Boundary algebra

Virasoro modules

Scaling limit

Conclusion O

Kac modules and boundary Temperley-Lieb algebras for logarithmic minimal models

Alexi Morin-Duchesne

Université Catholique de Louvain

Florence, 28/05/2015

Joint work with Jørgen Rasmussen and David Ridout arXiv:1503.07584 [hep-th]

Loop	model
000	000

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Outline

- Loop models with boundary seams
- Relation with the one-boundary Temperley-Lieb algebra
- Virasoro Kac modules
- Scaling limit of the loop models

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Dense loop model

• Configuration of the dense loop model with a **boundary seam**:

- Fugacity of closed loops: $\beta = 2 \cos \lambda$
- Roots of unity:

$$\lambda = \frac{\pi(p'-p)}{p'} \qquad p, p' \in \mathbb{Z}_+ \qquad p < p'$$

Temperley-Lieb algebra $\mathsf{TL}_n(\beta)$

Generators

A connectivity

a =

 $= e_1 e_2 e_4 e_3$

Multiplication is by vertical concatenation:

 $a_1a_2 = \beta^2 = \beta^2 a_3$

Algebraic definition

$$\mathsf{TL}_n(\beta) = \langle I, e_j; j = 1, \dots, n-1 \rangle$$
$$(e_j)^2 = \beta e_j \qquad e_j e_{j\pm 1} e_j = e_j \qquad e_i e_j = e_j e_i \qquad (|i-j| > 1)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Temperley-Lieb algebra $\mathsf{TL}_n(\beta)$

Generators

 $= e_1 e_2 e_4 e_3$

• Multiplication is by vertical concatenation:

$$(e_j)^2 = \underbrace{\prod_{i=1}^{n} \prod_{j=j+1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=j+1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n}$$

Algebraic definition

$$\mathsf{TL}_n(\beta) = \left\langle I, e_j; j = 1, \dots, n-1 \right\rangle$$
$$(e_j)^2 = \beta e_j \qquad e_j e_{j\pm 1} e_j = e_j \qquad e_i e_j = e_j e_i \qquad (|i-j| > 1)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Temperley-Lieb algebra $\mathsf{TL}_n(\beta)$

Generators

A connectivity

 $= e_1 e_2 e_4 e_3$

• Multiplication is by vertical concatenation:

$$e_j e_{j+1} e_j = \underbrace{1}_{1 \qquad j \ j+1 \qquad n} = \underbrace{1}_{1 \qquad j \ j+1 \qquad n} = e_j$$

Algebraic definition

$$\mathsf{TL}_n(\beta) = \left\langle I, e_j; j = 1, \dots, n-1 \right\rangle$$
$$(e_j)^2 = \beta e_j \qquad e_j e_{j\pm 1} e_j = e_j \qquad e_i e_j = e_j e_i \qquad (|i-j| > 1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○の≪⊙

Transfer tangles with boundary seams

• $D(u, \xi)$ is an element of $\mathsf{TL}_{n+k}(\beta)$:

(Pearce, Rasmussen, Zuber 2006)

$$D(u,\xi) = \underbrace{u \quad u \quad \cdots \quad u}_{n} \underbrace{u + \xi_{k} \cdots \quad u + \xi_{2}u + \xi_{1}}_{n}$$

$$u = s_{1}(-u) \underbrace{-k}_{n} + s_{0}(u) \underbrace{-k}_{n} \cdot \underbrace{-k}_{n} \cdot \underbrace{-k}_{k} \cdot \underbrace{-k}$$

• YBE + BYBE $\rightarrow [D(u,\xi), D(v,\xi)] = 0$

• YBE + BYBE $\rightarrow [D(u, \xi), D(v, \xi)] = 0$

◆□▶★@▶★≣▶★≣▶ ■ ●��

• YBE + BYBE $\rightarrow [D(u,\xi), D(v,\xi)] = 0$

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Hamiltonian tangle

• The Hamiltonian tangle \mathcal{H} is obtained by taking $\frac{d\mathbf{D}(u,\xi)}{du}\Big|_{u=0}$:

$$\mathcal{H} = -\sum_{j=1}^{n-1} E_j^{(k)} + \frac{1}{s_0(\xi)s_{k+1}(\xi)} E_n^{(k)}$$

where

• $U_k(x)$ are Chebyshev polynomials of the second kind:

$$U_0(\frac{\beta}{2}) = 1, \quad U_1(\frac{\beta}{2}) = \beta, \quad U_2(\frac{\beta}{2}) = \beta^2 - 1, \quad U_3(\frac{\beta}{2}) = \beta(\beta^2 - 2), \quad \dots$$

