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First Part: Free and Toroidal Boundary Conditions Introduction

A non-trivial problem in combinatorics

Six-vertex model was proposed as a 2D realization of the counting
problem of ice residual entropy

Solved by Lieb under periodic (toroidal) boundary condition:
S = 3

2 ln
(

4
3

)
.

Why Periodic Boundary Conditions? Should we always expect
intensive properties to be independent of boundary conditions?

The first Counter-examples! Are they exceptions to the rule?
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First Part: Free and Toroidal Boundary Conditions Introduction

Brascamp et al prove that, for rectangular lattices with even number
of sites, the free-energy of free boundary conditions and periodic
boundary conditions are the same(1973).

Batchelor et al prove that toroidal boundary conditions with
antiperiodic closing on the horizontal and periodic closing on the
vertical still gives the same free-energy as PBC(1995). Nevertheless,
the number of lines must be even otherwise partition function is zero.

Korepin and Zinn-Justin prove that Domain-Wall boundary conditions
gives a different free-energy. The residual entropy is S = 1

2 ln( 33

24 ).

What is really happening? Are those kinds of boundary really
exceptions?
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First Part: Free and Toroidal Boundary Conditions Free-Boundary decomposition

Arrows can be either equal or opposite at closing!

Horizontal: 0 ⇒ T (0) = A + D, 1 ⇒ T (1) = B + C

Vertical: 0 ⇒ G(0) = Id , 1 ⇒ G(1) = σx

Zfree =
∑

φk ,θj =0,1

TrV

 L⊗
k=1

G(φk )

Vk

N∏
j=1

T
(θj )

(λj )

 = TrV

 L⊗
k=1

(
1 1
1 1

)
k

(A(λ) + D(λ) + B(λ) + C(λ))N

, (1)
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First Part: Free and Toroidal Boundary Conditions Free-Boundary decomposition

Each component of the previous sum can be viewed as a particular
toroidal boundary condition, which mix periodic and anti-periodic
closings.

One may organize these contributions in a matrix MN,L whose elements
are the partitions Zj ,k such

j − 1 = θ120 + θ221 + · · ·+ θN2N−1,

k − 1 = φ120 + φ221 + · · ·+ φL2L−1

MN,L =


Z1,1 Z1,2 · · · Z1,2L

Z2,1 Z2,2 · · · Z2,2L

...
...

. . .
...

Z2N ,1 Z2N ,2 · · · Z2N ,2L

 , Zfree =
2N∑

j=1

2L∑
k=1

Zj ,k . (2)
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First Part: Free and Toroidal Boundary Conditions Free-Boundary decomposition

a = b = c = 1

M2,2 =


18 0 0 8
0 10 10 0
0 10 10 0
8 0 0 8

 M2,3 =


44 0 0 20 0 20 20 0
0 26 24 0 26 0 0 16
0 26 24 0 26 0 0 16

26 0 0 20 0 20 20 0



M3,2 =



44 0 0 26
0 26 26 0
0 24 24 0

20 0 0 20
0 26 26 0

20 0 0 20
20 0 0 20
0 16 16 0


M3,3 =



148 0 0 84 0 84 84 0
0 94 84 0 94 0 0 72
0 84 80 0 84 0 0 72

84 0 0 74 0 72 74 0
0 94 84 0 94 0 0 72

84 0 0 72 0 76 72 0
84 0 0 74 0 72 74 0
0 72 72 0 72 0 0 68



selection rule Mod [Φ−Θ, 2] = 0

ZN×L
j ,k = ZL×N

k,j

Z1,1 = ΩP,P is the largest element for ∆ = 1
2

ΩPP ≤ Ωfree ≤ 2L+N−1ΩPP ⇒ SPP = Sfree . (3)
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First Part: Free and Toroidal Boundary Conditions Free-Boundary decomposition

∆ 6= 1
2

We have more generally that the largest element is ZPP for ∆ ≥ −1 and

Largest contribution for ∆ < −1

L even, N even ZPP

L even, N odd ZPA

L odd, N even ZAP

L odd, N odd ZAA

This scenario was verified for L,N up to six.

