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Preliminaries

Tetrahedral equation

ram

o Preliminaries
@ Tetrahedral equation
@ 2-knot diagram
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Preliminaries

A. Zamolodchikov [1981]

Vector version

Let ® € End(V®3), where V - (f.d) vector space. The tetrahedral equation takes the
form

D123P145P246P356 = P356P246P145P123

where both sides are linear operators in V®® and & represents the operator acting in
components i, j, k as ¢ and trivially in the others.

Figure : Tetrahedral equation
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Preliminaries

Set-theoretic version

Let X be a (f) set. We say that a map

Xx X x X2y XxXxX,
satisfy the s.t. tetrahedral equation if
Ri23 0 R145 0 R24p © R3se = Assp © Aoap © R14s 0 Rizs

where both sides are maps of the Cartesian power X*8 and the subscripts correspond
to components of X.
For example

Rase(a1, ap, as, as, as, a) = (a1, a, Ai(as, as, a), a4, Rz(as, as, a), A3(as, as, as))
= (&, ap, a3, a4, a5, 83),
3 3

where
H(va7z) = (R‘I(va?z)v RZ(vavz)v HB(vavz)) = (X,mylvzl)'
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Preliminaries

Functional equation

One distinguishes a functional tetrahedral equation, satisfied by a map on some
functional field, in the example below on the field of rational functions. | depict here a
famous electric solution:

®(x,y,2) = (X1, ¥1,21);

Xy
X1 = - -
X+2zZ+xyz
y1 :X+Z+Xy27
21 = L:
X+ z+ xyz

related to the so called star-triangle transformation, known in electric circuits

Figure : Star-triangle transformation
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Preliminari q
eliminaries Tetrahedral equation

2-knot diagram

Another realization

Let us consider the Euler decomposition of U € SO(3) and a dual one

COS ¢4 sing; O cosgo 0 singo 1 0 0
U= —singy cos¢y O 0 1 0 0 cos¢s  sings
0 0 1 —sing, 0 cos¢o 0 —sings COS @3
Xapl#1l Xary[#2] X3~ [#3]

U = Xapld11Xay[$2]Xs 03] = Xoy[¢5]1Xar [62]1Xas(#]]

Then the transformation from the Euler angles to the dual Euler angles

SiN ¢o COS ¢4 COS 1 + SiN @1 Sin @3

, __ COS¢qCOS 2 , __ COS ¢ COS ¢3
cos¢py = ————, COSpg = ———————
CoSs ¢, COS ¢,

sin ¢

defines a solution of the functional tetrahedral equation.
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Preliminaries

Tetrahedral equation
2-knot diagram

4-cube colorings

Let us consider the 4-cube and its projection to a 3-dimensional space. This is a
rhombo-dodecahedron divided in two ways into four parallelepipeds, corresponding to
the 3-cubes of the border of the 4-cube.

(1.1.1.1)

(1.1.0,0)

Figure : Tesseract
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Preliminaries

One may associate to this division

a problem of coloring the 2-faces

of the 4-cube by elements (called
colors) of some set X in such a way that
the colors of the faces in each 3-cube
are related by some transformation

b (ay, @, a3) — (&), &, &)

There is a special way

to choose the incoming and outgoing
2-faces of each 3-cube. It appears
that the compatibility condition for ¢

is nothing but the tetrahedral equation.

D. Talalaev

Tetrahedral equation

2-knot diagram
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Preliminaries

Tetrahedral eqi
2-knot diagram

Recalling 1-knots

AD

Figure : Trefoil

TN O

Figure : Reidemeister moves

asi-invariants of 2-knots and quat
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Preliminari
e aries Tetrahec

2-knot diag!

Definition

By a 2-knot we mean an isotopy class of embeddings S? — R*.

A class of examples of non-trivial 2-knots is given by the Zeeman’s [1965] twisted-spun
knot, which is a generalization of the Artin spun knot.

R

R}

Figure : Example
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Preliminaries

Tetrahedral
2-knot diag!

Diagrams

To obtain a diagram of a 2-knot one takes a generic projection p to the hyperplane P in
R*. The generic position entails that there are singularities only of the following types:
double point, triple point and the Whitney point (or branch point)

Figure : Singularity types
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Preliminaries

Tetrahedral equa
2-knot diag!

