(X(t))dt + db_t$$

with the drift

$$a(x) = [\ln A(x)]' = \frac{A'(x)}{A(x)}.$$

● ▶ 《 三 ▶

The function A(x), x > 0 is given by

$$A(x) = \frac{Ai(-\omega_1 + x)}{Ai'(-\omega_1)},$$

where $Ai(\cdot)$ is the Airy function, and $-\omega_1$ is its first zero. The generator is given by

$$L\varphi = \frac{1}{2} \frac{1}{A^2} \frac{d}{dx} \left(A^2 \frac{d}{dx} \varphi \right).$$

This diffusion process stays positive and has the unique stationary measure with density $[A(x)]^2$.

<回と < 目と < 目と

The function A(x), x > 0 is given by

$$A(x) = \frac{Ai(-\omega_1 + x)}{Ai'(-\omega_1)},$$

where $Ai(\cdot)$ is the Airy function, and $-\omega_1$ is its first zero. The generator is given by

$$L\varphi = \frac{1}{2} \frac{1}{A^2} \frac{d}{dx} \left(A^2 \frac{d}{dx} \varphi \right).$$

This diffusion process stays positive and has the unique stationary measure with density $[A(x)]^2$.

<回と < 目と < 目と

The function A(x), x > 0 is given by

$$A(x) = \frac{Ai(-\omega_1 + x)}{Ai'(-\omega_1)},$$

where $Ai(\cdot)$ is the Airy function, and $-\omega_1$ is its first zero. The generator is given by

$$L\varphi = \frac{1}{2} \frac{1}{A^2} \frac{d}{dx} \left(A^2 \frac{d}{dx} \varphi \right).$$

This diffusion process stays positive and has the unique stationary measure with density $[A(x)]^2$.

・ 回 ・ ・ ヨ ・ ・

The function A(x) is the leading eigenfunction of the operator $-\frac{d^2}{dx^2} + x$ on \mathbb{R}^+ with zero Dirichlet b.c. at x = 0. This process first appeared in the paper by P. Ferrari and H. Spohn: Constrained Brownian motion: fluctuations away from circular and parabolic barriers, The Annals of Probability, 2005.

The function A(x) is the leading eigenfunction of the operator $-\frac{d^2}{dx^2} + x$ on \mathbb{R}^+ with zero Dirichlet b.c. at x = 0. This process first appeared in the paper by P. Ferrari and H. Spohn: Constrained Brownian motion: fluctuations away from circular and parabolic barriers, The Annals of Probability, 2005.

- 4 同 2 4 日 2 4 日 2

In case of n > 1 interfaces the operator

$$-\frac{d^2}{dx^2} + x$$

is replaced by

$$-\frac{d^2}{dx_1^2} - \dots - \frac{d^2}{dx_n^2} + x_1 + \dots + x_n$$

on $0 \le x_1 \le ... \le x_n$ with zero b.c. on the boundary of the chamber.

- - 4 回 ト - 4 回 ト

æ

Let $\varphi_1 = A, \varphi_2, ..., \varphi_n$ are the first eigenfunctions of the Sturm–Liouville operator $-\frac{d^2}{dx^2} + x$ with zero boundary condition. Then the function

 $\det \left| \left| \varphi_i \left(x_j \right) \right| \right|$

is its principal eigenfunction, with the eigenvalue given by the sum of the first *n* eigenvalues of $-\frac{d^2}{dx^2} + x$. The square of this function,

 $(\det || \varphi_i(x_j) ||)^2$

is proportional to the stationary distribution of the limiting *n*-dimensional diffusion process.

→ 同 → → 目 → → 目 →

Consider a random walk $\mathbb{X} = (X_0 = 0, X_1, X_2, ..., X_N = 0)$ and a convex function $V \ge 0$ on \mathbb{R}^1 , V(0) = 0. Let $\mathbb{V}(\mathbb{X}) = \sum V(X_j)$. We study the asymptotic properties of \mathbb{X} under the distribution

$$\mathbb{P}_{N}\left\{\mathbb{X}\right\} \sim \exp\left\{-\lambda_{N}\mathbb{V}\left(\mathbb{X}\right)\right\} \prod_{j=0}^{N-1} p\left(X_{j+1}-X_{j}\right).$$

< 同 > < 臣 > < 臣 >

Let $V(x) \sim x^{\alpha}$ as $x \to \infty$, $V(x) \sim |x|^{\gamma}$ as $x \to -\infty$, with $\alpha \leq \gamma$. (Ising: $\alpha = 1, \gamma = +\infty$.) Define the height $H_N = H_N(\lambda_N) > 0$ as the unique positive solution of the equation:

$$\lambda_N V(H_N) H_N^2 = 1.$$

This is the condition of the survival of the excursion of the size (H_N^2, H_N) . (We assume that $H_N^2(\lambda_N) \ll N$.) Then under height scaling by H_N and time scaling by H_N^2 the process converges weakly to:

< 回 > < 三 > < 三 >

Universal scaling limits of random walks

The diffusion with the generator

$$\mathcal{L} = rac{1}{2} rac{1}{A^2} rac{d}{dx} \left(A^2 rac{d}{dx} \varphi
ight),$$

where A is the ground state of the Schrodinger operator

$$-rac{d^2}{dx^2}+|x|^{lpha}$$

on \mathbb{R}^1 , if $\gamma = \alpha$, or the ground state of the Schrodinger operator

$$-rac{d^2}{dx^2} + x^{lpha}$$

on \mathbb{R}_+ with zero boundary condition at x = 0 if $\gamma > \alpha$. The stationary distribution is $\sim A^2(x)$, and the drift is $[\ln A(x)]'$.

