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Vector version

Let Φ ∈ End(V⊗3), where V - (f.d) vector space. The tetrahedral equation takes the
form

Φ123Φ145Φ246Φ356 = Φ356Φ246Φ145Φ123

where both sides are linear operators in V⊗6 and Φijk represents the operator acting in
components i, j, k as Φ and trivially in the others.

Figure : Tetrahedral equation
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Set-theoretic version

Let X be a (f) set. We say that a map

X × X × X R−→ X × X × X ,

satisfy the s.t. tetrahedral equation if

R123 ◦ R145 ◦ R246 ◦ R356 = R356 ◦ R246 ◦ R145 ◦ R123

where both sides are maps of the Cartesian power X×6 and the subscripts correspond
to components of X .
For example

R356(a1, a2, a3, a4, a5, a6) = (a1, a2,R1(a3, a5, a6), a4,R2(a3, a5, a6),R3(a3, a5, a6))

= (a1, a2, a′3, a4, a′5, a
′
6),

where
R(x , y , z) = (R1(x , y , z),R2(x , y , z),R3(x , y , z)) = (x ′, y ′, z′).
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Functional equation

One distinguishes a functional tetrahedral equation, satisfied by a map on some
functional field, in the example below on the field of rational functions. I depict here a
famous electric solution:

Φ(x , y , z) = (x1, y1, z1);

x1 =
xy

x + z + xyz
,

y1 = x + z + xyz,

z1 =
yz

x + z + xyz
,

related to the so called star-triangle transformation, known in electric circuits

Figure : Star-triangle transformation
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Another realization

Let us consider the Euler decomposition of U ∈ SO(3) and a dual one

U =

 cosφ1 sinφ1 0
− sinφ1 cosφ1 0

0 0 1


︸ ︷︷ ︸

Xαβ [φ1]

 cosφ2 0 sinφ2
0 1 0

− sinφ2 0 cosφ2


︸ ︷︷ ︸

Xαγ [φ2]

 1 0 0
0 cosφ3 sinφ3
0 − sinφ3 cosφ3


︸ ︷︷ ︸

Xβγ [φ3]

U = Xαβ [φ1]Xαγ [φ2]Xβγ [φ3] = Xβγ [φ′3]Xαγ [φ′2]Xαβ [φ′1]

Then the transformation from the Euler angles to the dual Euler angles

sinφ′2 = sinφ2 cosφ1 cosφ1 + sinφ1 sinφ3

cosφ′1 =
cosφ1 cosφ2

cosφ′2
, cosφ′3 =

cosφ2 cosφ3

cosφ′2

defines a solution of the functional tetrahedral equation.
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4-cube colorings

Let us consider the 4-cube and its projection to a 3-dimensional space. This is a
rhombo-dodecahedron divided in two ways into four parallelepipeds, corresponding to
the 3-cubes of the border of the 4-cube.

Figure : Tesseract
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One may associate to this division
a problem of coloring the 2-faces
of the 4-cube by elements (called
colors) of some set X in such a way that
the colors of the faces in each 3-cube
are related by some transformation
Φ : (a1, a2, a3)→ (a′1, a

′
2, a
′
3).

There is a special way
to choose the incoming and outgoing
2-faces of each 3-cube. It appears
that the compatibility condition for Φ
is nothing but the tetrahedral equation.
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Recalling 1-knots

Figure : Trefoil

Figure : Reidemeister moves
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2-knot

Definition

By a 2-knot we mean an isotopy class of embeddings S2 ↪→ R4.

A class of examples of non-trivial 2-knots is given by the Zeeman’s [1965] twisted-spun
knot, which is a generalization of the Artin spun knot.

Figure : Example
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Diagrams

To obtain a diagram of a 2-knot one takes a generic projection p to the hyperplane P in
R4. The generic position entails that there are singularities only of the following types:
double point, triple point and the Whitney point (or branch point)

Figure : Singularity types

The diagram of a 2-knot is a singular surface with arcs of double points which end in
triple points and branch points. This defines a graph of singular points. The additional
information consists of the order of 2-leaves in intersection lines subject to the
projection direction. We always work here with oriented surfaces.
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Roseman moves

Theorem [Roseman 1998]
Two diagrams
represent equivalent knotted surfaces
iff one can be obtained from another
by a finite series of moves from the
list and an isotopy of a diagram in R3.

There is an approach due
to Carter, Saito and others (2003) which
produces invariants of 2-knots by means
of the so called quandle cohomology.
Invariants are constructed as some
partition functions on the space of states
which are coloring of the 2-leaves of
a diagram by elements of the quandle.
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Cocycles

Electric solution:
x1 = xy/(x + z + xyz),
y1 = x + z + xyz,
z1 = yz/(x + z + xyz).

