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XXZ model

The model is defined by the Hamiltonian

N
Hxxz = JZ {U-;(U;;1 + Jf’aﬂ’M + A(ofofy — 1)}
i=1

A = —1/2 is the combinatorial point of the model:

The ground state is related to the alternating sign matrices
(Batchelor, De Gier, Nienhuis; Razumov, Stroganov; Di Francesco,
Zinn-Justin; Cantini, Sportiello; and many other authors).

The spin chain is related to the dense O(1) loop model:
Finite size exact expressions for certain correlation functions were
conjectured (Mitra, Nienhuis, De Gier, Batchelor, ..)

Features: Polynomial ground state with simple eigenvalue

Methods: g-Knizhnik Zamolodchikov equations, solving recurrence
relations, guess work.

Can we approach the correlation functions using the
Slavnov determinant?
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The central object of the Algebraic Bethe Ansatz for the spin 1/2 XXZ model
is the R-matrix:

a(t) 0 0 0

B 0 b(ut) cut) 0

R(u,t) = 0 C(Z,f) b(Z,t) 0
0 0 0 a(u7 t)

2
—t
a(u,t) = del =, bl =1,

(P —N)Vpt
qu—-1t

c(p,t) =

This R-matrix satisfies the Yang-Baxter equation:

Rij(mis 1) Rk (i 1) Rk (s 1) = Bjoie (s b)) R (pais b ) R (i 147)-
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ABA

Introduce the L-matrix:
Li(k, z) = Roj(n, Z),
which we use to construct the monodromy matrix:
T(w) = Ln(p, 2n)--Li (1, 21).

The monodromy matrix can be written as a 2x2 matrix:

_( Alw)  B(p)
= (0 o) )

The operators A, B, C and D form the Yang-Baxter algebra with the
commutation relations given by the RTT relations

Ri2(p1, p2) T (p1) To(pz) = To(p2) T (k1) R 2 (1, p2),

where we used the notation T (u) = T(p) ® Id and To(p) = Id @ T(w).
The Hamiltonian H can be written in terms if the transfer matrix:

T (1) = Aln) + rD(k)
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ABA

The n-particle eigenstate of the transfer matrix is:
n
l/fn = H B(Cj‘21 LS} ZN)|O>7
i=1

where the parameters (3, .., (, satisfy the Bethe equations:

n n

N
a(C, z1) [T a(¢i ¢o) = s [T 6(¢k. 2) [T Gk, 6) = 0, k=1.2,.n.
1 i=1 i=1 i=1

i#k i#k

—.

]

The eigenvalues of the transfer matrix are:
N n N n
m(p) = [ [ alw, 2) [ [ (G ) + 5 ] ] b(w 2) [ ] @, ).
i=1 i=1 i=1 i=1
The scalar products of states are defined as
n n
Sa(t1, s fin; C1s s Gn) = (O T] C(wi) [ ] B(G)I0)-
i=1 i=1

Where (3, .., (» are the Bethe roots, w1, .., un are free parameters.
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Form factors

We are interested in computing the expectation values of local spin operators:
ny n
0y =(©[[[cyo]] B0,
i=1 i=1
where O stands for o}, o, or 0%, and the vector
Mo
O TT Clu).
i=1

is the dual Bethe state when p; are the Bethe roots. If O can be written in
terms of A, B, C and D we can use the Yang-Baxter algebra to obtain:

no n
©T[ c(u)o =3 60 TT C).
i=1 k i=1
We get
<O> = Zeksn(yik% L] Vr(1k); C1 (RS ] (’7)
K



Scalar product

o’ expectation value
Take o7, and write it in the F-basis (Kitanine, Maillet, Terras):
om =] T(2)(Azn) — £D(zm)) [ T(2).
i<m i>m
where z’s are the inhomogeneities. This expression boils down to

n

H ZI H 7'n(Zl O‘HC M/)A Zm HB Cl |O Sn {N‘} {C})

i=m-+1

Use the commutation relations to commute A through the B'’s:

(om) = Sal{u}: {CH) = D_ faSal{n}i Grv s Car s Cons Zm),
a=1

where f; are some coefficients depending on the Bethe roots (y; and ¢; are
the Bethe roots).