Diagrams

To obtain a diagram of a 2-knot one takes a generic projection p to the hyperplane P in
R*. The generic position entails that there are singularities only of the following types:
double point, triple point and the Whitney point (or branch point)

Figure : Singularity types

The diagram of a 2-knot is a singular surface with arcs of double points which end in
triple points and branch points. This defines a graph of singular points. The additional
information consists of the order of 2-leaves in intersection lines subject to the
projection direction. We always work here with oriented surfaces.
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Preliminaries

Tetrahedral
2-knot diag!

Roseman moves

Theorem [Roseman 1998]

Two diagrams

represent equivalent knotted surfaces
iff one can be obtained from another
by a finite series of moves from the
list and an isotopy of a diagram in R3.
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Preliminaries

Tetrahedral equa
2-knot diag!

Roseman moves

Theorem [Roseman 1998]

Two diagrams

represent equivalent knotted surfaces
iff one can be obtained from another
by a finite series of moves from the
list and an isotopy of a diagram in R3.

There is an approach due

to Carter, Saito and others (2003) which
produces invariants of 2-knots by means
of the so called quandle cohomology.
Invariants are constructed as some
partition functions on the space of states
which are coloring of the 2-leaves of

a diagram by elements of the quandle.
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Quasi-invariar
Results Regular | d 2d quantum integrability

Summary and perspectives

© Resuits
@ Quasi-invariants
@ Regular lattices and 2d quantum integrability
@ Summary and perspectives
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Cocycles

Electric solution:

x1 = xy/(x+z+ xyz),
y1 =X + z + X,VZ:

zy =yz/(Xx + z + xyz).

o

¥

B ey
QBB

&
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Quasi
Results Regu
Sumr

Definition

For a given solution  of the set-theoretic tetrahedral equation on the set X and a given
field k we say that a function ¢ : X*3 — k is a 3-cocycle of the tetrahedral complex if

50(31 , 82, 33)80(34 , a4, a5)§0(a,27 aﬁh aﬁ)(p(aév a,57 aé) =
= (p(a37 as, aﬁ)(p(a27 ay, aé)tp(a‘] 5 azlh ag)%"(aq 5 a/27 a.g)
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Results e d 2d quantum integrability

ectives

Definition

For a given solution  of the set-theoretic tetrahedral equation on the set X and a given
field k we say that a function ¢ : X*3 — k is a 3-cocycle of the tetrahedral complex if

30(31 , 82, 33)80(34 , a4, 35)30(3,27 aﬁh aﬁ)(p(aév a,57 aé) =
= Sp(aav as, 36)80(327 ay, aé)¢(a1 5 azl‘h ag)‘ﬂ(aq 5 a/27 aé)

Lemma

Let us consider the electric solution (1) & : (ay, az, as) — (&}, &, a;). The following
expressions, as like as their product and quotient, provide 3-cocycles of the tetrahedral
complex

ci(ay, ar, as)
ca(ay, a, as)

a

&
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Results

Notations

Let us recall that we consider an oriented 2-surface with prescribed singularities.

@ The overall orientation allows to define an orientation for the arcs of double points
of a diagram in such a way the tangent vector, the normal to the top and the
bottom leaves constitute a positive triple.

@ The sign of a triple point is defined to be the orientation of the triple of normal
vectors to the top, middle and bottom leaves.

© The order of incoming edges at a triple point is defined by the order of faces
transversal to edges.

Figure : Edges orientation Figure : Positive triple point
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Quasi
Results Regu

Sumr

Let us now fix a solution for the set-theoretic tetrahedral equation ® on the set X and a
3-cocycle ¢. We say thatamap C : E — X is a coloring of the edges set of a diagram
if in each triple point 7 € T the colors of incoming edges are related with the colors of
the outgoing ones by the formula:

(', 2) =®(x,y,2)
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Quasi-invariants
Results e ntum integrability

Let us now fix a solution for the set-theoretic tetrahedral equation ® on the set X and a
3-cocycle ¢. We say thatamap C : E — X is a coloring of the edges set of a diagram
if in each triple point 7 € T the colors of incoming edges are related with the colors of
the outgoing ones by the formula:

(', 2) =®(x,y,2)

Definition

The partition function corresponding to the chosen diagram D, TE solution & and an
element ¢ € H3(X, ®) is defined by an equation:

Z(s) =[] ¢(xr,yr,2:)°

Col T€T
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Quasi-invariants
Results e 2d quantum integrability

ectives

Let us now fix a solution for the set-theoretic tetrahedral equation ® on the set X and a
3-cocycle ¢. We say thatamap C : E — X is a coloring of the edges set of a diagram
if in each triple point 7 € T the colors of incoming edges are related with the colors of
the outgoing ones by the formula:

(', 2) =®(x,y,2)

Definition

The partition function corresponding to the chosen diagram D, TE solution & and an
element ¢ € H3(X, ®) is defined by an equation:

Z(s) =[] ¢(xr,yr,2:)°

Col T€T

Theorem

The partition function Z(s) is invariant with respect to the 3-th and 7-th Roseman
moves. Moreover the choice ¢ = c>/cy from lemma 1 guaranties the invariance with
respect to 6-th Roseman moves.