Ffree = Fmax (4)
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First Part: Free and Toroidal Boundary Conditions Homogeneous Toroidal Boundaries

The homogenous toroidal boundaries are those where there is no change from periodic to anti-periodic along the horizontal or
the vertical direction. They are:

Z11 = ZPP = TrV

[(
T (0)

)N
]

(5)

Z
2N 1

= ZAP = TrV

[(
T (1)

)N
]

(6)

Z
12L = ZPA = TrV

[
Πx
(

T (0)
)N
]

(7)

Z
2N 2L = ZAA = TrV

[
Πx
(

T (1)
)N
]

(8)

Both T (0) and T (1) can be diagonalized, and due to the discrete symmetries:

[
T (0)(λ),Πx

]
=
[

T (0)(λ),Πz
]

= 0, (9)[
T (1)(λ),Πx

]
=
[

T (1)(λ),Πz
]

+
= 0, (10)

Πx Πz = (−1)LΠz Πx
, (11)

where Πx =
⊗L

m=1 σ
x is the reflection operator and Πz =

⊗L
m=1 σ

z is the parity operator, we can see that all four

free-energies above can be obtained.
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First Part: Free and Toroidal Boundary Conditions Homogeneous Toroidal Boundaries

Batchelor et. al. ⇒ FAP = FPP for ∆ < −1, therefore

lim
L→∞

1

L
ln Λ

(1)
max = lim

L→∞

1

L
ln Λ

(0)
max ∆ < −1, (12)

hence we have
FPP = FAP = FPA = FAA, (13)

whenever they are allowed by selection rule. Therefore

Ffree = FPP ∀∆ (14)

Note that there is no restriction over the parity of lattice size
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First Part: Free and Toroidal Boundary Conditions Mixed Toroidal Boundaries: First Row

The First Row of MN,L is given by:

Z1,j = TrV

[
L⊗

m=1

G(φm)
Vm

(T (0))N

]
=

2L∑
g=1

(
Λ

(0)
g

)N
f
{φm}

L,g , (15)

f
{φm}

L,g =
〈
g (0)

∣∣∣ L∏
m=1

G(φm)
Vm

∣∣∣g (0)
〉

(16)

Since T (0) commutes with Sz , we can choose eigenvectors to live in a
definite sector of Sz . Therefore we have to have Φ even, otherwise
f
{φm}

L,g will be zero.

Perron-Frobenius theorem ⇒ f
{φm}

L,g is non-negative for maximal
eigenvectors of each sector.

How could f
{φm}

L,g change the free-energy? It should decay as fast as

e−δLN . But this impossible since it only depends on L!
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First Part: Free and Toroidal Boundary Conditions Mixed Toroidal Boundaries: First Row

∆ ≤ 1 ⇒ n = bL
2c ⇒ F1,j = − limL→∞

1
L ln Λ

(0)
max = FPP

∆ > 1 ⇒ n = 0 ⇒ F1,j = − limL→∞
1
L ln Λ

(0)

max,Φ
2

= FPP?

Because for ∆ > 1 we have Λmax,n=0 > Λmax,n=1 . . . > Λmax,n=b L
2
c, but

fmax,n<Φ
2

= 0.

Bethe ansatz solution reveals that
limL→∞

1
L ln Λ

(0)
max,n = limL→∞

1
L ln Λ

(0)
max,0

F1,j = FPP ∀∆ (17)

Conjecture:

Fi ,j = FPP ∀∆ (18)
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Second Part: Fixed Boundary Conditions

Second Part: Fixed Boundaries

Although is very probable that Fi ,j = FPBC for all mixtures of local
periodicity and anti-periodicity, we already know some fixed boundary
conditions with intensive properties differing from PBC. Therefore we
should search for different types of fixed boundary conditions!

