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XXZ model

The model is defined by the Hamiltonian

N
Hxxz = JZ {U-;(U;;1 + Jf’aﬂ’M + A(ofofy — 1)}
i=1

A = —1/2 is the combinatorial point of the model:

The ground state is related to the alternating sign matrices
(Batchelor, De Gier, Nienhuis; Razumov, Stroganov; Di Francesco,
Zinn-Justin; Cantini, Sportiello; and many other authors).

The spin chain is related to the dense O(1) loop model:
Finite size exact expressions for certain correlation functions were
conjectured (Mitra, Nienhuis, De Gier, Batchelor, ..)

Features: Polynomial ground state with simple eigenvalue

Methods: g-Knizhnik Zamolodchikov equations, solving recurrence
relations, guess work.

Can we approach the correlation functions using the
Slavnov determinant?



Introduction
ABA

The central object of the Algebraic Bethe Ansatz for the spin 1/2 XXZ model
is the R-matrix:

a(t) 0 0 0

B 0 b(ut) cut) 0

R(u,t) = 0 C(Z,f) b(Z,t) 0
0 0 0 a(u7 t)

2
—t
a(u,t) = del =, bl =1,

(P —N)Vpt
qu—-1t

c(p,t) =

This R-matrix satisfies the Yang-Baxter equation:

Rij(mis 1) Rk (i 1) Rk (s 1) = Bjoie (s b)) R (pais b ) R (i 147)-
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ABA

Introduce the L-matrix:
Li(k, z) = Roj(n, Z),
which we use to construct the monodromy matrix:
T(w) = Ln(p, 2n)--Li (1, 21).

The monodromy matrix can be written as a 2x2 matrix:

_( Alw)  B(p)
= (0 o) )

The operators A, B, C and D form the Yang-Baxter algebra with the
commutation relations given by the RTT relations

Ri2(p1, p2) T (p1) To(pz) = To(p2) T (k1) R 2 (1, p2),

where we used the notation T (u) = T(p) ® Id and To(p) = Id @ T(w).
The Hamiltonian H can be written in terms if the transfer matrix:

T (1) = Aln) + rD(k)
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ABA

The n-particle eigenstate of the transfer matrix is:
n
l/fn = H B(Cj‘21 LS} ZN)|O>7
i=1

where the parameters (3, .., (, satisfy the Bethe equations:

n n

N
a(C, z1) [T a(¢i ¢o) = s [T 6(¢k. 2) [T Gk, 6) = 0, k=1.2,.n.
1 i=1 i=1 i=1

i#k i#k

—.

]

The eigenvalues of the transfer matrix are:
N n N n
m(p) = [ [ alw, 2) [ [ (G ) + 5 ] ] b(w 2) [ ] @, ).
i=1 i=1 i=1 i=1
The scalar products of states are defined as
n n
Sa(t1, s fin; C1s s Gn) = (O T] C(wi) [ ] B(G)I0)-
i=1 i=1

Where (3, .., (» are the Bethe roots, w1, .., un are free parameters.



Scalar product

Form factors

We are interested in computing the expectation values of local spin operators:
ny n
0y =(©[[[cyo]] B0,
i=1 i=1
where O stands for o}, o, or 0%, and the vector
Mo
O TT Clu).
i=1

is the dual Bethe state when p; are the Bethe roots. If O can be written in
terms of A, B, C and D we can use the Yang-Baxter algebra to obtain:

no n
©T[ c(u)o =3 60 TT C).
i=1 k i=1
We get
<O> = Zeksn(yik% L] Vr(1k); C1 (RS ] (’7)
K



Scalar product

o’ expectation value
Take o7, and write it in the F-basis (Kitanine, Maillet, Terras):
om =] T(2)(Azn) — £D(zm)) [ T(2).
i<m i>m
where z’s are the inhomogeneities. This expression boils down to

n

H ZI H 7'n(Zl O‘HC M/)A Zm HB Cl |O Sn {N‘} {C})

i=m-+1

Use the commutation relations to commute A through the B'’s:

(om) = Sal{u}: {CH) = D_ faSal{n}i Grv s Car s Cons Zm),
a=1

where f; are some coefficients depending on the Bethe roots (y; and ¢; are
the Bethe roots).