\
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Results

Roseman moves
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Quasi-invariants
Results Regular lattices and 2d quantum integrability

Summary and perspecti

Statistical model

Let us consider a 3d periodic oriented lattice with K x L x M sites. We denote the
edges incoming to the site (i, ], k) as X; j k, ¥i,j k> Zij k-

We suppose some periodicity condition in all directions. For example in the 1-st
direction this means *n.1,j k = *1 j k-

Talalaev Quasi-invariants of 2-knots and quantum integrable systems



Quasi-invariants
Results Regular lattices and 2d quantum integrability

Summary and perspecti

Statistical model

Let us consider a 3d periodic oriented lattice with K x L x M sites. We denote the
edges incoming to the site (i, ], k) as X; j k, ¥i,j k> Zij k-

We suppose some periodicity condition in all directions. For example in the 1-st
direction this means *n41,j k =

Let us consider a statistical model those Boltzmann weights at the sites are defined by
the 3-cocycle ¢ of the tetrahedral complex and the admissible states of the system are
defined by the colorings subject to the relations:

D(Xij ks Vijkos Zijok) = (Xitt,j,ko Yioji1,ko Zioj k1)

at each triple point.
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Quasi-invariants
Results Regular lattices and 2d quantum integrability

Summary and perspecti

Statistical model

Let us consider a 3d periodic oriented lattice with K x L x M sites. We denote the
edges incoming to the site (i, ], k) as X; j k, ¥i,j k> Zij k-

We suppose some periodicity condition in all directions. For example in the 1-st
direction this means *n41,j k =

Let us consider a statistical model those Boltzmann weights at the sites are defined by
the 3-cocycle ¢ of the tetrahedral complex and the admissible states of the system are
defined by the colorings subject to the relations:

D(Xij ks Vijkos Zijok) = (Xitt,j,ko Yioji1,ko Zioj k1)

at each triple point.
The partition function of such a model is calculated by an expression:

Z(s) =>_ [ ik Yijoks 2ijk)°

Col i,j,k
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Quasi-invariants
Results Regular lattices and 2d quantum integrability

Summary and perspectives

Transfer-matrix

@ A solution for the s-t TE ® and a 3-cocycle ¢ provides a solution for the vector TE.
Let V be the vector space generated by elements of the set X. Then we define a
linear operator A in V®3 by the image of basis elements. We say that

A(S)(ex ® ey ® ez) = d)(X,y,Z)S(eX/ ® ey’ ® eZ')

ifo(x,y,2) =(x"y',2).

@ We correspond a copy of the space V to each line in the lattice, for convenience
we denote the vertical spaces by Vi and the horizontal ones by E; and Ny.
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Quasi-invariants
Results Regular lattices and 2d quantum integrability

Summary and perspecti

We define the transfer-matrix by the layer product:
T(s) = Tr[[[ ] Aas(s)
a B

which is an operator in the tensor product of vertical vector spaces. Here A, z(s) is an
operator in the space E, ® V.3 ® Ng, the product and trace is taken over horizontal
spaces.

= Va4
N1

Figure : 1-layer configuration
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Quasi-invariants
Results Regular lattices and 2d quantum integrability

Summary and perspecti

We define the transfer-matrix by the layer product:
T(s) = Tr[[[ ] Aas(s)
a B

which is an operator in the tensor product of vertical vector spaces. Here A, z(s) is an
operator in the space E, ® V.3 ® Ng, the product and trace is taken over horizontal
spaces.

= Va4
N1

Figure : 1-layer configuration

Then the partition function takes the form

Z(s) = Try,, T(s)".
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Quasi-invariants
Results Regular lattices and 2d quantum integrability
Summary and pe cti

Integrability

By integrability here we mean an existence of a "sufficiently large” commutative family
which includes the transfer-matrix.

Talalaev Quasi-invariants of 2-knots and quantum integrable systems



Quasi-invariants
Results Regular lattices and 2d quantum integrability
Summary and perspecti

Integrability

By integrability here we mean an existence of a "sufficiently large” commutative family
which includes the transfer-matrix.