We need to compute the scalar product S,({u}, {¢}), with Bethe roots ¢ and
free parameters p.
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Slavnov determinant

Introduce the matrix:

) 87—" /.Lk|<1,. 74"
Q/ak acj H c (<l> ,LLk

Then the Slavnov determinant readS'

S (‘LL1,. y Kn; C17' 7<n - HC(M/7//41 Cth) det Q/k

i<j

Introduce two functions:
N n

Fu) = [[x— ¢2),  Qu(x) = [[(x — ©)-

i=1 i=1

The matrix elements become € x x Cj k:

= (O(q’zuk)F(q“uk) n Q@) F (g uk))
YT = Bk — QPG G — QP
We need to compute the determinant:

1
Cj k-

det
S TG — )y — i) 1<ikzn”?
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Integration of the Slavnov determinant
Symmetrization of the Slavnov determinant

Our goal is to compute the Slavnov determinant at A = —1/2 for the

ground state (N = 2n) and twist x = ¢°.

At this point we know the Q-function (Di Francesco, Zinn-Justin)
Sy, (Z1 s .oy Z2n; f)
Q 1) = 2n n+1 )

( ) q Syn(Z17..,Zgn)

Sy, and sy, are the Schur functions of the partitions
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We also know the eigenvalue of the transfer matrix:

__ 2n+1 F(lu)
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A symmetric function of the Bethe roots f(¢i(21, -, 22n), -, Cn( 214 -, Z2n))
can be written as a a function of z’s f(zi, .., z2n) explicitly using the
Q-function.

We need to symmetrize the matrix elements ¢; x w.r.t. the Bethe roots ¢;.
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Symmetrization of the Slavnov determinant

e Introduce the Izergin matrices:

]

8jk = )

P e — §) e — 97G)
1

b k

" (k- )G — )’
so that

Gk = Q(q 2 1) F(q* k) .k + £Q(G° 11k ) F (G 11k ) by k-
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Symmetrization of the Slavnov determinant

e Introduce the Izergin matrices:

]

ajk = )

P e — §) e — 97G)
1

bjx =

(e — GG — GPrk)’
so that
Gk = Qa2 1) F(q* )y + £ QG k) F(Q i) b -
e Take the matrix g; x and apply the symmetrization transform p:
¢
Pij= T
Hk;q(gj — k)

1

1 Quk) Q(q 2 k)
(Mk = )k — G2¢))

QM) Q(q 2 k) X pija;
i Q) QA" k) X pijaj e = ZH/;&,(C/

= it i (k= ) (g2 = Q)
= ;q C] Hk g (C/*CI) f(:u‘k)
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e The Lagrange polynomial f(ux) is known at px = ¢

1(6) = 1 Qa720).

q
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e The Lagrange polynomial f(ux) is known at px = ¢

Q) = 1 QT 56).

q
e And also at ux = G2¢:

(eG) = ¥ - Q(dG).

PR

Scalar product at qg

1



Integration of the Slavnov determinant

e The Lagrange polynomial f(ux) is known at px = ¢

1 _
() = wo(q 2G).

e And also at ux = G2¢:

(eG) = ¥ - Q(dG).

q2

e l|tis easy to check that
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The Lagrange polynomial f(ux) is known at px = ¢

(6) = - Q0720

q

And also at ik = G2¢:

(eG) = ¥ - Q(dG).

q?
It is easy to check that

f(u) = O(M)qzz; : 10((7_2/0 7

The transform p brings the matrices a; x and bj x to the form:
i Q)Y — Qg k)
Pijdjk = 2 _ 1 ) )
(g% — 1) Q) Q(g—2pk)

oy — 2 QG2 = Q@)
i), (g2 — 1) Quk) Q(GP k)
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o After the symmetrization we obtain:

i_2 . .
bk = i (2 Fa' ) + ng? RGP

F(q* 1) -2 F(qP ) 2
- (Wo(q 1) + ”mo(q 11k)) )



Integration of the Slavnov determinant

o After the symmetrization we obtain:

/_2 . .
bk = i (2 Fa' ) + ng? RGP

F(q* 1)
~ (Coquy A9

-2 F(qzuk) 2
)+ n ST O ) ).

e This expression is symmetric in the Bethe roots, they are contained in

the Q-function which is knowntous at ¢ = 1 (A = —1/2) and k = ¢°.