Θ1 = 1

Θ2 = 1

Θ3 = 0

Θ4 = 0

Θ5 = 0

Φ1 = 0 Φ2 = 1 Φ3 = 0 Φ4 = 0 Φ5 = 1

This Boundary can be viewed as
one term in the summation of
Z10,25

{0, 1, 0, 0, 1}2 = 10− 1
{1, 1, 0, 0, 0}2 = 25− 1
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Second Part: Fixed Boundary Conditions The Domain-Wall descendants

Since there are so many fixed boundary conditions, we have chosen to search
for boundaries with the same number of configurations as
Domain-Wall(DW). Scanning over all fixed boundaries with N = 3, N = 4,
N = 5 we found:
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Second Part: Fixed Boundary Conditions The Domain-Wall descendants
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Second Part: Fixed Boundary Conditions The Domain-Wall descendants

Scanning over all fixed boundaries with N = 3, N = 4 and N = 5
gives 32 different boundaries with the same number of configurations
of DW, Ω = 7, Ω = 42 and Ω = 429,respectively.

Is there a pattern for these boundaries? Can we group them in a
family?
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Second Part: Fixed Boundary Conditions The Domain-Wall descendants

s1

s1

s2

s2

s3

s3

s4

s4

Corner edges satisfy an
isolated arrow conservation

24 corners × 2 DW = 32

Can we find a determinant formula for the partition function of these
boundaries?
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Second Part: Fixed Boundary Conditions The Domain-Wall descendants

The simplest example: s1 = s2 = s4 = −, and s3 = +. In QISM formulation

ZN ({λ}, {µ}) = 〈⇓N | B(λN ) . . . B(λ2)D(λ1)
∣∣↓⇑N−1

〉
,

using two-site decomposition (Bogoliubov, Pronko, Zvonarev.2002):

TA(λ) =

(
AN−1(λ) BN−1(λ)
CN−1(λ) DN−1(λ)

)(
A1(λ) B1(λ)
C1(λ) D1(λ)

)
, (19)

we can derive the following relation,

ZN ({λ}, {µ}) =
N∑

j=1

rj
〈
⇓N−1

∣∣ x
N∏

k=j+1

BN−1(λk )DN−1(λj )

x
j−1∏
k=1

BN−1(λk )
∣∣⇑N−1

〉
, (20)

where

r1 = a(λ1 − µ1)
N∏

m=2

b(λm − µ1), r2 =
c(λ1 − µ1)c(λ2 − µ1)

a(λ1 − µ1)b(λ2 − µ1)
r1,

rj =
a(λj−1 − µ1)c(λj − µ1)

c(λj−1 − µ1)b(λj − µ1)
rj−1 j = 3, . . . ,N. (21)
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Second Part: Fixed Boundary Conditions The Domain-Wall descendants

Using Yang-Baxter Algebra

D(λj )

x
j−1∏
m=1

B(λm) =

j∑
k=1

βjk

x
j∏

m=1
m 6=k

B(λm)D(λk ), (22)

where

βjk =


−

c(λj − λk )

b(λj − λk )

j∏
i=1
i 6=k

a(λk − λi )

b(λk − λi )
, k 6= j,

j−1∏
i=1

a(λj − λi )

b(λj − λi )
, k = j.

(23)

The recursion relation:

ZN ({λ}, {µ}) =
N∑

k=1

Z DWBC
N−1 ({λ} \ λk , {µ} \ µ1)

(b(λk ))N−1
N∑

j=k

rjβjk

 . (24)

Using DW determinant formula(Izergin, Coker, Korepin.1992)

Z DWBC
N ({λ}, {µ}) = fN ({λ}, {µ}) det

[
ρ(λi , µj )

]j=1,...,N
i=1,...,N

, (25)

in the relation (24)
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Second Part: Fixed Boundary Conditions The Domain-Wall descendants

We finally obtain that

ZN ({λ}, {µ}) =

∣∣∣∣∣∣∣∣∣∣

δ1 ρ(λ1, µ2) ρ(λ1, µ3) . . . ρ(λ1, µN )
δ2 ρ(λ2, µ2) ρ(λ2, µ3) . . . ρ(λ2, µN )

.