Boundary algebra: 0000 Virasoro modules

Scaling limit

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Conclusion O

Standard modules

• Definition:

- V_n^d : vector space generated by link patterns
 - *n*: number of **nodes**
 - *d*: number of **defects** (vertical segments)

Examples:

$$\mathsf{V}_6^0 = \operatorname{span}\left\{ \underbrace{\hspace{1.5cm}}_{\hspace{1.5cm} \bullet}, \underbrace{\hspace{1.5cm}}, \underbrace{\hspace{1.5cm}}_{\hspace{1.5cm} \bullet}, \underbrace{\hspace{1.5c$$

 $V_6^4 = \operatorname{span}\left\{ \text{, } \text{,$

• $\mathsf{TL}_n(\beta)$ action on V_n^d :

$$\beta = \beta = 0$$

• Defines one representation of $\mathsf{TL}_n(\beta)$ for each *d*.

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Lattice Kac modules

• Projector – half-arc annihilation relation: = 0

Example:
$$\mathbf{\underline{2}} = \mathbf{\underline{1}} - \frac{1}{\beta} \mathbf{\underline{\bigcirc}} = \mathbf{\underline{\frown}} - \frac{\beta}{\beta} \mathbf{\underline{\frown}} = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへで

• Hamiltonians = realisations of \mathcal{H} in $\mathsf{K}^{d}_{n,k}$

• Hamiltonians = realisations of \mathcal{H} in $\mathsf{K}^{d}_{n,k}$

$$= e_2 e_6 e_3 e_5 e_4 e_6$$

• Multiplication is again by vertical concatenation:

$$b_1b_2 = \bigcup_{(1)}^{(2)} = \beta\beta_1 \sum_{(1)}^{(2)} = \beta\beta_1 b_3,$$

Algebraic definition

$$\mathsf{TL}_{n}^{(1)}(\beta,\beta_{1},\beta_{2}) = \langle I, e_{j}; j = 1, \dots, n \rangle$$

$$(e_{j})^{2} = \beta e_{j} \qquad e_{j}e_{j\pm 1}e_{j} = e_{j} \qquad e_{i}e_{j} = e_{j}e_{i} \qquad (|i-j| > 1)$$

$$e_{n}^{2} = \beta_{2}e_{n} \qquad e_{n-1}e_{n}e_{n-1} = \beta_{1}e_{n-1} \qquad e_{i}e_{n} = e_{n}e_{i} \qquad (i < n-1)$$

$$= e_2 e_6 e_3 e_5 e_4 e_6$$

• Multiplication is again by vertical concatenation:

$$b_1b_2 = b_2b_3,$$

Algebraic definition

$$\mathsf{TL}_{n}^{(1)}(\beta,\beta_{1},\beta_{2}) = \langle I, e_{j}; j = 1,...,n \rangle$$

$$(e_{j})^{2} = \beta e_{j} \qquad e_{j}e_{j\pm 1}e_{j} = e_{j} \qquad e_{i}e_{j} = e_{j}e_{i} \qquad (|i-j| > 1)$$

$$e_{n}^{2} = \beta_{2}e_{n} \qquad e_{n-1}e_{n}e_{n-1} = \beta_{1}e_{n-1} \qquad e_{i}e_{n} = e_{n}e_{i} \qquad (i < n-1)$$

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Boundary seam algebras

• **Definition:**
$$\mathsf{B}_{n,k} = \langle I^{(k)}, E^{(k)}_j; j = 1, \dots, n \rangle$$

$$I^{(k)} = \underbrace{\blacksquare}_{n} \cdots \underbrace{\blacksquare}_{j} E^{(k)}_{j} = \underbrace{\blacksquare}_{n} \cdots \underbrace{\blacksquare}_{n}$$

• $D(u, \xi)$ and \mathcal{H} are elements of $\mathsf{B}_{n,k}$.

