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Section 1

Mixed boundary gKZ equation



One boundary Temperley—Lieb algebra

Generators eg,...en_ 1

Bulk relations e 2)e;, eiejr1€; = e;:
i 11+1 11—

Boundary relations 60 = ey, €1€0€1 = €1:

ED@O

With ¢-number



Action on Ballot paths

Ballot path: (ay,...,an), with a; >0, a1 — o = %1, and
ay = 0.
Ballot paths of length N =3

Example
e2|Q2) = = = = = |az)

Will take general vector of the form

U(21,..,28)) = 3 talz1,- .., 2n)|a)



Mixed boundary ¢KZ equation

e Write ¢KZ equation in component form.
e For 0 <i < N —1 (bulk and left boundary)

> talzre ) (eda)) = 3 (T=1ala, o200 ) o),

where T;(u) are generators of a Baxterized Hecke algebra (will
be defined)

e Reflection at the right boundary

Yol 2n-1,28) = Yal- -y 2n-1,257)

e Relates Temperley—Lieb action on Ballot paths (LHS) to
Hecke algebra action on coefficient functions (RHS).



Baxterized Hecke algebra

e Bulk generators (1 <i < N —1):

_ 1—m u—1
Tz(u) = (tzi —1 1Zi+1)z' — 2:—1 — [ [u] ], TG L 25 & Zit1
i i

e Boundary generator

1—m _
To(u) = k(zlaﬁ)igl — Bo(u), To 2 < 2y
zZ1 — Zl
and k(z1,¢1), Bo(u) are simple functions.

e These generators obey Yang—Baxter (bulk) and reflection
equations (boundary).



Solution of the ¢KZ equation

Theorem (de Gier, Pyatov, 2010)

The solutions of the qKZ equation have a factorised form

ALK
Yalz1, .. 2w) = [] Tilwig)va
2

The product is constructed using a graphical representation of the
Hecke generators

To(u) = [> Ti(u) = @

01 1—121+1



Factorised solutions

e Factorised solution for 1, (21,...,2N)



Factorised solutions

e Factorised solution for 1, (21,...,2N)
e Fill to maximal Ballot path Q@ = (N, N —1,...,0)



Factorised solutions

e Factorised solution for 1, (21,...,2N)
e Fill to maximal Ballot path Q@ = (N, N —1,...,0)
e Label corners with 1



Factorised solutions

Factorised solution for 94 (21, ..., 2N)

Fill to maximal Ballot path @ = (N, N —1,...,0)
Label corners with 1

Label remaining tiles by rule

wi; = max{ujt1j—1,Ui—1,j—1} + 1
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Factorised solutions

Factorised solution for 94 (21, ..., 2N)

Fill to maximal Ballot path @ = (N, N —1,...,0)
Label corners with 1

Label remaining tiles by rule
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Factorised solutions

Factorised solution for 94 (21, ..., 2N)

Fill to maximal Ballot path @ = (N, N —1,...,0)
Label corners with 1

Label remaining tiles by rule

wi; = max{ujt1j—1,Ui—1,j—1} + 1

Yo = To(1).71(2)To(3).T3(1)T2(3)T1(4)To(5)vq
and
o = A;(zl,...,zN)Af(zl, ...y 2ZN)



Section 2

Sum rule



Consecutive integer filling

e Fill with consecutive integers along rows, e.g. for previous
shape tilted by 45 °

Yao1(ur +1,u0 + 1,u3+ 1)

w1+
4 |v1+3|ur+2|ur+1

u2H
2 ug+1

u3H
1

e In terms of Hecke generators
Yay,an(Ul + 1,00 uy +1) =To, (un + 1) ... To, (w1 + 1)g
where
Talu+1)=To q1(u+1).. Ti(u+a—1)To(u+ a)

e T,(u+ 1) gives a row of length a, numbered from u + 1.



Staircase diagram

e Call the largest such element the staircase diagram:

< |up+1

¢a1,...,an(ul+1; [ 7un+1) =

UnH

where n = |[N/2|, a; = N —2i + 1.

e In terms of Hecke generators

Yay,an (Ul + 1,0 u, + 1)
= TN—2ns1(un +1) ... Tn_3(uz + 1)Ty—_1(u1 + 1)2bq.



Generalised sum rule

Theorem

The staircase diagram has the expansion

Yar,oan (W + 1.ty +1) =Y cathal21,. .-, 28),
(0%

where the coefficients c,, are non-zero and are monomials in

[ui]

—_ Ji = —Bo(u; + 1).
[ul—l—l]’ yl 0(ul+ )

Yi =

o At specialization u; = 1, t = eF27/3 al| coefficients ¢, = 1.

The sum gives the normalization of Temperley-Lieb loop
model ground state vector. The sum has been computed at
this point [Zinn-Justin 2007].

e Proof of the sum rule requires expanding staircase diagram in
two stages.



First expansion

The first stage of the expansion gives the form of the coefficients.

Lemma (First expansion)

Yay,....an (ur +1,...,u, + 1)
= Ta, (un +1). --7?11(U1 + Diba

(7:%(1) + yi%i_l(l) + gz) Ya.

