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The content

1. 3D and 2D Ising models.
2. Random walks and Airy diffusion.
3. Airy diffusion as a limit of the transfer matrix semigroup.
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3D Ising model with (±) boundary condition σ̄± ≡ ±1:

−HV (σV |σ̄±) =
∑

x∼y ∈V
σxσy ±

∑
x∈∂V

σx .

The Gibbs state in V at the temperature β−1 is given by

µ± (σV ) =
1

Z (V , β)
exp {−βHV (σV |σ̄±)} .

We take β > βcr .
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We want to make the two phases to coexist in the same box. So
we introduce the magnetization

M (σV ) =
∑
x ∈V

σx

and consider the conditional distribution

µ− (·|M (·) = m |V |) ,

called ‘canonical ensemble’. If m = −1
2 , say, then the volume of

the (+)-droplet is ≈ 1
4 |V | .
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We want to study the shape of the giant component of the
(+)-phase.
2D case – Wulff construction: a global shape from local
interaction, R. Dobrushin, R. Kotecký, S. S. 1992.
3D case – The Wulff construction in three and more dimensions,
T. Bodineau, 1999; On the Wulff Crystal in the Ising Model, R.
Cerf, A. Pisztora, 2000.
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We want to study the evolution of the droplet as m increases. To
see it better we change the setting:

−HV (σV |σ̄pm) =
∑

x∼y ∈V
σxσy +

∑
x∈∂↓V

σx −
∑

x∈∂↑V
σx .

We consider

µpm (σV ) =
1

Z (V , β)
exp {−βHV (σV |σ̄pm)} ,

and we study
µpm

(
·|M (·) = aN2

)
as a function of a ≥ 0; V = N × N × N.
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Dima Ioffe, S. S.: Ising model fog drip: the first two droplets, In:
”In and Out of Equilibrium 2”, Progress in Probability 60, 2008.
Dima Ioffe, S. S.: Ising model fog drip: the shallow puddle, o(N)
deep. Actes des rencontres du CIRM, (2010)
Dima Ioffe, S. S.: Formation of Facets for an Effective Model of
Crystal Growth
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Look on the blackboard.
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2D Ising model

2D Ising model with (−) boundary condition σ̄− ≡ −1 and
competing magnetic field h > 0 :

−HV (σV |σ̄−) =
∑

x∼y ∈V
σxσy + h

∑
x∈V

σx −
∑
x∈∂V

σx .

The Gibbs state in V at the temperature β−1 is given by

µ (σV ) =
1

Z (V , β)
exp {−βHV (σV |σ̄−)} .

We take β > βcr .
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2D Ising model

In order that the magnetic field h and the boundary condition σ̄−
have the same influence in a box VN = N × N it has to be that
hN2 ∼ N, i.e. h ∼ 1/N.
In R.H. Schonmann and S.S:
Constrained variational problem with applications to the Ising
model, J. Stat. Phys. (1996)
we have shown that there exists a function Bc (β) , such that the
following happens:
if h = B/N with B < Bc (β) , then the boundary condition wins,
and we see in VN the ‘minus-phase’;
if h = B/N with B > Bc (β) , then the magnetic field wins, and we
see in VN a droplet WN of ‘plus-phase’. This droplet has its
asymptotic shape.
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2D Ising model

The droplet in the box.
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2D Ising model

The fluctuations of the droplet boundary along the wall are of the
order of N1/3. This was established in
Pietro Caputo, Eyal Lubetzky, Fabio Martinelli, Allan Sly and
Fabio Lucio Toninelli: The shape of the (2 + 1)D SOS surface
above a wall, http://arxiv.org/pdf/1207.3580.pdf
for SOS model, and the same methods apply for the Ising model at
low temperatures.
They were able to show that for every ε > 0 the contour stays in
the strip N1/3+ε, and does not fit the strip N1/3−ε, as N →∞.
Together with Dima Ioffe and Yvan Velenik we are working on the
scaling behavior of the interface ∂WN along the boundary ∂VN .
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The scaling limit

We show that after the vertical scaling by N1/3

(βeβ)
1/3 and horizontal

scaling by N2/3eβ/3

(β)2/3
we will see in the limit N →∞ the stationary

diffusion process

dX (t) = a(X (t))dt + dbt

with the drift

a (x) = [lnA (x)]′ =
A′ (x)

A (x)
.
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The scaling limit

The function A (x) , x > 0 is given by

A (x) =
Ai (−ω1 + x)

Ai ′ (−ω1)
,

where Ai (·) is the Airy function, and −ω1 is its first zero.
The generator is given by

Lϕ =
1

2

1

A2

d

dx

(
A2 d

dx
ϕ

)
.