• Algebraic relations, with $\beta_1 = U_k(\frac{\beta}{2}), \quad \beta_2 = U_{k-1}(\frac{\beta}{2})$:

$(E_j^{(k)})^2 = \beta E_j^{(k)}$	$E_j^{(k)} E_{j\pm 1}^{(k)} E_j^{(k)} = E_j^{(k)}$	$E_i^{(k)} E_j^{(k)} = E_j^{(k)} E_i^{(k)}$	(i-j >1)
$(E_n^{(k)})^2 = \beta_2 E_n^{(k)}$	$E_{n-1}^{(k)}E_n^{(k)}E_{n-1}^{(k)} = \beta_1 E_{n-1}^{(k)}$	$E_i^{(k)} E_n^{(k)} = E_n^{(k)} E_i^{(k)}$	(i < n-1)

• These algebraic relations are well-defined for all β.

• $B_{n,k}$ is a quotient of $TL_n^{(1)}$. Its generators satisfy more relations.

Boundary algebras

Virasoro modules

Scaling limit

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Conclusion O

Extra relations: generic case

- Extra relations for β generic:
 - k = 1: $(e_n e_{n-1} 1) e_n = 0$

•
$$k = 2$$
: $(e_n e_{n-1} e_{n-2} - \beta e_{n-2} + 1)(e_n e_{n-1} - \beta) e_n = 0$

•
$$k = 3$$
: $e_n e_{n-1} e_{n-2} e_{n-3} e_n e_{n-1} e_{n-2} e_n e_{n-1} e_n + \text{lower order terms} = 0$

- Any *k*: [Polynomial of degree $\frac{(k+1)(k+2)}{2}$ in the e_j] = 0
- These are the **full set of algebraic relations** defining B_{*n*,*k*}.
- The lattice Kac modules $K_{n,k}^d$ are really modules over $B_{n,k}$.

Boundary algebras

Virasoro modules 0000 Conclusion O

Extra relations: roots of unity

- For roots of unity, the diagrammatic algebra is not well-defined.
- The algebraic relations are well-defined in the limit $\beta \rightarrow \beta_c$.
- We define $B_{n,k}$ through its algebraic relations only.
- The extra relation is different than in the generic case:
 - Any *k*: [Polynomial of degree $\frac{(k'+1)(k'+2)}{2}$ in the e_j] = 0

$$\left(\beta = 2\cos\frac{\pi(p'-p)}{p'} \qquad k' = k \mod p' \qquad 1 \le k' \le p'\right)$$

Example: (p, p') = (1, 2) k = 3: $(e_n e_{n-1} + 1) e_n = 0$ $(k' = 1 \rightarrow \text{degree 3 instead of 10})$

• Lattice Kac modules have no singularities in the limit $\beta \rightarrow \beta_c$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Virasoro algebra and modules

• Defining relations:

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\,\delta_{m+n=0}$$

- Describes the scaling limit of critical statistical models
- Admits a large spectrum of representations

- Rational conformal field theories are well understood.
- Logarithmic conformal field theories are less understood.

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Verma modules

• Definition of \mathcal{V}_{Δ} : $L_n |\Delta\rangle = 0$ for n > 0, $L_0 |\Delta\rangle = \Delta |\Delta\rangle$

- Character: $\operatorname{ch}(\mathcal{V}_{\Delta}) = \operatorname{Tr}(q^{L_0 \frac{c}{24}}) = \frac{q^{\Delta \frac{c}{24}}}{\prod_i (1 q^i)}$
- Central charge and conformal dimensions:

$$c = 1 - \frac{6(p'-p)^2}{pp'}$$
 $\Delta_{r,s} = \frac{(p'r-ps)^2 - (p'-p)^2}{4pp'}$ $p, p' \in \mathbb{Z}_+$ $r, s \in \mathbb{Z}_+$