D. Talalaev Quasi-invariants of 2-knots and quantum integrable systems



Preliminaries
Results

Appendices

Quasi-invariants
Regular lattices and 2d quantum integrability
Summary and perspectives

Definition

For a given solution Φ of the set-theoretic tetrahedral equation on the set X and a given
field k we say that a function ϕ : X×3 → k is a 3-cocycle of the tetrahedral complex if

ϕ(a1, a2, a3)ϕ(a′1, a4, a5)ϕ(a′2, a
′
4, a6)ϕ(a′3, a

′
5, a
′
6) =

= ϕ(a3, a5, a6)ϕ(a2, a4, a′6)ϕ(a1, a′4, a
′
5)ϕ(a′1, a

′
2, a
′
3).

Lemma

Let us consider the electric solution (1) Φ : (a1, a2, a3) 7→ (a′1, a
′
2, a
′
3). The following

expressions, as like as their product and quotient, provide 3-cocycles of the tetrahedral
complex

c1(a1, a2, a3) = a2

c2(a1, a2, a3) = a′2
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Notations

Let us recall that we consider an oriented 2-surface with prescribed singularities.
1 The overall orientation allows to define an orientation for the arcs of double points

of a diagram in such a way the tangent vector, the normal to the top and the
bottom leaves constitute a positive triple.

2 The sign of a triple point is defined to be the orientation of the triple of normal
vectors to the top, middle and bottom leaves.

3 The order of incoming edges at a triple point is defined by the order of faces
transversal to edges.

Figure : Edges orientation Figure : Positive triple point
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Let us now fix a solution for the set-theoretic tetrahedral equation Φ on the set X and a
3-cocycle φ. We say that a map C : E → X is a coloring of the edges set of a diagram
if in each triple point τ ∈ T the colors of incoming edges are related with the colors of
the outgoing ones by the formula:

(x ′, y ′, z′) = Φ(x , y , z)

Definition

The partition function corresponding to the chosen diagram D, TE solution Φ and an
element φ ∈ H3(X ,Φ) is defined by an equation:

Z (s) =
∑
Col

∏
τ∈T

φ(xτ , yτ , zτ )s

Theorem

The partition function Z (s) is invariant with respect to the 3-th and 7-th Roseman
moves. Moreover the choice φ = c2/c1 from lemma 1 guaranties the invariance with
respect to 6-th Roseman moves.
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Roseman moves

Figure : 1-layer configurationD. Talalaev Quasi-invariants of 2-knots and quantum integrable systems
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Statistical model

Let us consider a 3d periodic oriented lattice with K × L×M sites. We denote the
edges incoming to the site (i, j, k) as xi,j,k , yi,j,k , zi,j,k .
We suppose some periodicity condition in all directions. For example in the 1-st
direction this means ∗N+1,j,k = ∗1,j,k .

Let us consider a statistical model those Boltzmann weights at the sites are defined by
the 3-cocycle φ of the tetrahedral complex and the admissible states of the system are
defined by the colorings subject to the relations:

Φ(xi,j,k , yi,j,k , zi,j,k ) = (xi+1,j,k , yi,j+1,k , zi,j,k+1).

at each triple point.
The partition function of such a model is calculated by an expression:

Z (s) =
∑
Col

∏
i,j,k

φ(xi,j,k , yi,j,k , zi,j,k )s.
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Transfer-matrix

1 A solution for the s-t TE Φ and a 3-cocycle φ provides a solution for the vector TE.
Let V be the vector space generated by elements of the set X . Then we define a
linear operator A in V⊗3 by the image of basis elements. We say that

A(s)(ex ⊗ ey ⊗ ez ) = φ(x , y , z)s(ex′ ⊗ ey′ ⊗ ez′ )

if Φ(x , y , z) = (x ′, y ′, z′).
2 We correspond a copy of the space V to each line in the lattice, for convenience

we denote the vertical spaces by Vik and the horizontal ones by Ei and Nk .
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We define the transfer-matrix by the layer product:

T (s) = Tr
∏
α

∏
β

Aαβ(s)

which is an operator in the tensor product of vertical vector spaces. Here Aαβ(s) is an
operator in the space Eα ⊗ Vαβ ⊗ Nβ , the product and trace is taken over horizontal
spaces.

Figure : 1-layer configuration

Then the partition function takes the form

Z (s) = TrVαβ
T (s)L.
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Integrability

By integrability here we mean an existence of a ”sufficiently large” commutative family
which includes the transfer-matrix.