This diffusion process stays positive and has the unique stationary
measure with density [A (x)]2 .
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The scaling limit

The function A (x) is the leading eigenfunction of the operator

− d2

dx2
+ x on R+ with zero Dirichlet b.c. at x = 0.

This process first appeared in the paper by P. Ferrari and H. Spohn:
Constrained Brownian motion: fluctuations away from circular and
parabolic barriers, The Annals of Probability, 2005.
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The scaling limit

In case of n > 1 interfaces the operator

− d2

dx2
+ x

is replaced by

− d2

dx21
− ...− d2

dx2n
+ x1 + ...+ xn

on 0 ≤ x1 ≤ ... ≤ xn with zero b.c. on the boundary of the
chamber.
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The scaling limit

Let ϕ1 = A, ϕ2, ..., ϕn are the first eigenfunctions of the
Sturm–Liouville operator − d2

dx2
+ x with zero boundary condition.

Then the function
det ||ϕi (xj)||

is its principal eigenfunction, with the eigenvalue given by the sum
of the first n eigenvalues of − d2

dx2
+ x . The square of this function,

(det ||ϕi (xj)||)2

is proportional to the stationary distribution of the limiting
n-dimensional diffusion process.
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Universal scaling limits of random walks

Consider a random walk X = (X0 = 0,X1,X2, ...,XN = 0) and a
convex function V ≥ 0 on R1, V (0) = 0. Let V (X) =

∑
V (Xj) .

We study the asymptotic properties of X under the distribution

PN {X} ∼ exp {−λNV (X)}
N−1∏
j=0

p (Xj+1 − Xj) .
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Universal scaling limits of random walks

Let V (x) ∼ xα as x →∞, V (x) ∼ |x |γ as x → −∞, with α ≤ γ.
(Ising: α = 1, γ = +∞.) Define the height HN = HN (λN) > 0 as
the unique positive solution of the equation:

λNV (HN)H2
N = 1.

This is the condition of the survival of the excursion of the size(
H2
N ,HN

)
. (We assume that H2

N (λN)� N.) Then under height
scaling by HN and time scaling by H2

N the process converges
weakly to:
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Universal scaling limits of random walks

The diffusion with the generator

L =
1

2

1

A2

d

dx

(
A2 d

dx
ϕ

)
,

where A is the ground state of the Schrodinger operator

− d2

dx2
+ |x |α

on R1, if γ = α, or the ground state of the Schrodinger operator

− d2

dx2
+ xα

on R+ with zero boundary condition at x = 0 if γ > α. The
stationary distribution is ∼ A2 (x) , and the drift is [lnA (x)]′ .
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Universal scaling limits of random walks

For example, if α = 1, γ = +∞, λN = 1
N we get Ferrari-Spohn

diffusion, after height scaling HN = N1/3 and time scaling N2/3.
Here A (x) ∼ Ai (x − ω1) , x ≥ 0, and −ω1 is the maximal root of
Ai (·) .
If α = γ = 1, λN = 1

N we get after the same height scaling

HN = N1/3 and time scaling N2/3 the diffusion with the function

A (x) = Ai ($1 + |x |) ,

where $1 is the location of the rightmost maximum of Ai (·) .
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Universal scaling limits of random walks

If α = γ = 2, we have after height scaling HN (λN) and time
scaling H2

N (λN) the OU diffusion, with

A (x) ∼ exp
{
−x2

}
,

x ∈ R1,
while if α = 2, γ = +∞, we have

A (x) ∼ x exp
{
−x2

}
,

x ≥ 0.
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1D Gibbs fields

Let U (u, v) = U (u − v) be a n.n. interaction, u, v ∈ Z1. Consider
the Gibbs field X0, corresponding to the Hamiltonian
H (X ) =

∑
s U (Xs ,Xs+1) . If the interaction is balanced:∑

v

ve−U(v) = 0,

then its scaling limit is the 1D Brownian motion. Assume
‖U‖ =

∑
v e
−U(v) = 1. The variance:

σ2 (U) =
∑
v

v2e−U(v).
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1D Gibbs fields

We need to add to the Hamiltonian the additional stabilizing
self-interaction, V (s) . So we change to
H (X ) =

∑
s U (Xs ,Xs+1) +

∑
s V (Xs) . We suppose that

V (u) = +∞ for u < 0, V (0) = 0, lim
u→∞

V (u) = +∞.