We need to compute the scalar product S,({u}, {¢}), with Bethe roots ¢ and
free parameters p.
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Slavnov determinant

Introduce the matrix:

) 87—" /.Lk|<1,. 74"
Q/ak acj H c (<l> ,LLk

Then the Slavnov determinant readS'

S (‘LL1,. y Kn; C17' 7<n - HC(M/7//41 Cth) det Q/k

i<j

Introduce two functions:
N n

Fu) = [[x— ¢2),  Qu(x) = [[(x — ©)-

i=1 i=1

The matrix elements become € x x Cj k:

= (O(q’zuk)F(q“uk) n Q@) F (g uk))
YT = Bk — QPG G — QP
We need to compute the determinant:

1
Cj k-

det
S TG — )y — i) 1<ikzn”?
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Integration of the Slavnov determinant
Symmetrization of the Slavnov determinant

Our goal is to compute the Slavnov determinant at A = —1/2 for the

ground state (N = 2n) and twist x = ¢°.

At this point we know the Q-function (Di Francesco, Zinn-Justin)
Sy, (Z1 s .oy Z2n; f)
Q 1) = 2n n+1 )

( ) q Syn(Z17..,Zgn)

Sy, and sy, are the Schur functions of the partitions
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We also know the eigenvalue of the transfer matrix:
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A symmetric function of the Bethe roots f(¢i(21, -, 22n), -, Cn( 214 -, Z2n))
can be written as a a function of z’s f(zi, .., z2n) explicitly using the
Q-function.

We need to symmetrize the matrix elements ¢; x w.r.t. the Bethe roots ¢;.
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Symmetrization of the Slavnov determinant

e Introduce the Izergin matrices:

]

8jk = )

P e — §) e — 97G)
1

b k

" (k- )G — )’
so that

Gk = Q(q 2 1) F(q* k) .k + £Q(G° 11k ) F (G 11k ) by k-
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Symmetrization of the Slavnov determinant

e Introduce the Izergin matrices:

]

ajk = )

P e — §) e — 97G)
1

bjx =

(e — GG — GPrk)’
so that
Gk = Qa2 1) F(q* )y + £ QG k) F(Q i) b -
e Take the matrix g; x and apply the symmetrization transform p:
¢
Pij= T
Hk;q(gj — k)

1

1 Quk) Q(q 2 k)
(Mk = )k — G2¢))

QM) Q(q 2 k) X pija;
i Q) QA" k) X pijaj e = ZH/;&,(C/

= it i (k= ) (g2 = Q)
= ;q C] Hk g (C/*CI) f(:u‘k)
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e The Lagrange polynomial f(ux) is known at px = ¢

1(6) = 1 Qa720).

q
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e The Lagrange polynomial f(ux) is known at px = ¢

Q) = 1 QT 56).

q
e And also at ux = G2¢:

(eG) = ¥ - Q(dG).

PR

Scalar product at qg

1



Integration of the Slavnov determinant

e The Lagrange polynomial f(ux) is known at px = ¢

1 _
() = wo(q 2G).

e And also at ux = G2¢:

(eG) = ¥ - Q(dG).

q2

e l|tis easy to check that
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The Lagrange polynomial f(ux) is known at px = ¢

(6) = - Q0720

q

And also at ik = G2¢:

(eG) = ¥ - Q(dG).

q?
It is easy to check that

f(u) = O(M)qzz; : 10((7_2/0 7

The transform p brings the matrices a; x and bj x to the form:
i Q)Y — Qg k)
Pijdjk = 2 _ 1 ) )
(g% — 1) Q) Q(g—2pk)

oy — 2 QG2 = Q@)
i), (g2 — 1) Quk) Q(GP k)
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o After the symmetrization we obtain:

i_2 . .
bk = i (2 Fa' ) + ng? RGP

F(q* 1) -2 F(qP ) 2
- (Wo(q 1) + ”mo(q 11k)) )



Integration of the Slavnov determinant

o After the symmetrization we obtain:

/_2 . .
bk = i (2 Fa' ) + ng? RGP

F(q* 1)
~ (Coquy A9

-2 F(qzuk) 2
)+ n ST O ) ).

e This expression is symmetric in the Bethe roots, they are contained in

the Q-function which is knowntous at ¢ = 1 (A = —1/2) and k = ¢°.