Commutative family→ Spectrum→ Asymptotic properties of the partition function.

Let us recall some results from the Yang-Baxter equation theory. Let R be a solution of
the YB equation in the form:

R12R23R12 = R23R12R23

and L be a so-called L-operator:

RL⊗ L = L⊗ LR

Then one constructs a commutative family by the formula [Maillet 1990]

Ik = Tr1...k L⊗ . . .⊗ L︸ ︷︷ ︸
k

R12R23 . . .Rk−1,k .
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2d-Generalization

Let us introduce some notations

Φ(i)∗(j) = Φ(i1...ik )∗(j1...jm) =

β=
−−−→
1,...m∏

α=
−−−→
1,...k

Φiα lαβ jβ

The transfer-matrix can be represented as the trace

T = I1 = Tr(i)(j)Φ(i)∗(j).

We also make use of the twisted elements

ΦL
123 = P12Φ123, ΦR

123 = Φ123P23.
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A simple consequence of the Maillet result gives us a

Lemma

For a generic solution of the tetrahedral equation there are two commutative families

I0,k = Tril ,jl ,sm

∏
l=
−−−→
1,...,k

Φ(im)∗(jm)

∏
m=
−−−−−→
1,...,k−1

ΦR
sm(jm)(jm+1)

and

In,0 = Tril ,jl ,tm

∏
l=
−−−→
1,...,n

Φ(im)∗(jm)

∏
m=
−−−−−→
1,...,n−1

ΦL
(im)(im+1)tm

both of them containing the transfer-matrix.

The main result is the following

Theorem

For a generic solution Φ for the tetrahedral equation the families In,0 and I0,k commute
between themselves.
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Summary and perspectives

It is presented a construction of a statistical model on graphs with 6-valent notes
with some additional orientation structures, which specializes to a quasi-invariant
of 2-knots if one considers the graph of double points of a diagram of a 2-knot.

This statistical model being considered on a regular 3-d lattice is demonstrated to
be integrable in the sense that there exists a commutative family of operators
which include a 1-layer transfer-matrix.

I expect that this family may be organized into the generating function defining a
quantum spectral surface of the model, and that the 2-dimensional Bethe ansatz
could be applied in this case.

I also hope that there is a close relation of this subject with topological quantum
field theories in d = 4 (like the BF-theory), which allows to interpret our
quasi-invariants as some quantum observables.
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2-faces coloring

Figure : Incoming(black) and outgoing(white) faces of
a standart 3-cube

One
describes the n-faces of N-cube by
sequence of symbols (τ1, . . . , τN )
which take values 0, 1, ∗, where ∗
corresponds to a coordinate varying
in the interval [0, 1]. Let us also
denote by {jk} a set of indices of
symbols ∗ in a sequence. A subface
of codimension 1 is defined by a
substitution of some ∗ by one of the
numbers 0 or 1. Let us fix the index
jk of the corresponding symbol.
We define an alternating sequence:

κ1 = 0,κ2 = 1,κ3 . . . .

Definition

A subface is called incoming if the jk -th coordinate coincides with κk and outgoing
otherwise.

D. Talalaev Quasi-invariants of 2-knots and quantum integrable systems



Preliminaries
Results

Appendices

Tetrahedral complex
Quandle cohomology and 2-knot invariants

Let us fix a set X and a solution of the set-theoretic tetrahedral equation
Φ : X × X × X → X × X × X .

Definition

A coloring of 2-faces of an N-cube C : IN → X is called admissible if for any 3-face the
colors of the incoming 2-faces (x , y , z) and the colors of the outgoing 2-faces
(x ′, y ′, z′) are related by

(x ′, y ′, z′) = Φ(x , y , z).

Let us consider a complex C∗(X) =
⊕

n≥2 Cn(X) where

Cn(X) = Cn(X , k) = k · C2(n, X),

here Cn(X) is a free k-module generated by the set of 2-face colorings of the n-cube.
The differential dn : Cn → Cn−1(X) is defined by the formula

dn(c) =
n∑

k=1

(
d i

k c − do
k c
)
,

where d f
i c ( do

k c) is the restriction of the coloring c to the k -th incoming (resp. outgoing)
(n − 1)-face of the cube In. Denote by H∗(X , k) the corresponding homologies.
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Absolutely incoming faces

Definition

We call an n-face of an N-cube absolutely incoming if it is not outgoing of any
n + 1-face.

Lemma

A coloring of 2-faces of an N-cube is uniquely defined by a coloring of absolutely
incoming 2-faces.

The number of absolutely incoming 2-faces is equal to C2
N . Hence in low dimension the

complex is represented by
C2(X) = k · X ,

C3(X) = k · X×3,

C4(X) = k · X×6.