For example, if $\alpha = 1$, $\gamma = +\infty$, $\lambda_N = \frac{1}{N}$ we get Ferrari-Spohn diffusion, after height scaling $H_N = N^{1/3}$ and time scaling $N^{2/3}$. Here $A(x) \sim Ai(x - \omega_1)$, $x \ge 0$, and $-\omega_1$ is the maximal root of $Ai(\cdot)$.

If $\alpha = \gamma = 1$, $\lambda_N = \frac{1}{N}$ we get after the same height scaling $H_N = N^{1/3}$ and time scaling $N^{2/3}$ the diffusion with the function

 $A(x) = Ai(\varpi_1 + |x|),$

where ϖ_1 is the location of the rightmost maximum of $Ai(\cdot)$.

< 回 > < 三 > < 三 >

For example, if $\alpha = 1$, $\gamma = +\infty$, $\lambda_N = \frac{1}{N}$ we get Ferrari-Spohn diffusion, after height scaling $H_N = N^{1/3}$ and time scaling $N^{2/3}$. Here $A(x) \sim Ai(x - \omega_1)$, $x \ge 0$, and $-\omega_1$ is the maximal root of $Ai(\cdot)$. If $\alpha = \gamma = 1$, $\lambda_N = \frac{1}{N}$ we get after the same height scaling $H_N = N^{1/3}$ and time scaling $N^{2/3}$ the diffusion with the function

$$A(x) = Ai(\varpi_1 + |x|),$$

where ϖ_1 is the location of the rightmost maximum of $Ai(\cdot)$.

同 ト イヨ ト イヨ ト

If $\alpha = \gamma = 2$, we have after height scaling $H_N(\lambda_N)$ and time scaling $H_N^2(\lambda_N)$ the OU diffusion, with

$$A(x) \sim \exp\left\{-x^2\right\},$$

 $\mathbf{x} \in \mathbb{R}^{1}$, while if $\alpha = 2, \ \gamma = +\infty$, we have

 $A(x) \sim x \exp\left\{-x^2\right\},\,$

 $x \ge 0.$

・ 回 と ・ ヨ と ・ モ と …

If $\alpha = \gamma = 2$, we have after height scaling $H_N(\lambda_N)$ and time scaling $H_N^2(\lambda_N)$ the OU diffusion, with

$$A(x) \sim \exp\left\{-x^2\right\},$$

 $x\in \mathbb{R}^1,$ while if $lpha=2,\,\gamma=+\infty,$ we have $A(x)\sim x\exp\left\{-x^2
ight\},$

 $x \ge 0.$

▲□ → ▲ □ → ▲ □ → …

Let U(u, v) = U(u - v) be a n.n. interaction, $u, v \in \mathbb{Z}^1$. Consider the Gibbs field \mathbb{X}_0 , corresponding to the Hamiltonian $\mathbf{H}(X) = \sum_s U(X_s, X_{s+1})$. If the interaction is balanced:

$$\sum_{v} v e^{-U(v)} = 0$$

then its scaling limit is the 1D Brownian motion. Assume $||U|| = \sum_{v} e^{-U(v)} = 1$. The variance:

$$\sigma^2(U) = \sum_{v} v^2 e^{-U(v)}.$$

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ …

3

We need to add to the Hamiltonian the additional stabilizing self-interaction, V(s). So we change to $\mathbf{H}(X) = \sum_{s} U(X_{s}, X_{s+1}) + \sum_{s} V(X_{s})$. We suppose that $V(u) = +\infty$ for u < 0, V(0) = 0, $\lim_{u \to \infty} V(u) = +\infty$.

When we weaken the self-interaction V, by passing to λV , with λ small and then take the limit $\lambda \rightarrow 0$, the corresponding Gibbs field starts to diverge. Such a divergence has a universal character, and depends on very few details of the stabilizing self-interaction V.