• Extended Kac table for percolation:

	r^{s}	→ ¹	2	3	4	5	6	7	8	9	
	, 1	0	0	$\frac{1}{3}$	1	2	$\frac{10}{3}$	5	7	$\frac{28}{3}$	
(n n') = (2 2)	2	<u>5</u> 8	$\frac{1}{8}$	$-\frac{1}{24}$	$\frac{1}{8}$	<u>5</u> 8	$\frac{35}{24}$	$\frac{21}{8}$	$\frac{33}{8}$	$\frac{143}{24}$	
(p, p) = (2, 3)	3	2	1	$\frac{1}{3}$	0	0	$\frac{1}{3}$	1	2	$\frac{10}{3}$	
$c \equiv 0$	4	$\frac{33}{8}$	$\frac{21}{8}$	$\frac{35}{24}$	<u>5</u> 8	$\frac{1}{8}$	$-\frac{1}{24}$	$\frac{1}{8}$	<u>5</u> 8	$\frac{35}{24}$	
	5	7	5	$\frac{10}{3}$	2	1	$\frac{1}{3}$	0	0	$\frac{1}{3}$	
		:	÷	:	:	÷	÷	÷	:		

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Verma modules

• Definition of \mathcal{V}_{Δ} : $L_n |\Delta\rangle = 0$ for n > 0, $L_0 |\Delta\rangle = \Delta |\Delta\rangle$

- Character: $ch(\mathcal{V}_{\Delta}) = Tr(q^{L_0 \frac{c}{24}}) = \frac{q^{\Delta \frac{c}{24}}}{\prod_i (1 q^i)}$
- Central charge and conformal dimensions:

$$c = 1 - \frac{6(p'-p)^2}{pp'}$$
 $\Delta_{r,s} = \frac{(p'r-ps)^2 - (p'-p)^2}{4pp'}$ $p, p' \in \mathbb{Z}_+$ $r, s \in \mathbb{Z}_+$

• Extended Kac table for the Ising model:

	r_{r}^{s}	→ ¹	2	3	4	5	6	7	8	9	
	1	0	$\frac{1}{16}$	$\frac{1}{2}$	$\frac{21}{16}$	<u>5</u> 2	$\frac{65}{16}$	6	$\tfrac{133}{16}$	11	
(n n') - (3 4)	2	$\frac{1}{2}$	$\frac{1}{16}$	0	$\frac{5}{16}$	1	$\frac{33}{16}$	$\frac{7}{2}$	$\frac{85}{16}$	$\frac{15}{2}$	
(p, p) = (0, 4)	3	<u>5</u> 3	$\frac{35}{48}$	$\frac{1}{6}$	$-\frac{1}{48}$	$\frac{1}{6}$	$\frac{35}{48}$	<u>5</u> 3	$\tfrac{143}{48}$	$\frac{14}{3}$	
$c = \frac{1}{2}$	4	$\frac{7}{2}$	$\frac{33}{16}$	1	$\frac{5}{16}$	0	$\frac{1}{16}$	$\frac{1}{2}$	$\frac{21}{16}$	<u>5</u> 2	
	5	6	<u>65</u> 16	<u>5</u> 2	$\frac{21}{16}$	$\frac{1}{2}$	$\frac{1}{16}$	0	$\frac{5}{16}$	1	
		:	:	:	:	:	:	:	:	:	-

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Verma modules

• Definition of \mathcal{V}_{Δ} : $L_n |\Delta\rangle = 0$ for n > 0, $L_0 |\Delta\rangle = \Delta |\Delta\rangle$

• Character:
$$ch(\mathcal{V}_{\Delta}) = Tr(q^{L_0 - \frac{c}{24}}) = \frac{q^{\Delta - \frac{c}{24}}}{\prod_i (1 - q^i)}$$

• Central charge and conformal dimensions:

$$c = 1 - \frac{6(p'-p)^2}{pp'}$$
 $\Delta_{r,s} = \frac{(p'r-ps)^2 - (p'-p)^2}{4pp'}$ $p, p' \in \mathbb{Z}_+$ $r, s \in \mathbb{Z}_+$

• Module structures for V_{Δ} :

Not in the Kac table :

Boundary and corner entries :

Interior entries :

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 のへで

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Feigin-Fuchs modules

• Arise in the Coulomb gas realisation of the Virasoro algebra

• Character:
$$ch(\mathcal{F}_{\Delta}) = Tr(q^{L_0 - \frac{c}{24}}) = \frac{q^{\Delta - \frac{c}{24}}}{\prod_i (1 - q^i)}$$

• Module structures for \mathcal{F}_{Δ} :