Integration of the Slavnov determinant

o After the symmetrization we obtain:

/_2 . .
By = b (qZ*Z'F(q“uk)+nq2'*2F(q2uk)

@)
- (C o) + wE G o) ).

e This expression is symmetric in the Bethe roots, they are contained in

the Q-function which is knowntous at ¢ = 1 (A = —1/2) and k = ¢°.

e Recall the T-Q relation:

(@) = "B 0a 2 + ST P ).




Integration of the Slavnov determinant

After the symmetrization we obtain:

Gk = (qfk: 0 (qH"F (0" 1) + @* 2 F (6P )
~F(@') o -2 KF(QZMK) 2
( Qi) (@ “m) + Q) Q(q uk)))~

This expression is symmetric in the Bethe roots, they are contained in

the Q-function which is knowntous at ¢ = 1 (A = —1/2) and k = ¢°.

Recall the T-Q relation:

(@) = "B 0a 2 + ST P ).

The scalar product becomes:

g 1 2 22iF(q* ) | otai
S = det i 2( 2—2i + + IK/ _ nT )
" T — ) 1S5 T () 9 g ()

Note, this expression is valid for generic g.
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e When g® =1 and x = g we know that:

_ et _F(u)
=T F ey

e Matrix elements ¢; x become
j—2

Gk = c;;kﬁ(qz_ZIF(q4uk) + @7 F(GP 1) + GF (1))



Scalar product at g° = 1

e When g® =1 and x = g we know that:

_ et _F(p)
=T F ey

e Matrix elements ¢; x become
1
q? -1
e The functions F are the generating functions of the elementary

symmetric polynomials:

Gk = (P 2F(q* ) + 47 F(GP k) + GF (k).

2n
Fa(x) = > (=G°)*" 'X'e2n_i(21, ... Zen),
i=0

ex(z1, .., Zm) = > Z,2, ... 2,
1<iy <ip<-+-<ix<m

ex(z1,..,2m) =0, fork <Oork > m.



Scalar product at g° = 1

e When g® =1 and x = g we know that:

o1 F(p)
F(q?u)’

T(p) = —

e Matrix elements ¢; x become
j—2

Gk = (;:ki(qz_ZIF(CI“uk) + @7 F(GP 1) + GF (1))

e The functions F are the generating functions of the elementary
symmetric polynomials:

2n
= Z(—q )2" 'X'e2n- i(z1, .., Zon),
i=0

ex(z1, .., Zm) = > Z,2, ... 2,
1<iy <ip<-+-<ix<m

ex(z1,..,2m) =0, fork <Oork > m.
e Substituting this into the expression ¢; «:

-2 4n 2n
Gk = Mk Z( 1)° 15 €2n_ S( 1— 25+q +q2+2s+2/)
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e The matrix elements ¢ can be rewritten as:
. 3q"/
Gk=g -1

n
frmi1 3m—3
(—=1Y Mk €2n—3mjt1-

m=1
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e The matrix elements ¢ can be rewritten as:
n—j

(:;Zqi ] - (_1 )j+m+1

= 3m—3
Gk = Mg €2n—3mij+1-

m=1
e The last expression is nothing but the product of two n x n matrices

3m—-3
Am =ty 5 Bmj= €n_amij+1,
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e The matrix elements ¢ can be rewritten as:

, 39" : _
Cik = Zqi (-1 )j+m+1llim 392n73m+j+1-
q°—1
m=1
e The last expression is nothing but the product of two n x n matrices
Acm= ">, Bmj = €2n_amijii,

e The matrix A is the Schur polynomial of the partition Y, = {2n — 2i}],
detA= SY,,(/-M s ey /.Ln).
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The matrix elements ¢ can be rewritten as:

, 39" : _
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q°—1
m=1
The last expression is nothing but the product of two n x n matrices
Acm= ">, Bmj = €2n_amijii,

The matrix A is the Schur polynomial of the partition Y, = {2n — 2i}],
detA= SY,,(/-M s ey /.Ln).