—

i=n,n—1,...,1
where
Y; = —Bo(ui -+ 1).



First expansion terms

Procedure to expand

(%n(l) + yn’ﬁln—l(l) + gn) ce (7;1(1) + y17:11—1(1) + gl) wQ

e Start from the empty outline.

e Working from top down, a row may be left empty (factor ¥;),
filled one short (factor y;), or filled completely (no additional
factor).

e Delete empty rows and boxes.

N |
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First expansion terms

Procedure to expand

(%n(l) + yn’]:zn—l(l) + gn) ce (7:11(1) + y17:z1—1(1) + gl) wQ
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First expansion terms
Procedure to expand

(Tan (D) + 9nTan-1(1) +Gn) -+ (Tay (1) + 91 Tay -1 (1) + 1) P

e Start from the empty outline.

e Working from top down, a row may be left empty (factor ¥;),
filled one short (factor y;), or filled completely (no additional
factor).

e Delete empty rows and boxes.

\QI987654321

e Coefficient y194y5



Second expansion

e When the resulting term is not a proper component 9, a
second expansion is required.

Lemma (Second expansion)

Let Yo (21,...,2N) be a component of the gKZ solution, with last
row of length a + 1, then

T.1(1)... Ti(a — DTo(a)ha(z1,- - 28) = O War(z1,- .-, 2N)

e The terms in the sum are found through a graphical rule, and
all have coefficient 1.



Second expansion example

\I 4 3 2 1
Tl(l)TO(Q)ch(Zh' "7ZN) 2|1
2| 1
Ballot path




Second expansion example

\I 4 3 2 1
Tl(l)T0(2)ch(zl7' "7ZN) 2|1
2| 1
Ballot path
0"’
Q"
Terms
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Second expansion example

\I 4 3 2 1
Tl(l)TO(Q)ch(Zh'")zN) 2|1
2| 1
Ballot path
Terms




Proof of the sum rule

e Recall the sum rule

¢al,...,an(ul + 17 7 + 1) = anwa(zlw . '7ZN)7

where the coefficients ¢, are non-zero and are monomials in
Yir Yi-

e We have shown via the two expansions that the staircase
diagram can be expanded in terms of components .

e To show that the coefficients are non-zero and monomials, we
must show that each component 1, arises from a single term
in the first expansion.



Example of the algorithm

e Work backwards from 1, to term from staircase expansion.

NQols]7

o
S
w

1

Yalz1,. .y 2N) =

6
5
4
2
N
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Example of the algorithm

e Work backwards from 1, to term from staircase expansion.

NQols]7

o
S
w

1

Yalz1,. .y 2N) =

6
5
4
2
e Draw empty maximal staircase

e Add rows to staircase, bottom up, in lowest place each fits

N |

‘




Example of the algorithm

e Work backwards from 1, to term from staircase expansion.

NQol8]7]6]5]4]3]1]
7le6]s]a]3]2
Ya(z1,...,2N) = 5]al3]2]1
2
N

e Draw empty maximal staircase
e Add rows to staircase, bottom up, in lowest place each fits

N |




Example of the algorithm

e Work backwards from 1), to term from staircase expansion.

Oofs8|7|6]|5[4]3]|1

Ya(z1,...,2N) =

e Draw empty maximal staircase
e Add rows to staircase, bottom up, in lowest place each fits
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[ ]




Example of the algorithm
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Draw in ribbons, starting from outer diagonal
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Work backwards from 1, to term from staircase expansion.
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Example of the algorithm

Work backwards from 1, to term from staircase expansion.

Ya(z1,...,2N) =

Draw empty maximal staircase
Add rows to staircase, bottom up, in lowest place each fits
Draw in ribbons, starting from outer diagonal

Coefficient cq = y1§ays.



Section 3

Bases of the Hecke algebra



gKZ equation for type A

e For type A solutions given by partitions labelled with the
same rule as for type B [Kirilov, Lascoux 2000, de Gier,
Pyatov 2010], e.g.

AL ES
[N]
=

e The set of all such elements corresponds to a parabolic
Kazhdan—Lusztig basis of the type A Hecke algebra.



Sum rule for type A

e Sum rule given by consecutive integer labelling [de Gier,
Lascoux, Sorrell 2012]

sl7]e]s5]a]3]2]

312
2

e Set of all subpartitions gives the Young basis, e.g.

sl7]6][s]a]3]2]
7l6]s5F 3]z
6
5
32

2

e Elements of the Young basis are specialised Macdonald
polynomials.



Hecke bases for type B

e The elements of the gKZ solution correspond to the parabolic

Kazhdan—Lusztig basis for the type B Hecke algebra [Shigechi
2014], e.g.

R 4

w
-

e The consecutive integer numbering corresponds® to the Young
basis, e.g.

N|7]6

IS
w

2]

/607#0!



Conclusion and future work

We have found a factorised form for a sum rule for the type B
gKZ equation.

Our construction also gives the change of basis from the
Kazhdan—Lusztig to the Young basis.

We still need to determine if the type B Young basis
corresponds to a specialization of the Macdonald polynomials.

Our main goal now is to find a way to evaluate the type B
sum.
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