We will denote a coloring by colors of absolutely incoming faces.
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Differential

In the case n = 3 the differential is given by:

d3((a, b, c)) = (a) + (b) + (c)− (Φ1(a, b, c))− (Φ2(a, b, c))− Φ3(a, b, c)).

The next example in n = 4 is

d4((a1, a2, a3, a4, a5, a6)) = (a1, a2, a3)− (a3, a5, a6) (1)

−(Φ1(a1,Φ2(a2, a4,Φ3(a3, a5, a6)),Φ2(a3, a5, a6)),Φ1(a2, a4,Φ3(a3, a5, a6)),Φ1(a3, a5, a6)) (2)

+(Φ3(a1, a2, a3),Φ3(Φ1(a1, a2, a3), a4, a5),Φ3(Φ2(a1, a2, a3),Φ2(Φ1(a1, a2, a3), a4, a5), a6)) (3)

−(a1,Φ2(a2, a4,Φ3(a3, a5, a6)),Φ2(a3, a5, a6))− (a2, a4,Φ3(a3, a5, a6)) (4)

+(Φ2(a1, a2, a3),Φ2(Φ1(a1, a2, a3), a4, a5), a6) + (Φ1(a1, a2, a3), a4, a5). (5)

The dual differential implies the following equation for the 3-cocycle:

f (a1, a2, a3) + f (a′1, a4, a5) + f (a′2, a
′
4, a6) + f (a′3, a

′
5, a
′
6) =

= f (a3, a5, a6) + f (a2, a4, a′6) + f (a1, a′4, a
′
5) + f (a′1, a

′
2, a
′
3).
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Quandles

Definition (Matveev 1982)

A set X with a binary operation (a, b) 7→ a ∗ b is a quandle if

i) ∀a ∈ X a ∗ a = a

ii) ∀a, b ∈ X ∃!c ∈ X : c ∗ b = a

iii) ∀a, b, c ∈ X (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c)

Example

The group quandle is the set of group elements G with the operation a ∗ b = b−nabn

for any fixed n.

Example

The Alexander quandle is a Λ-module M, where Λ = Z[t , t−1], with the operation
a ∗ b = ta + (1− t)b.
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Quandle cohomologies

S. Carter, S. Kamada, M. Saito [2000-...]
Let us define a complex CR

n (X) whose components are free abelian groups generated
by n-tuples of elements of X (x1, . . . , xn). Then the differential ∂n : CR

n (X)→ CR
n−1(X)

is:

∂n(x1, . . . , xn) =
n∑

i=2

(−1)i{(x1, x2, . . . , xi−1, xi+1, . . . , xn)

− (x1 ∗ xi , x2 ∗ xi , . . . , xi−1 ∗ xi , xi+1, . . . , xn)}

We also consider a subcomplex CD
n (X), whose components are generated by n-tuples

(x1, . . . , xn) with xi = xi+1 for some i and n ≥ 2. We construct a quotient complex
CQ

n (X) = CR
n (X)/CD

n (X) and the induced differential. Then the homologies and
cohomologies of a quandle with coefficients in a group G are determined by the
complexes:

CQ
∗ (X ,G) = CQ

∗ (X)⊗ G, ∂ = ∂ ⊗ id

C∗Q(X ,G) = Hom(CQ
∗ (X),G), δ = Hom(∂, id)
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Coloring

Let us firstly define a notion of a diagram coloring. We denote by L the set of 2-leaves
of a diagram after cutting. One says that there is a coloring C of a diagram D with
elements of a quandle Q if there is a map C : L→ Q satisfying the coherence
conditions near the intersections of the diagram illustrated by the picture:

Figure : Coloring
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Invariant

Let us fix a 3-cocycle θ ∈ Z 3
Q(Q,A). This implies a condition

θ(p, r , s) + θ(p ∗ r , q ∗ r , s) + θ(p, q, r) = θ(p ∗ q, r , s) + θ(p, q, s) + θ(p ∗ s, q ∗ s, r ∗ s)

One attributes a following Boltzmann weight to a triple point τ

B(τ,C) = θ(x , y , z)ε(τ)

here ε(τ) is the sign of τ , x , y , z - colors of the top, middle and bottom leaves in
outgoing octant, i.e. such that it is negative for normals of all leaves. The sign ε(τ) is
defined by the orientation of normals. Then one defines a partition function

S(D, θ,A) =
∑

C

∏
τ

B(τ,C). (6)

Theorem (Carter,... 03)

The partition function 6 is invariant with respect to the Roseman moves and hence is
an invariant of a 2-knot.
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