This Schur function has a simple factorized form:

2 2
vl pn) = [T (uf + pinyj + 115).-
1<i<j<n
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The matrix elements ¢ can be rewritten as:
=~ 3q" jme1 3m—3
Cik = Pz Z(_U o €2n—3m+j+1-

The last expression is nothing but the product of two n x n matrices
Am =122, Bmj = €n_amsji1,
The matrix A is the Schur polynomial of the partition Y, = {2n — 2i}],
det A = sy, (p1, -+, tin)-

This Schur function has a simple factorized form:

2 2
vl pn) = [T (uf + pinyj + 115).-
1<i<j<n

The matrix B is the Schur polynomial of the partition
Yo={n,n—1,n—1,.,1,1,0} by the dual Jacobi-Trudi identity

detB = Syn(Z1 s ey Z2n).
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The matrix elements ¢ can be rewritten as:
=~ 3q" jme1 3m—3
Cik = Pz Z(_U o €2n—3m+j+1-

The last expression is nothing but the product of two n x n matrices
Aim = 1" "%, Bmj = €2n-amiji1,
The matrix A is the Schur polynomial of the partition Y, = {2n — 2i}],
det A = sy, (p1, -+, tin)-

This Schur function has a simple factorized form:

2 2
vl pn) = [T (uf + pinyj + 115).-
1<i<j<n

The matrix B is the Schur polynomial of the partition
Yo={n,n—1,n—1,.,1,1,0} by the dual Jacobi-Trudi identity

detB = Syn(Z1 s ey Z2n).
The determinant S, becomes:
Sn = ann H7:1 /L: /2C1'1 /2
[T " F(q?ui)

Syn(,U1 5y NH)SY/,,(Z1 5oy Zg,,).
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Normalization of the ground state

e When the parameters p are also the Bethe roots in:

Sn(1, s i G1s - Gn) = (O TT C(ui) T T B(G)I0)-
i=1

i=1
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Normalization of the ground state

e When the parameters p are also the Bethe roots in:

Sn(p1, o5 i Gt -+, Cn) = (0] H Cu) [ T B(¢)I0)-

i=1

e We get the normalization of the ground state:

[T, Q(a¢)

- Gi
Nn x sy (21, .., Z2n) Sy, (C1, -, Cn Era = Sy, (21, Z2n) % .
xSy (21,1 Z20) 1 (G ),-1} F(q¢) o2 12", Q(z)
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Normalization of the ground state
e When the parameters p are also the Bethe roots in:
Sn(p1, s i Grs - Gn) = (O TT CQui) TT B(G)I0)-
i=1 i=1
e We get the normalization of the ground state:
7., Q(ag)
[T, Q(z)

o Where we wrote the numerator and the denominator as a product of
Q-functions.

Nn X SV,,(Z17"vz2n)SYn(C1v"7CH)H % = Syn(Z1,,.,22n)
i=1 !
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Normalization of the ground state

e When the parameters p are also the Bethe roots in:
n n
a1, -y pini G1, -5 n) = (O T ] () [T B(G)I0)-
i=1 i=1
e We get the normalization of the ground state:
n n
Ci H':1 O(in)
Nnx 8y (21, .., 22n)Sv, (1, -, C) | | === = Sv.(21, .., Zon) = —=.
T M rgegy = on® 20 o)
o Where we wrote the numerator and the denominator as a product of
Q-functions.
e Observe the following identity:

7, (21, -0 Z2n) S5, (21, -, Z2n) B Q(z)
Syno(Z17..,Zgn) e F(Zi)

[] o) =
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Normalization of the ground state

When the parameters p are also the Bethe roots in:
n n
a1, -y pini G1, -5 n) = (O T ] () [T B(G)I0)-
i=1 i=1

We get the normalization of the ground state:

[T Q(ad)
17 Q)
Where we wrote the numerator and the denominator as a product of
Q-functions.

Observe the following identity:

Nn X SVH(Z17"vZ2f7)SVn(<17"7C’7)H % = Syn(Z1,,.,22n)
i=1 !

7, (21, -0 Z2n) S5, (21, -, Z2n) B Q(z)
Syno (Z1 y ey Zzn) F(Zi)

[] ot =

i=1
Hence the norm of the ground state is equal to:

2 2
sy, (21, . Zen) Sy (21, .., Zen)

 8245(21, 05 Z2n)Svy, (24, s Z2n)
n

Na




Scalar product at q3 =1

z
(o)
Recall the equation:

n

(02) = Sa(C1, ) 21_[ b(Ci, zm) C(anm H b(CHCI Sn(zm,Ch--,éi, ).
i=1

Cu Zm) b Cn Zm) Cp

e In terms of the symmetrized scalar product S,
N Q(zm)Q(G°zm)
<Um> = Sn(1 —+ 6q7F(qu) Gn s