Integration of the Slavnov determinant

o After the symmetrization we obtain:

/_2 . .
By = b (qZ*Z'F(q“uk)+nq2'*2F(q2uk)

@)
- (C o) + wE G o) ).

e This expression is symmetric in the Bethe roots, they are contained in

the Q-function which is knowntous at ¢ = 1 (A = —1/2) and k = ¢°.

e Recall the T-Q relation:

(@) = "B 0a 2 + ST P ).




Integration of the Slavnov determinant

After the symmetrization we obtain:

Gk = (qfk: 0 (qH"F (0" 1) + @* 2 F (6P )
~F(@') o -2 KF(QZMK) 2
( Qi) (@ “m) + Q) Q(q uk)))~

This expression is symmetric in the Bethe roots, they are contained in

the Q-function which is knowntous at ¢ = 1 (A = —1/2) and k = ¢°.

Recall the T-Q relation:

(@) = "B 0a 2 + ST P ).

The scalar product becomes:

g 1 2 22iF(q* ) | otai
S = det i 2( 2—2i + + IK/ _ nT )
" T — ) 1S5 T () 9 g ()

Note, this expression is valid for generic g.
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e When g® =1 and x = g we know that:

_ et _F(u)
=T F ey

e Matrix elements ¢; x become
j—2

Gk = c;;kﬁ(qz_ZIF(q4uk) + @7 F(GP 1) + GF (1))



Scalar product at g° = 1

e When g® =1 and x = g we know that:

_ et _F(p)
=T F ey

e Matrix elements ¢; x become
1
q? -1
e The functions F are the generating functions of the elementary

symmetric polynomials:

Gk = (P 2F(q* ) + 47 F(GP k) + GF (k).

2n
Fa(x) = > (=G°)*" 'X'e2n_i(21, ... Zen),
i=0

ex(z1, .., Zm) = > Z,2, ... 2,
1<iy <ip<-+-<ix<m

ex(z1,..,2m) =0, fork <Oork > m.



Scalar product at g° = 1

e When g® =1 and x = g we know that:

o1 F(p)
F(q?u)’

T(p) = —

e Matrix elements ¢; x become
j—2

Gk = (;:ki(qz_ZIF(CI“uk) + @7 F(GP 1) + GF (1))

e The functions F are the generating functions of the elementary
symmetric polynomials:

2n
= Z(—q )2" 'X'e2n- i(z1, .., Zon),
i=0

ex(z1, .., Zm) = > Z,2, ... 2,
1<iy <ip<-+-<ix<m

ex(z1,..,2m) =0, fork <Oork > m.
e Substituting this into the expression ¢; «:

-2 4n 2n
Gk = Mk Z( 1)° 15 €2n_ S( 1— 25+q +q2+2s+2/)
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e The matrix elements ¢ can be rewritten as:
. 3q"/
Gk=g -1

n
frmi1 3m—3
(—=1Y Mk €2n—3mjt1-

m=1
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e The matrix elements ¢ can be rewritten as:
n—j

(:;Zqi ] - (_1 )j+m+1

= 3m—3
Gk = Mg €2n—3mij+1-

m=1
e The last expression is nothing but the product of two n x n matrices

3m—-3
Am =ty 5 Bmj= €n_amij+1,
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e The matrix elements ¢ can be rewritten as:

, 39" : _
Cik = Zqi (-1 )j+m+1llim 392n73m+j+1-
q°—1
m=1
e The last expression is nothing but the product of two n x n matrices
Acm= ">, Bmj = €2n_amijii,

e The matrix A is the Schur polynomial of the partition Y, = {2n — 2i}],
detA= SY,,(/-M s ey /.Ln).
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The matrix elements ¢ can be rewritten as:

, 39" : _
Cik = Zqi (-1 )j+m+1llim 392n73m+j+1-
q°—1
m=1
The last expression is nothing but the product of two n x n matrices
Acm= ">, Bmj = €2n_amijii,

The matrix A is the Schur polynomial of the partition Y, = {2n — 2i}],
detA= SY,,(/-M s ey /.Ln).