Commutative family — Spectrum — Asymptotic properties of the partition function.
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Quasi-invariants
Results Regular lattices and 2d quantum integrability

Summary and perspectives

Integrability

By integrability here we mean an existence of a "sufficiently large” commutative family
which includes the transfer-matrix.

Commutative family — Spectrum — Asymptotic properties of the partition function.

Let us recall some results from the Yang-Baxter equation theory. Let R be a solution of
the YB equation in the form:

Ri2R23Ri2 = Rz Ri2As
and L be a so-called L-operator:
RLL=L®LR
Then one constructs a commutative family by the formula [Maillet 1990]

k=Tn xL®...®@ LR12R3 ... Rk_1k-
—_———
K
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Quasi-invariants
Results Regular lattices and 2d quantum integrability

Summary and perspecti

2d-Generalization

Let us introduce some notations

—

B=1 m
O(yu() = Pliyi) ol dm) = 11 Piadasis

a=1,...
The transfer-matrix can be represented as the trace
== Ty @iy ()
We also make use of the twisted elements

L R
®io3 = Pra®q23, b3 = Pi23Po3.
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Quasi-invariants
Results Regular lattices and 2d quantum integrability

Summary and perspecti

A simple consequence of the Maillet result gives us a

Lemma

For a generic solution of the tetrahedral equation there are two commutative families

p— A . . R
IO,k = Trl/JIaSm H ¢(’m)*(lm) H ¢5m(/m)(/m+1)
=Tk m=1,.. k=1

and

L
o= Tijtm 11 ®imsem 11 P im)(ims 1)t
-

I=1,...,n m=1,...,n—1

both of them containing the transfer-matrix.
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Quasi-invariants
Results Regular lattices and 2d quantum integrability

Summary and perspectives

A simple consequence of the Maillet result gives us a

Lemma

For a generic solution of the tetrahedral equation there are two commutative families

p— A . . R
IO,k = Trl/JIaSm H ¢(’m)*(lm) H ¢5m(/m)(/m+1)
=Tk m=1,.. k=1

and

L
o= Tijtm 11 ®imsem 11 P im)(ims 1)t
-

I=1,...,n m=1,...,n—1

both of them containing the transfer-matrix.

The main result is the following

For a generic solution & for the tetrahedral equation the families I, o and lp x commute
between themselves.
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Quasi-invariants
Results Regu nd 2d quantum integrability
Summary and perspectives

Summary and perspectives

@ ltis presented a construction of a statistical model on graphs with 6-valent notes
with some additional orientation structures, which specializes to a quasi-invariant
of 2-knots if one considers the graph of double points of a diagram of a 2-knot.

@ This statistical model being considered on a regular 3-d lattice is demonstrated to
be integrable in the sense that there exists a commutative family of operators
which include a 1-layer transfer-matrix.

@ | expect that this family may be organized into the generating function defining a
quantum spectral surface of the model, and that the 2-dimensional Bethe ansatz
could be applied in this case.

@ | also hope that there is a close relation of this subject with topological quantum
field theories in d = 4 (like the BF-theory), which allows to interpret our
quasi-invariants as some quantum observables.
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© Appendices
@ Tetrahedral complex
@ Quandle cohomology and 2-knot invariants
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Appendices

2-faces coloring

One
describes the n-faces of N-cube by
sequence of symbols (74, ..., )

which take values 0, 1, x, where %
corresponds to a coordinate varying
in the interval [0, 1]. Let us also
denote by {jx} a set of indices of
symbols * in a sequence. A subface
of codimension 1 is defined by a
substitution of some * by one of the
numbers 0 or 1. Let us fix the index
ji of the corresponding symbol.

We define an alternating sequence:

Figure : Incoming(black) and outgoing(white) faces of
1 =0,500=1,33.... a standart 3-cube

Definition

A subface is called incoming if the jk-th coordinate coincides with 3¢, and outgoing
otherwise.
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Tetrahedral complex

. Quandle cohomology and 2-knot invariants
Appendices 9y

Let us fix a set X and a solution of the set-theoretic tetrahedral equation
P: XX XxX—=>XxXxX.

Definition

A coloring of 2-faces of an N-cube C : IN — X is called admissible if for any 3-face the
colors of the incoming 2-faces (x, y, z) and the colors of the outgoing 2-faces
(x',y’, 2") are related by

(x,y',2') = o(x,y,2).
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Tetrahedral complex

. Quandle cohomology and 2-knot invariants
Appendices

Let us fix a set X and a solution of the set-theoretic tetrahedral equation
P: XX XxX—=>XxXxX.

