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Introduction

Background

• The six vertex model is can be reformulated as a random stepped
surface called heights.

• In the thermodynamic limit, the limiting average height function
becomes deterministic and can be found by solving a certain
boundary value problem.

• The six vertex model is quantum integrable in the sense that it admits
commuting transfer matrices and can be solved by Bethe ansatz.

• What does the quantum integrability imply for the PDE governing the
limiting height function?
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Introduction

Outline of Talk

• Quick Review of Six Vertex Model

• Thermodynamic Limit

• Integrability:

• Transfer Matrices
• Commuting Hamiltonians

• Examples

• Outlook
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Review: Six Vertex Model

Configurations and Weights

• Let ST = [0,T ]× [0, 1], and let SεT = εZ2 be the scaled square lattice
centered inside ST .

• A configuration s of the six vertex model is a set of paths that only
go right and up.

w1

w2

w3

w1

w2

w3

• Each vertex has a weight v(s).
• The Boltzmann weight of s:

w(s) =
∏

vertex v

v(s)
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Review: Six Vertex Model

Boundary Conditions

• The state of s at time t is the set of horizontal edges traversed by s
at t.
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Review: Six Vertex Model

Boundary Conditions

• The state of s at time t is the set of horizontal edges traversed by
paths at t.

• Fixed boundary conditions are choice initial and final states η1 and η2.

• The partition function and the normalized free energy are:

Z εη1,η2,T =
∑

s(0)=η1
s(1)=η2

w(s)

f εη1,η2,T = ε2 log
(
Zη1,η2

)
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Review: Six Vertex Model

Height Function

• A height function is a function on faces satisfying a gradient
constraint:

• 0 ≤ h(x , y)− h(x + ε, y) ≤ 1
• 0 ≤ h(x , y + ε)− h(x , y) ≤ 1

• Height functions are in bijection with configurations; the level curves
of h are the paths of the configuration.

1

2

2

3 3

1 0

2 1

2

3

2

• The boundary conditions determine the height function at the
boundary.

• The normalized height function h̄ = εh. The average height function
〈h̄〉 is the ensemble average of the normalized height function.
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Thermodynamic Limit

Thermodynamic limit

• Suppose we have a sequence of six vertex models Sε
i

t and boundary

height functions ηε
i

1 , η
εi
2 with εi → 0.

• The boundary conditions are said to be stabilizing if the normalized
boundary height functions ηε1, η

ε
2 converge to η1, η2 : [0, 1]→ R in the

uniform metric as ε→ 0.

• In this case, there exist limiting free energy and limiting height
function:

fη1,η2,T = lim
ε→0

f εη1,η2,T

〈h〉 = lim
ε→0
〈h〉ε
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Thermodynamic Limit

Variational Principle

• The limiting free energy and average height function can be
computed by variational principle.

fη1,η2,T = max
h∈H

∫ 1

0

∫ T

0
σw (∂th, ∂yh) dt dy

where σ is called the surface tension function, and H is the set of
limiting height functions, h : St → R satisfying: h(0, 0) = 0,
monotonicity, and Lipschitz continuity with constant 1.

• The limiting height function 〈h〉 is the maximizer.

• Euler Lagrange equations:

∂11σw ∂2t h + 2 ∂12σw ∂t∂yh + ∂22σw ∂2yh = 0
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Integrability of the Six Vertex Model

Transfer Matrices

• Let {e0, e1} be an orthonormal basis for C2, and let V = (C2)⊗b1/εc.

• A state s of the six vertex model corresponds to a basis vector
|s〉 = es0 ⊗ es1 · · · esN , where si = 1 is the indicator of the ith edge.

• Define the transfer matrix Tw : V → V by its matrix elements:

〈s1|Tw |s2〉 = Zs1,s2,ε

(ie. the partition function for just one column).

• Then:

Zη1,η2,t = 〈η1|T bt/εcw |η2〉
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Integrability of the Six Vertex Model

Hamiltonian Formulation of Variational Principle

• Recast the variational problem in the Hamiltonian formulation by
Legendre transform:

Hw (π, t) = max
s
πs − σw (s, t)

The new variables are h and π, where π is conjugate to ∂th.

• The hamiltonian is:

Hw (π(y), h(y)) =

∫ 1

0
H(π(y), ∂yh(y)) dy

• The variational principle is:

fη1,η2,T = max
π,h

S [π, h]

S [π, h] =

∫ T

0

∫ 1

0
π ∂th − Hw

(
π, ∂yh

)
dt dy

27 / 59



Integrability of the Six Vertex Model

Hamiltonian Formulation of Variational Principle

• Recast the variational problem in the Hamiltonian formulation by
Legendre transform:

Hw (π, t) = max
s
πs − σw (s, t)

The new variables are h and π, where π is conjugate to ∂th.
• The hamiltonian is:

Hw (π(y), h(y)) =

∫ 1

0
H(π(y), ∂yh(y)) dy

• The variational principle is:

fη1,η2,T = max
π,h

S [π, h]

S [π, h] =

∫ T

0

∫ 1

0
π ∂th − Hw

(
π, ∂yh

)
dt dy

28 / 59



Integrability of the Six Vertex Model

Hamiltonian Formulation of Variational Principle

• Recast the variational problem in the Hamiltonian formulation by
Legendre transform:

Hw (π, t) = max
s
πs − σw (s, t)

The new variables are h and π, where π is conjugate to ∂th.
• The hamiltonian is:

Hw (π(y), h(y)) =

∫ 1

0
H(π(y), ∂yh(y)) dy

• The variational principle is:

fη1,η2,T = max
π,h

S [π, h]