When we weaken the self-interaction V , by passing to λV , with λ
small and then take the limit λ→ 0, the corresponding Gibbs field
starts to diverge. Such a divergence has a universal character, and
depends on very few details of the stabilizing self-interaction V .
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1D Gibbs fields

Define the value Hλ by

H2
λλV (Hλ) = 1,

and suppose that Hλ →∞ as λ→ 0, and that the limiting
function

q (r) = lim
λ→0

H2
λλV (rHλ)

exists. Let Xλ = {Xs} be the (infinite-volume) 1D Gibbs field,
corresponding to the Hamiltonian

H (X ) =
∑
s

U (Xs ,Xs+1) +
∑
s

λV (Xs) .
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1D Gibbs fields

The Gibbs field Xλ exists and is unique. Let Pλ {·} denote the
corresponding state; it is a Markov chain. It diverges as λ→ 0.
But its scaling limit exists, as λ→ 0. Namely, let xλ be the result
of scaling of the random field Xλ by a factor Hλ vertically and by
H2
λ horizontally. Then as λ→ 0, the

(
Hλ,H

2
λ

)
-rescaled process xλ

converges weakly to a certain diffusion process xσ,q. It is defined by
some diffusion operator Gσ,q, which in turn is a generator of the
corresponding diffusion semigroup S t

σ,q.
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Doob transforms

Our 1D Gibbs field is naturally associated with the transfer matrix
Tλ with matrix elements

Tλ (u, v) = exp

{
−1

2
(λV (u) + λV (v))− U (u − v)

}
.

The corresponding (discrete time t) transfer matrix semigroup T t
λ

is not stochastic, of course. The relation between our Markov
chain and the semigroup T t

λ is the following:
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Doob transforms

Let φλ > 0 be the unique positive right eigenfunction of Tλ, it
corresponds to the principal eigenvalue Eλ of Tλ. (The free energy
then is lnEλ.) The transition probabilities P of our Markov chain
(which corresponds to the semigroup S t

λ):

P (u, v) = exp

{
−1

2
(λV (u) + λV (v))− U (u − v)

}
φλ (v)

Eλφλ (u)
.

The n-step transition probabilities are given by

P(n) (u, v) =
φλ (v)

En
λφλ (u)

T n
λ (u, v) .
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Doob transforms

One can check that the
(
Hλ,H

2
λ

)
-rescaling of the operator Tλ − I

converges, as λ→ 0 to the operator

L =
σ2

2

d2

dx2
− q (x) .

The operator L generates the semigroup

T t = exp {−tL} .

By Trotter-Kurtz, the rescaled discrete semigroup T t
λ converges to

the continuous time semigroup T t = exp {−tL} .
The operator L on x ≥ 0, with zero boundary condition has all
eigenvalues simple. Let ϕ0 be its ground state, and −e0 be the
corresponding eigenvalue. Note that the function ϕ0 is positive.
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Doob transforms

The ground-state transform of L is the diffusion operator Gσ,q:

Gσ,qψ =
1

ϕ0
(L + e0) (ψϕ0) ≡ σ2

2

d2

dr2
ψ + σ2

ϕ′0
ϕ0

d

dr
ψ.
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Doob transforms

It generates the diffusion semigroup S t
σ,q, which can be written as

S t
σ,qψ =

ee0t

ϕ0
T t (ψϕ0) .

Denote by x (t) = xσ,q (t) the corresponding diffusion process.
Since discrete semigroup T t

λ converges to the continuous time
semigroup T t , and since

P(n) (u, v) =
φλ (v)

En
λφλ (u)

T n
λ (u, v) ,

in order to conclude the convergence of S t
λ to S t

σ,q we just need to
know that the eigenfunctions φλ and the eigenvalues Eλ of Tλ
converge to ϕ0 and e0. To see that, it is sufficient to prove in
advance the compactness of the family {φλ} . That implies the
convergence φλ → ϕ0 and Eλ → e0.
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The End
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