Z GizmF(q<i)
(G = zm)(aGi — zm)(Gi — qzm) Q(QPG) T1i(G — ¢)
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z
(o)
Recall the equation:

n

b(¢i, Zm) <~ €(Gir Zm) (G, Gi) 3
< > S" C17" QE Cuzm) b Cuzm) H b(Cj, Sn(zm7C1a"7<Ia )

e In terms of the symmetrized scalar product S,
N Q(zm)Q(G°zm)
<0'm> = Sn(1 —+ 6q7F(qu) Gn s

Z GizmF(q<i)
(G = zm)(aGi — zm)(Gi — qzm) Q(QPG) T1i(G — ¢)

e [t can also be written as a determinant:

(o) o det (if*ZF(qzmm(qzm)—2z?,4‘*2F(qck)O<q<:k)). (1)

j,k<n
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z
(o)
Recall the equation:

n

b(¢i, zm) C(Cu Zm) a(¢; ¢i) 2
< > S" C17" QE Cuzm) b Cuzm) H b(cj7 Sn(zm7C1a"7<Ia )

e In terms of the symmetrized scalar product S,
N Q(zm)Q(G°zm)
<0'm> = Sn(1 —+ 6q7F(qu) Gn s

Z GizmF(q<i)
(G = zm)(aGi — zm)(Gi — qzm) Q(QPG) T1i(G — ¢)

e [t can also be written as a determinant:

j,k<n

(o) o det (if*ZF(qzmm(qzm)—2z?,4‘*2F(qck)O<q<:k)). (1)

e Now the problem is to symmetrize this w.r.t. the Bethe roots ¢.
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(om)

e Use the transformation p to symmetrize the (o7,) determinant:

3n

(o) o det (h,+3k_2_nF(qzm)0(qzm) oz

(—Q)ih2n+j—i7i) .

i=0
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e Use the transformation p to symmetrize the (o7,) determinant:

3n

(o) o det (h,+3k_2_nF(qzm>O(qzm) oz

(_Q)ih2n+j—i’}/i) .

i=0

e This is an explicit formula since we know h;((1, .., ¢n).
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e Use the transformation p to symmetrize the (o7,) determinant:

3n

(om) o< det (hj+3k—2—nF(qu)Q(qu) — 2752 (_q)ih2n+j—i’7/)~

1<j,k<n -
i=0

e This is an explicit formula since we know h;((1, .., ¢n).

e This formula is not computationally efficient.

We need a different symmetrization procedure instead of p, or we need
to perform other manipulations to simplify this determinant.
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Bethe roots

e Since we know the Q-function we can derive the correspondence

between the pair (e®, h®) and (e°, h°)

3n k 3n
F@DQ@ ) =3 (-1 "D efei =3 (-1 "%
k=0 j=0 k=0

where ~’s are Schur functions:

; Sy

73':(_1)1 5 j:O,“:n
J] Sy

S7"2/+1

V3j+1 :( 1)1 s 73/'+2:0, j:O,..,n—1.
Y

For some partitions mx which are derived from V.
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Bethe roots

e Since we know the Q-function we can derive the correspondence
between the pair (e®, h®) and (&°, hS)

3n 3n
F@Ha(a’ = (-1 " kZe, ek =D (= 1)
k=0 k=0

where ~’s are Schur functions:

; Sy

73':(_1)1 5 j:O,~'7n
J] Sy

S7"2/+1

V3j+1 :( 1)1 s 73/'+2:0, j:O,..,n—14
Y

For some partitions mx which are derived from V.
e Define dx = deti<;j<k v1—i4j, then

k
e => wihf B =Y (1) ief,
=0 i

K
er = kaqhis; he = Z(*1)'+k5kqeis,
i—0 ‘
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Conclusion

¢ Root of unity
A similar computation for the systems with odd length.
Computation of more complicated correlation functions.

Application to the dense O(n = 1) loop model.



Scalar product at g° = 1

Conclusion

¢ Root of unity

A similar computation for the systems with odd length.
Computation of more complicated correlation functions.

Application to the dense O(n = 1) loop model.
e Genericq

Symmetrization of Slavnov determinants for other
boundary conditions?

Can we relate the symmetrized scalar product determinant
and the determinants appearing in the separation of
variables (SoV) approach?
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