(Feigin, Fuchs 1982)

- Not in the Kac table :
- Corner entries :

Boundary entries : {

Interior entries :

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Virasoro Kac modules

• Only defined for conformal dimensions in the Kac table

• Character:
$$\operatorname{ch}(\mathcal{K}_{r,s}) = \operatorname{Tr}(q^{L_0 - \frac{c}{24}}) = \frac{q^{\Delta - \frac{c}{24}}(1 - q^{rs})}{\prod_i (1 - q^i)}$$

- Definition: *K_{r,s}* is the submodule of *F<sub>Δ_{r,s}* generated by all states with levels less than *rs*.
 </sub>
- Module structures for $\mathcal{K}_{r,s}$:

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Virasoro Kac modules

• Only defined for conformal dimensions in the Kac table

• Character:
$$\operatorname{ch}(\mathcal{K}_{r,s}) = \operatorname{Tr}(q^{L_0 - \frac{c}{24}}) = \frac{q^{\Delta - \frac{c}{24}}(1 - q^{rs})}{\prod_i (1 - q^i)}$$

- Definition: *K_{r,s}* is the submodule of *F<sub>Δ_{r,s}* generated by all states with levels less than *rs*.
 </sub>
- Module structures for \mathcal{F}_{Δ} :

▲□▶▲圖▶▲≧▶▲≧▶ 差 のQ@

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Virasoro Kac modules

• Only defined for conformal dimensions in the Kac table

• Character:
$$ch(\mathcal{K}_{r,s}) = Tr(q^{L_0 - \frac{c}{24}}) = \frac{q^{\Delta - \frac{c}{24}}(1 - q^{rs})}{\prod_i (1 - q^i)}$$

- Definition: *K_{r,s}* is the submodule of *F<sub>Δ_{r,s}* generated by all states with levels less than *rs*.
 </sub>
- Module structures for $\mathcal{K}_{r,s}$:

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Virasoro Kac modules

• Only defined for conformal dimensions in the Kac table

• Character:
$$\operatorname{ch}(\mathcal{K}_{r,s}) = \operatorname{Tr}(q^{L_0 - \frac{c}{24}}) = \frac{q^{\Delta - \frac{c}{24}}(1 - q^{rs})}{\prod_i (1 - q^i)}$$

- Definition: *K_{r,s}* is the submodule of *F<sub>Δ_{r,s}* generated by all states with levels less than *rs*.
 </sub>
- Module structures for $\mathcal{K}_{r,s}$:

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Boundary algebras

Virasoro modules

Scaling limit

Conclusion O

Virasoro Kac modules

• Only defined for conformal dimensions in the Kac table

• Character:
$$\operatorname{ch}(\mathcal{K}_{r,s}) = \operatorname{Tr}(q^{L_0 - \frac{c}{24}}) = \frac{q^{\Delta - \frac{c}{24}}(1 - q^{rs})}{\prod_i (1 - q^i)}$$

• Definition: $\mathcal{K}_{r,s}$ is the submodule of $\mathcal{F}_{\Delta_{r,s}}$ generated by all states with levels less than *rs*.

• **Examples for percolation:** (p, p') = (2, 3) c = 0

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 差|||の��

Boundary algebras

Virasoro modules

Conclusion O

Scaling limit and conformal structure

• Scaling limit: define sequences of eigenstates of \mathcal{H} of eigenvalue H_n^i in $\mathsf{K}_{n,k}^d$ for increasing *n*. Retain those for which

 $\lim_{n \to \infty} n \left(H_n^i - H_n^0 \right) = \kappa \quad \text{for some} \quad \kappa < \infty$

 $(H_n^0$ is the ground-state eigenvalue)

- The surviving sequences give rise to the states of a Virasoro module.
- In this limit, \mathcal{H} "becomes" $L_0 \frac{c}{24}$ in some Virasoro module:

$$\frac{n}{\pi v_s} \Big(\mathcal{H} - n f_{bulk} - f_{bdy} \Big) \xrightarrow{n \to \infty} L_0 - \frac{c}{24} \qquad \left(v_s = \frac{\pi \sin \lambda}{\lambda} \right)$$