.

.

.

.

.

.

.

.
. . .

.

.

.
δN ρ(λN , µ2) ρ(λN , µ3) . . . ρ(λN , µN )

∣∣∣∣∣∣∣∣∣∣
, (26)

where δk , ρ(λ, µ) and fN ({λ}, {µ}) are given by

δk = (−1)1+k fN−1({λ} \ λk , {µ} \ µ1)bN−1(λk )
N∑

j=k

rjβjk , (27)

ρ(λ, µ) =
c(λ− µ)

a(λ− µ)b(λ− µ)
, (28)

fN ({λ}, {µ}) =

N∏
i,j=1
i<j

(cij cji bii bjj + cii cjj aij aji )(cii cjj bij bji + cij cji aii ajj )

ρiiρjj (cij cji bii bjj + cii cjj aij aji )− ρijρji (cij cji aii ajj + cii cjj bij bji )

∏N
i=1 (aii bii )N−2

, (29)

and we have denoted aij = a(λi − µj ) and so on.
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Second Part: Fixed Boundary Conditions The Domain-Wall descendants

Further comments on dDWBC

Isolated arrow conservation rule extension

N larger than 5

N = 6 ⇒ Ω = 7436 , the DW
number!

There are a total of 160 boundaries
sharing the same Ω!
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Second Part: Fixed Boundary Conditions Néel Boundary Condition

A natural question: Which fixed boundary condition has the largest
Ω?

Looking at N = 3 could lead us to wrong conclusions. In this case the dDWBC

are the family with the largest number of configurations. At N = 4 this is not the

case anymore. While dDWBC has 42 configurations, the largest number is 64.

The related boundary is

This new boundary satisfy the
isolated arrow conservation rule!

32 boundaries with the same Ω.
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Second Part: Fixed Boundary Conditions Néel Boundary Condition

Here the number 32 of boundaries with largest number of
configurations remains the same for N = 6!

N 3 4 5 6

Ω 7 64 1322 64934

Separation of families!
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Second Part: Fixed Boundary Conditions Néel Boundary Condition

Is it possible to obtain the number of configurations as a function of n? Can we find a
determinant formula?
QISM Representation:

Z NE
N ({λ}, {µ}) = 〈↑↓ . . . ↑↓|D(λN )A(λN−1) · · ·D(λ2)A(λ1) |↑↓ . . . ↑↓〉 , (30)

[A(λ),D(µ)] 6= 0 (31)

[D(λ)A(λ),D(µ)A(µ)] 6= 0 (32)[
D(λ)A(λ), (D(λ)A(λ))t] 6= 0 (33)

No Universal eigenstates!

No normality, except at infinite
temperature point!

[A(λ),Sz ] = [D(λ), Sz ] = [D(λ)A(µ), Sz ] = 0. (34)

Nevertheless we still can get some information without actually calculating the
exact number of configurations.

We have the following inequality

Ωmax,fix ≤ Ωfree ≤ 22N+2LΩmax,fix ⇒ Sfree = SPBC = Smax,fix (35)

Our conjecture is: max , fix ≡ NE .
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Second Part: Fixed Boundary Conditions Néel Boundary Condition

N number of states

1 1
2 2
3 7
4 64
5 1322
6 64914
7 7474305
8 2033739170
9 1305583070738
10 1981880443295788
11 7111657020627320662
12 60382974032926242142168
13 1213039653244899907872180826
14 57687270950680153355854587442676
15 6494209210696211480439308528411663853
16 1731204438495421321106461120147832169010790
17 1092829001103470428650265862752651675963745966742
18 1633892840599915791908254127642749411000513938128114064
19 5785898354977820698935460290451680551971080689572072829375890
20 48534629904275880189653389798729712740901732087151544103619504415896

Table: Number of configurations for Néel boundary condition.