S [π, h] =

∫ T

0

∫ 1

0
π ∂th − Hw

(
π, ∂yh

)
dt dy

29 / 59



Integrability of the Six Vertex Model

Hamiltonian Formulation of Variational Principle

• Recast the variational problem in the Hamiltonian formulation by
Legendre transform:

Hw (π, t) = max
s
πs − σw (s, t)

The new variables are h and π, where π is conjugate to ∂th.
• The hamiltonian is:

Hw (π(y), h(y)) =

∫ 1

0
H(π(y), ∂yh(y)) dy

• The variational principle is:

fη1,η2,T = max
π,h

S [π, h]

S [π, h] =

∫ T

0

∫ 1

0
π ∂th − Hw

(
π, ∂yh

)
dt dy

30 / 59



Integrability of the Six Vertex Model

Hamiltonian Formulation

• The canonical Poisson structure is given by:
{π(y), h(y ′)} = δ(y − y ′).

• The equations of motion are:

∂h

∂t
(y) = {h(y),H}

∂π

∂t
(y) = {π(y),H}

These are equivalent to the Euler-Lagrange equations.
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Integrability of the Six Vertex Model

Commuting Transfer Matrices and Hamiltonians

• Recall ∆w =
w2

1+w2
2−w2

3

2w1w2
.

• Quantum Integrability: if w and w̃ satisfy ∆w = ∆w̃ then the transfer
matrices commute:

[Tw ,Tw̃ ] = 0

• Main result is semiclassical integrability: if ∆w = ∆w̃ then the
corresponding Hamiltonians Poisson commute:

{Hw ,Hw̃} = 0
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Integrability of the Six Vertex Model

Brief Sketch of Proof

• The proof is relies on two calculations:

• Lemma 1: If σw and σw̃ have equal Hessian, ie. det(∂i∂jσw ) = det(∂i∂jσw̃ ),
then the corresponding Hamiltonians Poisson commute

{Hw ,Hw̃} = 0

• Lemma 2: The Hessian of the surface tension σw of the six vertex model σ
depends on w only via ∆(w).
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Examples

Easy Example: Dimer Model

• For a dimer model on a bipartite graph, the surface tension takes a
particular form.

• By diagonalizing the Kasteleyn matrix, the free energy with magnetic field
(H,V ) takes the form:

f (H,V ) =

∫ 2π

0

∫ 2π

0

log(A + Be ik+H + Ce im+V ) dk dm

for some constants A,B,C .

• Then σ is the Legendre transform of f

σ(s, t) = max
H,V

s H + t V − f (H,V )

• Lemma: The hessian of σ is π2, independent of weights.
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Examples

Hexagonal Dimer Model

• The six vertex model with weights

w1 = 0 w2 = a w3 = b w4 = c w5 =
√
bc w6 =

√
bc

Corresponds to the dimer model on the hexagonal lattice with edge weights
(a, b, c).

b

c

a

• The Euler-Langrange equations for the limiting height function can be
trasnformed to the Burger’s equation, ∂tu + u ∂yu = 0, which admits many
integrals of motion:

∫
u(y)ndy .

• The surface tension function σ can be calculated in closed form, and the
Hamiltonians can be shown directly to commute.
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Examples

Free Fermion Point

• More generally, when ∆w = 0, the six vertex model is equivalent to the
dimer model on the graph:

for certain choice of edge weights.

• The surface tension can be computed in closed form, and the Hamiltonians
commute.
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Further Work

Generalities

• The semiclassical limit of [Tw ,Tw̃ ] = 0 is as follows:

• Fix t, t̃ and let

Z ε
η1,η2,t,t̃

= 〈η1| T bt/εcw T
bt̃/εc
w̃ |η2〉

• This corresponds to gluing two regions together:

Z ε
η1,η2,t,t̃

=
∑
η

Z εη1,η,t Z̃
ε
η,η2,t̃

• In the limit ε→ 0, by large deviation principle:

fη1,η2,t,t̃ = max
η

fη1,η,t + f̃η,η2,t̃
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Further Work

Generalities

• The commutation of the transfer matrices implies:

max
η

fη1,η,t + f̃η,η2,t̃ = max
η

f̃η1,η,t̃ + fη,η2,t

for all t, t̃ and boundary conditions η1, η2.

• Recall that f is the Hamilton-Jacobi action.

• Generally:
If the Hamilton-Jacobi actions of H and H̃ commute in the above
sense, then does {H, H̃}?

• Generally no, but under mild assumptions then yes,
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Further Work

Integrability

• The existence of commuting transfer matrices underlies the solvability
of the six vertex model by Bethe Ansatz.

• In the infinite dimensional setting, the Liouville integrability (the
existence of many commuting Hamiltonians) is not enough to have
the complete solvability.

• The existence of commuting hamiltonians is first step towards
showing the integrability of the limit shape PDE.

56 / 59



Further Work

Integrability

• The existence of commuting transfer matrices underlies the solvability
of the six vertex model by Bethe Ansatz.

• In the infinite dimensional setting, the Liouville integrability (the
existence of many commuting Hamiltonians) is not enough to have
the complete solvability.

• The existence of commuting hamiltonians is first step towards
showing the integrability of the limit shape PDE.

57 / 59



Further Work

Integrability

• The existence of commuting transfer matrices underlies the solvability
of the six vertex model by Bethe Ansatz.

• In the infinite dimensional setting, the Liouville integrability (the
existence of many commuting Hamiltonians) is not enough to have
the complete solvability.

• The existence of commuting hamiltonians is first step towards
showing the integrability of the limit shape PDE.

58 / 59



End!
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