Boundary algebras

Virasoro modules

Conclusion O

Scaling limit and conformal structure

• Scaling limit: define sequences of eigenstates of \mathcal{H} of eigenvalue H_n^i in $\mathsf{K}_{n,k}^d$ for increasing *n*. Retain those for which

 $\lim_{n \to \infty} n \left(H_n^i - H_n^0 \right) = \kappa \quad \text{for some} \quad \kappa < \infty$

 $(H_n^0$ is the ground-state eigenvalue)

- The surviving sequences give rise to the states of a Virasoro module.
- In this limit, \mathcal{H} "becomes" $L_0 \frac{c}{24}$ in some Virasoro module:

$$\frac{n}{\pi v_s} \Big(\mathcal{H} - n f_{bulk} - f_{bdy} \Big) \xrightarrow{n \to \infty} L_0 - \frac{c}{24} \qquad \left(v_s = \frac{\pi \sin \lambda}{\lambda} \right)$$

• Conjecture: in regime *A*, lattice Kac modules become Virasoro Kac modules in the scaling limit:

$$\mathsf{K}^{d}_{n,k} \xrightarrow{n \to \infty} \mathcal{K}_{r,s} \qquad r = \left\lceil rac{(k+1)p}{p'}
ight
ceil \qquad s = d+1$$

(Rasmussen 2011; Pearce, Rasmussen, Villani 2013; AMD, Rasmussen, Ridout 2015)

Boundary algebra

Virasoro modules

Scaling limit

• □ > • (□) + (□) + (□) + (□)

3

Conclusion O

Regimes *A* and *B*

• The structure of the Virasoro modules is different in regimes *A* and *B*, but is generally **unchanged within a given regime**.

Loop model	Boundary algebras	Virasoro modules	Scaling limit	Conclusion
000000	0000	0000	000000	0

• Recall that:

$$\mathcal{H} \quad \xrightarrow{n \to \infty} \quad L_0 - \frac{c}{24} \qquad \operatorname{ch}(\mathcal{K}_{r,s}) = \operatorname{Tr} q^{L_0 - \frac{c}{24}} = \frac{q^{\Delta - \frac{c}{24}}(1 - q^{rs})}{\prod_i (1 - q^i)}$$

• For given $\mathsf{K}^{d}_{n,k}$, Δ can be estimated numerically from H^0_n for small n.

(Pearce, Rasmussen, Zuber 2006; Pearce, Tartaglia, Couvreur 2014)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ◆○◆

• Character approximations:

- find the eigenvalues H_n^i of \mathcal{H} using a computer
- compute the ratios Rⁱ_n = Hⁱ_n H⁰_n and the sum \sum i q^{Rⁱ_n} H¹_n H⁰_n
 compare with ch(\mathcal{K}_{r,s}) = \frac{1-q^{rs}}{\prod_i(1-q^i)}

model	Boundary algebras	Virasoro modules	Scaling limit	Conclusion
000	0000	0000	000000	0

• Example for (p, p') = (1, 3) k = 0 d = 1:

<i>n</i> = 13	$1 + q + q^{2.05} + q^{2.96} + q^{3.15} + q^{3.85} + q^{4.15} + q^{4.31} + q^{4.57} + q^{4.78} + \cdots$
n = 15	$1 + q + q^{2.04} + q^{2.97} + q^{3.11} + q^{3.89} + q^{4.11} + q^{4.24} + q^{4.68} + q^{4.83} + \cdots$
n = 17	$1 + q + q^{2.03} + q^{2.98} + q^{3.09} + q^{3.91} + q^{4.09} + q^{4.20} + q^{4.76} + q^{4.87} + \cdots$
<i>n</i> = 19	$1 + q + q^{2.02} + q^{2.98} + q^{3.07} + q^{3.93} + q^{4.07} + q^{4.16} + q^{4.81} + q^{4.90} + \cdots$
$\widehat{ch}(\mathcal{K}_{1,2})$	$1 + q + q^2 + 2q^3 + 3q^4 + 4q^5 + 6q^6 + \cdots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � �

model	Boundary algebras	Virasoro modules	Scaling limit	Conclusion
0000	0000	0000	000000	0