This Schur function has a simple factorized form:

2 2
vl pn) = [T (uf + pinyj + 115).-
1<i<j<n
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The matrix elements ¢ can be rewritten as:
=~ 3q" jme1 3m—3
Cik = Pz Z(_U o €2n—3m+j+1-

The last expression is nothing but the product of two n x n matrices
Am =122, Bmj = €n_amsji1,
The matrix A is the Schur polynomial of the partition Y, = {2n — 2i}],
det A = sy, (p1, -+, tin)-

This Schur function has a simple factorized form:

2 2
vl pn) = [T (uf + pinyj + 115).-
1<i<j<n

The matrix B is the Schur polynomial of the partition
Yo={n,n—1,n—1,.,1,1,0} by the dual Jacobi-Trudi identity

detB = Syn(Z1 s ey Z2n).
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The matrix elements ¢ can be rewritten as:
=~ 3q" jme1 3m—3
Cik = Pz Z(_U o €2n—3m+j+1-

The last expression is nothing but the product of two n x n matrices
Aim = 1" "%, Bmj = €2n-amiji1,
The matrix A is the Schur polynomial of the partition Y, = {2n — 2i}],
det A = sy, (p1, -+, tin)-

This Schur function has a simple factorized form:

2 2
vl pn) = [T (uf + pinyj + 115).-
1<i<j<n

The matrix B is the Schur polynomial of the partition
Yo={n,n—1,n—1,.,1,1,0} by the dual Jacobi-Trudi identity

detB = Syn(Z1 s ey Z2n).
The determinant S, becomes:
Sn = ann H7:1 /L: /2C1'1 /2
[T " F(q?ui)

Syn(,U1 5y NH)SY/,,(Z1 5oy Zg,,).
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Normalization of the ground state

e When the parameters p are also the Bethe roots in:

Sn(1, s i G1s - Gn) = (O TT C(ui) T T B(G)I0)-
i=1

i=1
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Normalization of the ground state

e When the parameters p are also the Bethe roots in:

Sn(p1, o5 i Gt -+, Cn) = (0] H Cu) [ T B(¢)I0)-

i=1

e We get the normalization of the ground state:

[T, Q(a¢)

- Gi
Nn x sy (21, .., Z2n) Sy, (C1, -, Cn Era = Sy, (21, Z2n) % .
xSy (21,1 Z20) 1 (G ),-1} F(q¢) o2 12", Q(z)
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Normalization of the ground state
e When the parameters p are also the Bethe roots in:
Sn(p1, s i Grs - Gn) = (O TT CQui) TT B(G)I0)-
i=1 i=1
e We get the normalization of the ground state:
7., Q(ag)
[T, Q(z)

o Where we wrote the numerator and the denominator as a product of
Q-functions.

Nn X SV,,(Z17"vz2n)SYn(C1v"7CH)H % = Syn(Z1,,.,22n)
i=1 !
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Normalization of the ground state

e When the parameters p are also the Bethe roots in:
n n
a1, -y pini G1, -5 n) = (O T ] () [T B(G)I0)-
i=1 i=1
e We get the normalization of the ground state:
n n
Ci H':1 O(in)
Nnx 8y (21, .., 22n)Sv, (1, -, C) | | === = Sv.(21, .., Zon) = —=.
T M rgegy = on® 20 o)
o Where we wrote the numerator and the denominator as a product of
Q-functions.
e Observe the following identity:

7, (21, -0 Z2n) S5, (21, -, Z2n) B Q(z)
Syno(Z17..,Zgn) e F(Zi)

[] o) =
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Normalization of the ground state

When the parameters p are also the Bethe roots in:
n n
a1, -y pini G1, -5 n) = (O T ] () [T B(G)I0)-
i=1 i=1

We get the normalization of the ground state:

[T Q(ad)
17 Q)
Where we wrote the numerator and the denominator as a product of
Q-functions.

Observe the following identity:

Nn X SVH(Z17"vZ2f7)SVn(<17"7C’7)H % = Syn(Z1,,.,22n)
i=1 !

7, (21, -0 Z2n) S5, (21, -, Z2n) B Q(z)
Syno (Z1 y ey Zzn) F(Zi)

[] ot =

i=1
Hence the norm of the ground state is equal to:

2 2
sy, (21, . Zen) Sy (21, .., Zen)

 8245(21, 05 Z2n)Svy, (24, s Z2n)
n

Na




Scalar product at q3 =1

z
(o)
Recall the equation:

n

(02) = Sa(C1, ) 21_[ b(Ci, zm) C(anm H b(CHCI Sn(zm,Ch--,éi, ).
i=1

Cu Zm) b Cn Zm) Cp

e In terms of the symmetrized scalar product S,
N Q(zm)Q(G°zm)
<Um> = Sn(1 —+ 6q7F(qu) Gn s