Definition

A coloring of 2-faces of an N-cube C : IN — X is called admissible if for any 3-face the
colors of the incoming 2-faces (x, y, z) and the colors of the outgoing 2-faces
(x',y’, 2") are related by

(x,y',2') = o(x,y,2).

Let us consider a complex C..(X) = €D, Cn(X) where
Cn(X) = Cn(X, k) = k- C¥(n, X),

here Cp(X) is a free k-module generated by the set of 2-face colorings of the n-cube.
The differential dn : Cn — Cn_1(X) is defined by the formula

dn(c) = kZ: (d,’;c - d,‘jc) ,

where d,fc ( d2c) is the restriction of the coloring c to the k-th incoming (resp. outgoing)
(n— 1)-face of the cube /. Denote by H. (X, k) the corresponding homologies.
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. Quandle cohc
Appendices ’

Absolutely incoming faces

Definition

We call an n-face of an N-cube absolutely incoming if it is not outgoing of any
n+ 1-face.
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Appendices

Absolutely incoming faces

Definition

We call an n-face of an N-cube absolutely incoming if it is not outgoing of any
n+ 1-face.

A coloring of 2-faces of an N-cube is uniquely defined by a coloring of absolutely
incoming 2-faces.
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Tetrahedral complex

. Quandle cohomology and 2-knot invariants
Appendices 9y

Absolutely incoming faces

Definition

We call an n-face of an N-cube absolutely incoming if it is not outgoing of any
n+ 1-face.

A coloring of 2-faces of an N-cube is uniquely defined by a coloring of absolutely
incoming 2-faces.

The number of absolutely incoming 2-faces is equal to Cﬁ. Hence in low dimension the
complex is represented by

Co(X) =k X,
Cs(X) =k - X*3,
Ca(X) =k - X*8,

We will denote a coloring by colors of absolutely incoming faces.
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Quandle cohomology and 2-knot invariants

Appendices

0,0,0,1)

(1.11.0)

(1.1.0,0)

asi-invariants of 2-knots and quat

m integrable systems




Appendices

Differential

In the case n = 3 the differential is given by:

ds((a b, c)) = (a) + (b) + (¢) — (®1(a, b, ¢)) — (P2(a, b, ¢)) — P3(a, b, ©)).
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Tetrahedral complex

. Quandle cohomology and 2-knot invariants
Appendices 9y .

Differential

In the case n = 3 the differential is given by:
a3((a, b, c)) = (a) + (b) + (c) — (P1(a, b, ¢)) — (P2(a, b, ¢)) — P3(a, b, €)).
The next example in n = 4 is
ds((a1, @z, a3, as, s, 3)) = (a1, a2, @) — (@3, a5, )
—(®1(ay, Pa(az, as, P3(as, as, ag)), P2(as, @, as)), P1(az, as, P3(as, as, as)), P1(as, as, ag))
+(®3(ar, a, az), P3(P1(a1, @, a3), a4, a@s), P3(P2(ay, a, az), P2(P1(ay, @, @), &, as), a))

—(a1, ®P2(ap, a1, P3(as, as, a)), P2(as, as, ) — (&2, &4, P3(as, as, a))
+(P2(ay, az, az), P2(P1(a1, @, 83), a4, as), @) + (P1(a1, a, az), as, as).
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Tetrahedral complex

. Quandle cohomology and 2-knot invariants
Appendices 9y .

Differential

In the case n = 3 the differential is given by:
ds((a b, c)) = (a) + (b) + (¢) — (®1(a, b, ¢)) — (P2(a, b, ¢)) — P3(a, b, ©)).
The next example in n = 4 is

ds((ar, a2, a3, a4, a5, @) = (a1, @, a3) — (as, @, &)

—(®P1 (a1, P2(ap, a4, P3(as, as, as)), P2(as, as, 3)), P1(az, a4, P3(as, as, a)), P1(as, as, a))
+(P3(a1, a2, a3), P3(P1(a1, a2, a3), a4, as), P3(P2(a1, a2, a3), P2(P1(a1, a2, a3), a4, as), 8))
—(a1,P2(a, a4, P3(as; as, as)), P2(as, @, ap)) — (a2, a4, P3(as, as, a))

+(P2(a1, @, a3), P2(P1 (a1, a2, @3), &4, 85), 8) + (P1(a1, a2, 83), a4, as).