We have tried some sequence solvers, but they could’nt obtain the general term nor predict the next number.

Tavares (UFSCar) Florence 2015 11/06/2015 30 / 37



Second Part: Fixed Boundary Conditions Néel Boundary Condition

 0
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Second Part: Fixed Boundary Conditions Néel Boundary Condition

Still not convinced?

SN =
log Ω

N2
=

log(cNω)

N2
=

log cN

N2
+

logω

N2
≈

logω

N2
, (37)

where cN is of order of the unity.

Therefore, we should count digits or some other exponential growth!

N number of digits difference

3 1
4 2 1
5 4 2
6 5 1
7 7 2
8 10 3
9 13 3
10 16 3
11 19 3
12 23 4
13 28 5
14 32 4
15 37 5
16 43 6
17 49 6
18 55 6
19 61 6
20 68 7

S4k+3 ≈
1 +

(∑k
j=1 6j

)
(4k + 3)2

log(10)

=
2 + (1 + 6k)k

2(4k + 3)2
log(10), (38)

taking thermodynamic limit k →∞, we find

S =
3

16
log(10) = 0.431735... (39)

compare with

SPBC =
3

2
log(

4

3
) = 0.431523... (40)
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Second Part: Fixed Boundary Conditions Merge type Boundaries

By now we know that there are at least three possible outcomes for the entropy of 6 V:

SFE = 0 SdDWBC =
1

2
ln(27/16) SPBC =

3

2
ln(4/3), (41)

Are all the values between SFE and SPBC accessible?

To answer this question we introduced what we call Merge-type boundaries

n

n
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Second Part: Fixed Boundary Conditions Merge type Boundaries

DW-FE Fusion

n

n Z DWFE
N[∏N

i=1

∏N
j=n+1 b(λi − µj )

] [∏N
i=n+1

∏N
j=1 a(λi − µj )

] = Z DW
n

(42)

SDWFE = lim
N→∞

(
n

N

)2
SDW (43)

Choosing a suitable sequence n(N), one can obtain any value of entropy S such that

SFE ≤ S ≤ SDW (44)
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NE-FE Fusion

n

n
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NE-FE Fusion

Conjecture: 0 ≤ SNEFE ≤ SPBC for a suitable chosen sequence n(N)

n

n

L-shaped partition function. Colomo and
Pronko(2015)
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NE-FE Fusion

Conjecture: 0 ≤ SNEFE ≤ SPBC for a suitable chosen sequence n(N)

n

n

L-shaped partition function. Colomo and
Pronko(2015)

SNEFE
n+1 − SNEFE

n ≤ O(
1

N
) (45)

5 10 15 20
n

0.1

0.2

0.3

0.4
SNEFE

N=20

5 10 15 20
N

0.05

0.10

0.15

Sn+1
NEFE

-Sn
NEFE

n=d N

2
t
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Final Remarks and Open Questions

We argued that the free-energy for boundaries mixing periodic and anti-periodic closings should be the same as PBC
and free-boundary.

We found a family of 32 fixed boundary conditions with same number of configurations as DW. There are other fixed
boundary conditions whose number of configurations coincide with DW, but we were not able to classify them in the
same family.

We introduced the Néel boundary condition, whose number of configurations we believe to be the largest one among all

fixed boundaries. From that we conclude SNE = SPBC , but there is no rigorous proof that Néel is indeed maximal.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

a

c

b c

Assuming the last result to be true, is F NE = F PBC for all
a, b, c?

Is it possible to find the exact number of configurations for all N?
Does integrability play any role for this boundary?

We introduced the Merge type boundaries and proved that the entropy may take any value between SFE and SDW .

If one can prove the “continuity” of entropy for merge-type boundaries and that NE is maximal, then we can extend

SDW to SPBC in the above assertion.
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