• Example for (p, p') = (1, 3) k = 0 d = 1:

$$\begin{array}{ll} n = 13 & 1 + q + q^{2.05} + q^{2.96} + q^{3.15} + q^{3.85} + q^{4.15} + q^{4.31} + q^{4.57} + q^{4.78} + \cdots \\ n = 15 & 1 + q + q^{2.04} + q^{2.97} + q^{3.11} + q^{3.89} + q^{4.11} + q^{4.24} + q^{4.68} + q^{4.83} + \cdots \\ n = 17 & 1 + q + q^{2.03} + q^{2.98} + q^{3.09} + q^{3.91} + q^{4.09} + q^{4.20} + q^{4.76} + q^{4.87} + \cdots \\ n = 19 & 1 + q + q^{2.02} + q^{2.98} + q^{3.07} + q^{3.93} + q^{4.07} + q^{4.16} + q^{4.81} + q^{4.90} + \cdots \\ \widehat{ch}(\mathcal{K}_{1,2}) & 1 + q + q^2 + 2q^3 + 3q^4 + 4q^5 + 6q^6 + \cdots \end{array}$$

• The character only provides **partial information**:

model	Boundary algebras	Virasoro modules	Scaling limit	Conclusion
0000	0000	0000	000000	0

• Example for
$$(p, p') = (1, 3)$$
 $k = 0$ $d = 1$:

$$\begin{array}{ll} n = 13 & 1 + q + q^{2.05} + q^{2.96} + q^{3.15} + q^{3.85} + q^{4.15} + q^{4.31} + q^{4.57} + q^{4.78} + \cdots \\ n = 15 & 1 + q + q^{2.04} + q^{2.97} + q^{3.11} + q^{3.89} + q^{4.11} + q^{4.24} + q^{4.68} + q^{4.83} + \cdots \\ n = 17 & 1 + q + q^{2.03} + q^{2.98} + q^{3.09} + q^{3.91} + q^{4.09} + q^{4.20} + q^{4.76} + q^{4.87} + \cdots \\ n = 19 & 1 + q + q^{2.02} + q^{2.98} + q^{3.07} + q^{3.93} + q^{4.07} + q^{4.16} + q^{4.81} + q^{4.90} + \cdots \\ \widehat{ch}(\mathcal{K}_{1,2}) & 1 + q + q^2 + 2q^3 + 3q^4 + 4q^5 + 6q^6 + \cdots \end{array}$$

 $\bullet \oplus \bullet \oplus \bullet \oplus \bullet \bullet$

• The character only provides **partial information**:

Corner entries :

Т

Boundary algebras

Virasoro modules 0000 Scaling limit

Conclusion O

Evidence from TL_n representation theory

- Applies for the case where there is **no seam** (k = 0).
- Lattice deformations of Virasoro modes: (Koo, Saleur 1994)

$$L_{m}^{(n)} = \frac{n}{\pi} \left[-\frac{1}{v_{s}} \sum_{j=1}^{n-1} (e_{j} - f_{bulk}) \cos\left(\frac{\pi m j}{n}\right) + \frac{1}{v_{s}^{2}} \sum_{j=1}^{n-2} \left[e_{j}, e_{j+1} \right] \sin\left(\frac{\pi m j}{n}\right) \right] + \frac{c}{24} \delta_{m,0}.$$

- The structure of the limiting Virasoro module can be deduced from:
 - the character
 - the computation of the first eigenstates of \mathcal{H} for small system size
 - the known structure of $K_{n,0}^d$

Boundary algebras

Virasoro modules 0000 Scaling limit

Conclusion O

Evidence from TL_n representation theory

• Applies for the case where there is **no seam** (k = 0).

• Lattice deformations of Virasoro modes: (Koo, Saleur 1994)

$$L_{m}^{(n)} = \frac{n}{\pi} \left[-\frac{1}{v_{s}} \sum_{j=1}^{n-1} (e_{j} - f_{bulk}) \cos\left(\frac{\pi m j}{n}\right) + \frac{1}{v_{s}^{2}} \sum_{j=1}^{n-2} \left[e_{j}, e_{j+1} \right] \sin\left(\frac{\pi m j}{n}\right) \right] + \frac{c}{24} \delta_{m,0}.$$

- The structure of the limiting Virasoro module can be deduced from:
 - the character
 - the computation of the first eigenstates of \mathcal{H} for small system size
 - the known structure of $K_{n,0}^d$

$$(\mathsf{K}^{d}_{n,0}) \qquad \qquad (\mathcal{K}_{1,s})$$

Example 2: $\mathsf{I}^{d}_{n,0} \xrightarrow{n \to \infty} \bullet$

Here, the character already determines the structure.