The dual differential implies the following equation for the 3-cocycle:

f(a1 , 82, 83) + f(afl , 84, 35) + f(aé7 32, 36) + f(aé’ a’57 a’G) =
= f(as, as, @) + f(ap, &, a) + (a1, &}, as) + (&), &, a3).
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Quandles

Definition (Matveev 1982)

A set X with a binary operation (a, b) — a = b is a quandle if

i Vae X axa=a
) Va,be X 3JlceX:cxb=a
i) Va,b,ce X (axb)xc=(axc)x*(bxc)

The group quandle is the set of group elements G with the operation ax b = b~ "ab"
for any fixed n.

v

The Alexander quandle is a A-module M, where A = Z[t, t—], with the operation
axb=ta+ (1—t)b.
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Quandle cohomologies

S. Carter, S. Kamada, M. Saito [2000-...]
Let us define a complex CF(X) whose components are free abelian groups generated
by n-tuples of elements of X (xi, ..., Xn). Then the differential 9, : CF(X) — CF_,(X)

is:
n .
On(X,. s xn) = > (1), Xas o, X1, Xt -+, Xn)
=2
— (X1 R Xjy X2k Xjy ooy Xj—1 % Xiy Xit1y -y Xn) }
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Quandle cohomologies

S. Carter, S. Kamada, M. Saito [2000-...]

Let us define a complex CF(X) whose components are free abelian groups generated
by n-tuples of elements of X (xi, ..., Xn). Then the differential 9, : CF(X) — CF_,(X)
is:

On(Xq,s ... Xn Z( 1){(X1, X, - o, Xi 1, Xi 15 - -, Xn)

- (x1 * Xjy X2k Xjy ooy X1 % Xjy Xig1y -+, Xn)}

We also consider a subcomplex CP(X), whose components are generated by n-tuples
(X1, ..., Xn) with X; = x;1 for some i and n > 2. We construct a quotient complex
CQ(X) = CR(X)/CP(X) and the induced differential. Then the homologies and
cohomologies of a quandle with coefficients in a group G are determined by the
complexes:

cAX,G)=CcX)® G, d=0®id
Cy(X, G) = Hom(CA(X), G), § = Hom(8, id)
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Coloring

Let us firstly define a notion of a diagram coloring. We denote by L the set of 2-leaves
of a diagram after cutting. One says that there is a coloring C of a diagram D with
elements of a quandle Q if there is a map C : L — Q satisfying the coherence
conditions near the intersections of the diagram illustrated by the picture:

6(p.q,r)

q*r P+ Q)*r
=(P+r)x(g*1)

Figure : Coloring
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Invariant

Let us fix a 3-cocycle 6 € Zg(o, A). This implies a condition

0(p,r,s)+0(p*r,q*r,s)+0(p,q,r) =0(pxq,r,s) +0(p,q,s) +0(p*s,q+*8,r*s)
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Invariant

Let us fix a 3-cocycle 6 € Zg(o, A). This implies a condition
O(p,r,s)+0(p*r,qxr,s)+06(p,q,r) =0(pxq,r,s)+6(p,q,s) +0(p*8s,q*S,r*S5)
One attributes a following Boltzmann weight to a triple point ~

B(r, C) = 6(x, y, z)<(7)
here ¢(7) is the sign of 7, x, y, z - colors of the top, middle and bottom leaves in

outgoing octant, i.e. such that it is negative for normals of all leaves. The sign ¢(7) is
defined by the orientation of normals. Then one defines a partition function

S(D,0,A)=>_[]B(+ C). (6)
cC T
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Invariant

Let us fix a 3-cocycle 6 € Zg(o, A). This implies a condition
O(p,r,s)+0(p*r,qxr,s)+06(p,q,r) =0(pxq,r,s)+6(p,q,s) +0(p*8s,q*S,r*S5)
One attributes a following Boltzmann weight to a triple point ~

B(r, C) = 6(x, y, z)<(7)

here ¢(7) is the sign of 7, x, y, z - colors of the top, middle and bottom leaves in
outgoing octant, i.e. such that it is negative for normals of all leaves. The sign ¢(7) is
defined by the orientation of normals. Then one defines a partition function

S(D,0,A)=>_[]B(+ C). (6)
cC T

Theorem (Carter,... 03)

The partition function 6 is invariant with respect to the Roseman moves and hence is
an invariant of a 2-knot.
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