・ 回 ト ・ ヨ ト ・ ヨ ト

Define the value H_{λ} by

$$H_{\lambda}^{2}\lambda V(H_{\lambda})=1,$$

and suppose that $H_{\lambda} \to \infty$ as $\lambda \to 0$, and that the limiting function

$$q\left(r\right) = \lim_{\lambda \to 0} H_{\lambda}^{2} \lambda V\left(rH_{\lambda}\right)$$

exists. Let $X_{\lambda} = \{X_s\}$ be the (infinite-volume) 1D Gibbs field, corresponding to the Hamiltonian

$$\mathbf{H}(X) = \sum_{s} U(X_{s}, X_{s+1}) + \sum_{s} \lambda V(X_{s}).$$

æ

The Gibbs field \mathbb{X}_{λ} exists and is unique. Let $\mathbb{P}_{\lambda} \{\cdot\}$ denote the corresponding state; it is a Markov chain. It diverges as $\lambda \to 0$. But its scaling limit exists, as $\lambda \to 0$. Namely, let \mathbf{x}_{λ} be the result of scaling of the random field \mathbb{X}_{λ} by a factor H_{λ} vertically and by H_{λ}^2 horizontally. Then as $\lambda \to 0$, the $(H_{\lambda}, H_{\lambda}^2)$ -rescaled process \mathbf{x}_{λ} converges weakly to a certain diffusion process $\mathbf{x}_{\sigma,q}$. It is defined by some diffusion operator $G_{\sigma,q}$, which in turn is a generator of the corresponding diffusion semigroup $S_{\sigma,q}^t$.

イロン イヨン イヨン イヨン

Our 1D Gibbs field is naturally associated with the transfer matrix \mathcal{T}_{λ} with matrix elements

$$T_{\lambda}(u,v) = \exp\left\{-\frac{1}{2}\left(\lambda V(u) + \lambda V(v)\right) - U(u-v)\right\}.$$

The corresponding (discrete time t) transfer matrix semigroup T_{λ}^{t} is not stochastic, of course. The relation between our Markov chain and the semigroup T_{λ}^{t} is the following:

Let $\phi_{\lambda} > 0$ be the unique positive right eigenfunction of T_{λ} , it corresponds to the principal eigenvalue E_{λ} of T_{λ} . (The free energy then is $\ln E_{\lambda}$.) The transition probabilities P of our Markov chain (which corresponds to the semigroup S_{λ}^{t}):

$$P(u, v) = \exp\left\{-\frac{1}{2}\left(\lambda V(u) + \lambda V(v)\right) - U(u - v)\right\} \frac{\phi_{\lambda}(v)}{E_{\lambda}\phi_{\lambda}(u)}.$$

The *n*-step transition probabilities are given by

$$P^{(n)}(u,v) = \frac{\phi_{\lambda}(v)}{E_{\lambda}^{n}\phi_{\lambda}(u)}T_{\lambda}^{n}(u,v).$$

A (1) > A (2) > A

One can check that the $(H_{\lambda}, H_{\lambda}^2)$ -rescaling of the operator $T_{\lambda} - I$ converges, as $\lambda \to 0$ to the operator

$$L=\frac{\sigma^2}{2}\frac{d^2}{dx^2}-q(x)\,.$$

The operator *L* generates the semigroup

$$T^t = \exp\left\{-tL\right\}.$$

By Trotter-Kurtz, the rescaled discrete semigroup T_{λ}^{t} converges to the continuous time semigroup $T^{t} = \exp\{-tL\}$. The operator L on $x \ge 0$, with zero boundary condition has all eigenvalues simple. Let φ_{0} be its ground state, and $-e_{0}$ be the corresponding eigenvalue. Note that the function φ_{0} is positive.

・回・ ・ヨ・ ・ヨ・

The ground-state transform of *L* is the diffusion operator $G_{\sigma,q}$:

$$\mathcal{G}_{\sigma,q}\psi=rac{1}{arphi_0}\left(L+e_0
ight)\left(\psiarphi_0
ight)\equivrac{\sigma^2}{2}rac{d^2}{dr^2}\psi+\sigma^2rac{arphi_0'}{arphi_0}rac{d}{dr}\psi.$$

・ロト ・回ト ・ヨト ・ヨト

æ

It generates the diffusion semigroup $S_{\sigma,q}^t$, which can be written as

$$S_{\sigma,q}^{t}\psi=\frac{e^{e_{0}t}}{\varphi_{0}}T^{t}\left(\psi\varphi_{0}\right).$$

Denote by $\mathbf{x}(t) = \mathbf{x}_{\sigma,q}(t)$ the corresponding diffusion process. Since discrete semigroup T_{λ}^{t} converges to the continuous time semigroup T^{t} , and since

$$\mathcal{P}^{(n)}(u,v) = \frac{\phi_{\lambda}(v)}{E_{\lambda}^{n}\phi_{\lambda}(u)}T_{\lambda}^{n}(u,v),$$

in order to conclude the convergence of S_{λ}^{t} to $S_{\sigma,q}^{t}$ we just need to know that the eigenfunctions ϕ_{λ} and the eigenvalues E_{λ} of T_{λ} converge to φ_{0} and e_{0} . To see that, it is sufficient to prove in advance the compactness of the family $\{\phi_{\lambda}\}$. That implies the convergence $\phi_{\lambda} \rightarrow \varphi_{0}$ and $E_{\lambda} \rightarrow e_{0}$.

イロン イヨン イヨン イヨン

(ロ) (四) (注) (注) (注) [