Boundary algebras

Virasoro modules 0000 Conclusion O

Evidence from $B_{n,k}$ representation theory

- Recall: Lattice Kac modules K^d_{n,k} are really modules over B_{n,k}.
- The representation theory of B_{*n*,*k*} is **not known**.

Partial analysis of the	,	Partial understanding
module structure of $K^{d}_{n,k}$	\rightarrow	of the structure of $\mathcal{K}_{r,s}$

• Same strategy as for k = 0 and TL_n :

Example 1:

• This analysis is consistent with the conjecture in every case we looked at.

Boundary algebras

Virasoro modules 0000 Scaling limit

Conclusion O

Evidence from $B_{n,k}$ representation theory

- Recall: Lattice Kac modules K^d_{n,k} are really modules over B_{n,k}.
- The representation theory of B_{*n*,*k*} is **not known**.

Partial analysis of the	,	Partial understanding
module structure of $K^{d}_{n,k}$	\rightarrow	of the structure of $\mathcal{K}_{r,s}$

• Same strategy as for k = 0 and TL_n :

Example 2:

• This analysis is consistent with the conjecture in every case we looked at.

Evidence from fusion

• Lattice prescription for fusion: (Cardy 1986; Pearce, Rasmussen, Zuber 2006)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

 $\mathsf{K}^{0}_{n,k} \xrightarrow{n \to \infty} \mathcal{K}_{r,1}$

Evidence from fusion

• Lattice prescription for fusion: (Cardy 1986; Pearce, Rasmussen, Zuber 2006)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

 $\mathsf{K}^{0}_{n,k} \xrightarrow{n \to \infty} \mathcal{K}_{r,1}$

Evidence from fusion

• Lattice prescription for fusion: (Cardy 1986; Pearce, Rasmussen, Zuber 2006)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

Evidence from fusion

• Lattice prescription for fusion: (Cardy 1986; Pearce, Rasmussen, Zuber 2006)

 $\mathsf{K}^{d}_{n,0} \xrightarrow{n \to \infty} \mathcal{K}_{1,s}$

Evidence from fusion

• Lattice prescription for fusion: (Cardy 1986; Pearce, Rasmussen, Zuber 2006)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Evidence from fusion

• Lattice prescription for fusion: (Cardy 1986; Pearce, Rasmussen, Zuber 2006)

• Evidence supporting that $\mathcal{K}_{r,s} = \mathcal{K}_{r,1} \times \mathcal{K}_{1,s}$ as Virasoro modules:

■ Verlinde-like formula for the characters:

$$\operatorname{ch}(\mathcal{K}_{r,1}\times\mathcal{K}_{1,s})=\operatorname{ch}(\mathcal{K}_{r,s})$$

• Construction of $\mathcal{K}_{r,1} \times \mathcal{K}_{1,s}$ at any desired grade using the Nahm-Gaberdiel-Kausch algorithm

Loo		mo	del
00	0	oc	0

Boundary algebras

Virasoro modules

Scaling limit

Conclusion

Conclusion

Summary

- The **boundary seam algebras** B_{*n*,*k*} are quotients of the one-boundary TL algebra.
- They describe dense loop models with a boundary seam.
- In the scaling limit, its modules become Virasoro Kac modules.

Outlook

- Work out the representation theory of B_{*n*,*k*}.
- Understand what's happening in regime *B*.
- Study loop models with boundary seams on both sides.

Loo		mo	del
00	0		0

Boundary algebras

Virasoro modules

Scaling limit

Conclusion

Conclusion

Summary

- The **boundary seam algebras** B_{*n*,*k*} are quotients of the one-boundary TL algebra.
- They describe dense loop models with a boundary seam.
- In the scaling limit, its modules become Virasoro Kac modules.

Outlook

- Work out the representation theory of B_{*n*,*k*}.
- Understand what's happening in regime *B*.
- Study loop models with boundary seams on both sides.

Thank you!