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Section 1

Mixed boundary qKZ equation



One boundary Temperley–Lieb algebra

• Generators e0, . . . eN−1

• Bulk relations e2
i = −[2]ei, eiei±1ei = ei:

i

= −[2]

i
i i+1

=

i−1 i

=

i

• Boundary relations e2
0 = e0, e1e0e1 = e1:

0

=

0
10

=

1

• With t-number

[u] =
tu − t−u

t− t−1
.



Action on Ballot paths

• Ballot path: (α0, . . . , αN ), with αi ≥ 0, αi+1 − αi = ±1, and
αN = 0.

• Ballot paths of length N = 3

Ω = α1 = α2 =

• Example

e2|Ω〉 = = = = = |α2〉

• Will take general vector of the form

|Ψ(z1, . . . , zN )〉 =
∑
α

ψα(z1, . . . , zN )|α〉



Mixed boundary qKZ equation

• Write qKZ equation in component form.

• For 0 ≤ i ≤ N − 1 (bulk and left boundary)∑
α

ψα(z1, . . . , zN )
(
ei|α〉

)
=
∑
α

(
Ti(−1)ψα(z1, . . . , zN )

)
|α〉,

where Ti(u) are generators of a Baxterized Hecke algebra (will
be defined)

• Reflection at the right boundary

ψα(. . . , zN−1, zN ) = ψα(. . . , zN−1, t
3z−1
N )

• Relates Temperley–Lieb action on Ballot paths (LHS) to
Hecke algebra action on coefficient functions (RHS).



Baxterized Hecke algebra

• Bulk generators (1 ≤ i ≤ N − 1):

Ti(u) = (tzi− t−1zi+1)
1− πi
zi − zi+1

− [u− 1]

[u]
, πi : zi ↔ zi+1

• Boundary generator

T0(u) = k(z1, ζ1)
1− π0

z1 − z−1
1

−B0(u), π0 : z1 ↔ z−1
1 ,

and k(z1, ζ1), B0(u) are simple functions.

• These generators obey Yang–Baxter (bulk) and reflection
equations (boundary).



Solution of the qKZ equation

Theorem (de Gier, Pyatov, 2010)

The solutions of the qKZ equation have a factorised form

ψα(z1, . . . , zN ) =

↗ui,j∏
i,j

Ti(ui,j)ψΩ

The product is constructed using a graphical representation of the
Hecke generators

T0(u) = u

0 1

, Ti(u) =

i−1

u

ii+1

.



Factorised solutions
• Factorised solution for ψα(z1, . . . , zN )

• Fill to maximal Ballot path Ω = (N,N − 1, . . . , 0)
• Label corners with 1
• Label remaining tiles by rule
ui,j = max{ui+1,j−1, ui−1,j−1}+ 1

1
12

3 3
4

5

ψα = T0(1).T1(2)T0(3).T3(1)T2(3)T1(4)T0(5)ψΩ

and
ψΩ = ∆−t (z1, . . . , zN )∆+

t (z1, . . . , zN )
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Section 2

Sum rule



Consecutive integer filling

• Fill with consecutive integers along rows, e.g. for previous
shape tilted by 45 °

ψ4,2,1(u1 + 1, u2 + 1, u3 + 1)

=
u1+1u1+2u1+3

u1+

4

u2+1
u2+

2

u3+

1

• In terms of Hecke generators

ψa1,...,an(u1 + 1, . . . , un + 1) = Tan(un + 1) . . . Ta1(u1 + 1)ψΩ

where

Ta(u+ 1) = Ta−1(u+ 1) . . . T1(u+ a− 1)T0(u+ a)

• Ta(u+ 1) gives a row of length a, numbered from u+ 1.



Staircase diagram

• Call the largest such element the staircase diagram:

ψā1,...,ān(u1 +1, . . . , un+1) =

u1+1. . .

. . .

. . .

un+

1

,

where n = bN/2c, āi = N − 2i+ 1.

• In terms of Hecke generators

ψā1,...,ān(u1 + 1, . . . , un + 1)

= TN−2n+1(un + 1) . . . TN−3(u2 + 1)TN−1(u1 + 1)ψΩ.



Generalised sum rule

Theorem

The staircase diagram has the expansion

ψā1,...,ān(u1 + 1, . . . , un + 1) =
∑
α

cαψα(z1, . . . , zN ),

where the coefficients cα are non-zero and are monomials in

yi = − [ui]

[ui + 1]
, ỹi = −B0(ui + 1).

• At specialization ui = 1, t = e±2πi/3, all coefficients cα = 1.
The sum gives the normalization of Temperley-Lieb loop
model ground state vector. The sum has been computed at
this point [Zinn-Justin 2007].

• Proof of the sum rule requires expanding staircase diagram in
two stages.



First expansion

The first stage of the expansion gives the form of the coefficients.