Z GizmF(q<i)
(G = zm)(aGi — zm)(Gi — qzm) Q(QPG) T1i(G — ¢)
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z
(o)
Recall the equation:

n

b(¢i, Zm) <~ €(Gir Zm) (G, Gi) 3
< > S" C17" QE Cuzm) b Cuzm) H b(Cj, Sn(zm7C1a"7<Ia )

e In terms of the symmetrized scalar product S,
N Q(zm)Q(G°zm)
<0'm> = Sn(1 —+ 6q7F(qu) Gn s

Z GizmF(q<i)
(G = zm)(aGi — zm)(Gi — qzm) Q(QPG) T1i(G — ¢)

e [t can also be written as a determinant:

(o) o det (if*ZF(qzmm(qzm)—2z?,4‘*2F(qck)O<q<:k)). (1)

j,k<n
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z
(o)
Recall the equation:

n

b(¢i, zm) C(Cu Zm) a(¢; ¢i) 2
< > S" C17" QE Cuzm) b Cuzm) H b(cj7 Sn(zm7C1a"7<Ia )

e In terms of the symmetrized scalar product S,
N Q(zm)Q(G°zm)
<0'm> = Sn(1 —+ 6q7F(qu) Gn s

Z GizmF(q<i)
(G = zm)(aGi — zm)(Gi — qzm) Q(QPG) T1i(G — ¢)

e [t can also be written as a determinant:

j,k<n

(o) o det (if*ZF(qzmm(qzm)—2z?,4‘*2F(qck)O<q<:k)). (1)

e Now the problem is to symmetrize this w.r.t. the Bethe roots ¢.
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(om)

e Use the transformation p to symmetrize the (o7,) determinant:

3n

(o) o det (h,+3k_2_nF(qzm)0(qzm) oz

(—Q)ih2n+j—i7i) .

i=0
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e Use the transformation p to symmetrize the (o7,) determinant:

3n

(o) o det (h,+3k_2_nF(qzm>O(qzm) oz

(_Q)ih2n+j—i’}/i) .

i=0

e This is an explicit formula since we know h;((1, .., ¢n).
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e Use the transformation p to symmetrize the (o7,) determinant:

3n

(om) o< det (hj+3k—2—nF(qu)Q(qu) — 2752 (_q)ih2n+j—i’7/)~

1<j,k<n -
i=0

e This is an explicit formula since we know h;((1, .., ¢n).

e This formula is not computationally efficient.

We need a different symmetrization procedure instead of p, or we need
to perform other manipulations to simplify this determinant.
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Bethe roots

e Since we know the Q-function we can derive the correspondence

between the pair (e®, h®) and (e°, h°)

3n k 3n
F@DQ@ ) =3 (-1 "D efei =3 (-1 "%
k=0 j=0 k=0

where ~’s are Schur functions:

; Sy

73':(_1)1 5 j:O,“:n
J] Sy

S7"2/+1

V3j+1 :( 1)1 s 73/'+2:0, j:O,..,n—1.
Y

For some partitions mx which are derived from V.
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Bethe roots

e Since we know the Q-function we can derive the correspondence
between the pair (e®, h®) and (&°, hS)

3n 3n
F@Ha(a’ = (-1 " kZe, ek =D (= 1)
k=0 k=0

where ~’s are Schur functions:

; Sy

73':(_1)1 5 j:O,~'7n
J] Sy

S7"2/+1

V3j+1 :( 1)1 s 73/'+2:0, j:O,..,n—14
Y

For some partitions mx which are derived from V.
e Define dx = deti<;j<k v1—i4j, then

k
e => wihf B =Y (1) ief,
=0 i

K
er = kaqhis; he = Z(*1)'+k5kqeis,
i—0 ‘
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Conclusion

¢ Root of unity
A similar computation for the systems with odd length.
Computation of more complicated correlation functions.

Application to the dense O(n = 1) loop model.



Scalar product at g° = 1

Conclusion

¢ Root of unity

A similar computation for the systems with odd length.
Computation of more complicated correlation functions.

Application to the dense O(n = 1) loop model.
e Genericq

Symmetrization of Slavnov determinants for other
boundary conditions?

Can we relate the symmetrized scalar product determinant
and the determinants appearing in the separation of
variables (SoV) approach?
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