Lemma (First expansion)

ψa1,...,an(u1 + 1, . . . , un + 1)

= Tan(un + 1) . . . Ta1(u1 + 1)ψΩ

=
∏

i=n,n−1,...,1

(Tai(1) + yiTai−1(1) + ỹi)ψΩ.

where

yi = − [ui]

[ui + 1]
, ỹi = −B0(ui + 1).



First expansion terms
Procedure to expand

(Tan(1) + ynTan−1(1) + ỹn) . . . (Ta1(1) + y1Ta1−1(1) + ỹ1)ψΩ

• Start from the empty outline.
• Working from top down, a row may be left empty (factor ỹi),

filled one short (factor yi), or filled completely (no additional
factor).

• Delete empty rows and boxes.

10 9 8 7 6 5 4 3 2 1 y1

9 8 7 6 5 4 3 2 1 1
7 6 5 4 3 2 1 1

ỹ4
2 1 y5

1 1
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(Tan(1) + ynTan−1(1) + ỹn) . . . (Ta1(1) + y1Ta1−1(1) + ỹ1)ψΩ
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1

• Coefficient y1ỹ4y5



Second expansion

• When the resulting term is not a proper component ψα, a
second expansion is required.

Lemma (Second expansion)

Let ψα(z1, . . . , zN ) be a component of the qKZ solution, with last
row of length a+ 1, then

Ta−1(1) . . . T1(a− 1)T0(a)ψα(z1, . . . , zN ) =
∑
α′

ψα′(z1, . . . , zN )

• The terms in the sum are found through a graphical rule, and
all have coefficient 1.



Second expansion example

T1(1)T0(2)ψα(z1, . . . , zN ) =

5 4 3 2 1

3 2 1

2 1

Ballot path

Terms

16 5 4 3

4 3 2

2 1

+

5 4 3 2 1

3 2

1

+

5 4 3

3 2

1
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Proof of the sum rule

• Recall the sum rule

ψā1,...,ān(u1 + 1, . . . , un + 1) =
∑
α

cαψα(z1, . . . , zN ),

where the coefficients cα are non-zero and are monomials in
yi, ỹi.

• We have shown via the two expansions that the staircase
diagram can be expanded in terms of components ψα.

• To show that the coefficients are non-zero and monomials, we
must show that each component ψα arises from a single term
in the first expansion.



Example of the algorithm

• Work backwards from ψα to term from staircase expansion.

ψα(z1, . . . , zN ) =

110 9 8 7 6 5 4 3

8 7 6 5 4 3 2

6 5 4 3 2 1

3 2

1

• Draw empty maximal staircase

• Add rows to staircase, bottom up, in lowest place each fits

• Draw in ribbons, starting from outer diagonal

• Coefficient cα = y1ỹ4y5.
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Example of the algorithm

• Work backwards from ψα to term from staircase expansion.

ψα(z1, . . . , zN ) =

110 9 8 7 6 5 4 3

8 7 6 5 4 3 2

6 5 4 3 2 1

3 2

1

• Draw empty maximal staircase

• Add rows to staircase, bottom up, in lowest place each fits

• Draw in ribbons, starting from outer diagonal

• Coefficient cα = y1ỹ4y5.
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Example of the algorithm

• Work backwards from ψα to term from staircase expansion.

ψα(z1, . . . , zN ) =

110 9 8 7 6 5 4 3

8 7 6 5 4 3 2

6 5 4 3 2 1

3 2

1

• Draw empty maximal staircase

• Add rows to staircase, bottom up, in lowest place each fits

• Draw in ribbons, starting from outer diagonal

• Coefficient cα = y1ỹ4y5.



Section 3

Bases of the Hecke algebra



qKZ equation for type A

• For type A solutions given by partitions labelled with the
same rule as for type B [Kirilov, Lascoux 2000, de Gier,
Pyatov 2010], e.g.

4 3 2 1

3 2 1

2

1

• The set of all such elements corresponds to a parabolic
Kazhdan–Lusztig basis of the type A Hecke algebra.



Sum rule for type A
• Sum rule given by consecutive integer labelling [de Gier,

Lascoux, Sorrell 2012]

8 7 6 5 4 3 2

23. . .

. .
.

...

. .
.

3 2

2

• Set of all subpartitions gives the Young basis, e.g.

8 7 6 5 4 3 2

7 6 5

6

5

23. . .

. .
.

... . .
.

3 2

2

• Elements of the Young basis are specialised Macdonald
polynomials.



Hecke bases for type B

• The elements of the qKZ solution correspond to the parabolic
Kazhdan–Lusztig basis for the type B Hecke algebra [Shigechi
2014], e.g.

15 4 3

3 2

1

• The consecutive integer numbering corresponds∗ to the Young
basis, e.g.

8 7 6 5 4 3 2

6 5 4 3 2

4 3 2

2



Conclusion and future work

• We have found a factorised form for a sum rule for the type B
qKZ equation.

• Our construction also gives the change of basis from the
Kazhdan–Lusztig to the Young basis.

• We still need to determine if the type B Young basis
corresponds to a specialization of the Macdonald polynomials.

• Our main goal now is to find a way to evaluate the type B
sum.
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