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Background

e The six vertex model is can be reformulated as a random stepped
surface called heights.

o In the thermodynamic limit, the limiting average height function
becomes deterministic and can be found by solving a certain
boundary value problem.

e The six vertex model is quantum integrable in the sense that it admits
commuting transfer matrices and can be solved by Bethe ansatz.

e What does the quantum integrability imply for the PDE governing the
limiting height function?
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Outline of Talk

e Quick Review of Six Vertex Model

Thermodynamic Limit

Integrability:

e Transfer Matrices
e Commuting Hamiltonians

e Examples

Outlook
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Configurations and Weights

o Let ST =[0, T] x [0,1], and let S = €Z? be the scaled square lattice
centered inside St.
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Configurations and Weights

o Let ST =[0, T] x [0,1], and let S = €Z? be the scaled square lattice
centered inside St.

e A configuration s of the six vertex model is a set of paths that only
go right and up.

wy Wi
wo wa
w3 w3
e Each vertex has a weight v(s).
e The Boltzmann weight of s:
wis)= [] v(s)

vertex v
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Boundary Conditions

e The state of s at time t is the set of horizontal edges traversed by s
at t.
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Boundary Conditions

e The state of s at time t is the set of horizontal edges traversed by
paths at t.
o Fixed boundary conditions are choice initial and final states 7; and 75.
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Boundary Conditions

e The state of s at time t is the set of horizontal edges traversed by
paths at t.

o Fixed boundary conditions are choice initial and final states 7; and 75.

e The partition function and the normalized free energy are:

Zglﬂh,T: Z W(S)
s(0)=m
s(1)=n2

fnel,?]g,T = 62 Iog (mez)
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Height Function

o A height function is a function on faces satisfying a gradient
constraint:
e 0< h(va)_h(X—’_Evy) =i
e 0 < h(x,y+e€)—h(x,y)<1
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Height Function

o A height function is a function on faces satisfying a gradient

constraint:

e 0< h(x,y)—h(x+ey)<l1
e 0< h(x,y+€) —h(x,y) <1

o Height functions are in bijection with configurations; the level curves

of h are the paths of the configuration.
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Height Function

o A height function is a function on faces satisfying a gradient
constraint:
e 0< h(x,y)—h(x+ey)<1
e 0 < h(x,y+e€)—h(x,y)<1
o Height functions are in bijection with configurations; the level curves
of h are the paths of the configuration.
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e The boundary conditions determine the height function at the
boundary.

e The normalized height function h = eh. The average height function
(h) is the ensemble average of the normalized height function.
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Thermodynamic limit

e Suppose we have a sequence of six vertex models 56 and boundary
height functions 7,15 with € — 0.
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Thermodynamic limit

e Suppose we have a sequence of six vertex models 56 and boundary
height functions 7,15 with € — 0.

e The boundary conditions are said to be stabilizing if the normalized

boundary height functions 7§, nS converge to 11,72 : [0,1] — R in the
uniform metric as € — 0.

o In this case, there exist limiting free energy and limiting height
function:

F o, T = Img) fnmz,T

(h) = lim (h)*
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Variational Principle

e The limiting free energy and average height function can be
computed by variational principle.

g, T = TG%Z[(/ / ow(0¢h, 0y h) dt dy

where o is called the surface tension function, and A is the set of
limiting height functions, h : S; — R satisfying: h(0,0) = 0,
monotonicity, and Lipschitz continuity with constant 1.
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Variational Principle

e The limiting free energy and average height function can be
computed by variational principle.

o B Te%zt(/ / ow(0¢h, 0y h) dt dy

where o is called the surface tension function, and A is the set of
limiting height functions, h : S; — R satisfying: h(0,0) = 0,
monotonicity, and Lipschitz continuity with constant 1.

e The limiting height function (h) is the maximizer.

e Euler Lagrange equations:

0110w OFh + 2 D1204, O:Oyh + 0220 Oph =0
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Transfer Matrices

o Let {ep, e1} be an orthonormal basis for C2, and let V = (C?)®L1/¢),
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Transfer Matrices

e Let {eg, e;} be an orthonormal basis for C?, and let V = (C?)®L1/l.

e A state s of the six vertex model corresponds to a basis vector
|s) = eq, ® €, - - - €5, Where s; = 1 is the indicator of the ith edge.
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Transfer Matrices

Let {eg, e1} be an orthonormal basis for C?, and let V = (C?)®L1/.

A state s of the six vertex model corresponds to a basis vector
|s) = eq, ® €, - - - €5, Where s; = 1 is the indicator of the ith edge.

Define the transfer matrix T,, : V — V by its matrix elements:

(s1] Twl|s2) = Zs 50,

(ie. the partition function for just one column).
e Then:

ZthZJ ==<n1|7ﬁf/d|n2>
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Hamiltonian Formulation of Variational Principle

o Recast the variational problem in the Hamiltonian formulation by
Legendre transform:

Hw(m, t) = maxnws — oy(s, t)
S

The new variables are h and 7, where 7 is conjugate to O:h.
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o Recast the variational problem in the Hamiltonian formulation by
Legendre transform:
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S

The new variables are h and 7, where 7 is conjugate to O:h.
e The hamiltonian is:

1
Hu(m(y), h(y)) = /0 H(r(y), 0, h(y)) dy

e The variational principle is:

f:'h )12,

il il
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Hamiltonian Formulation of Variational Principle

o Recast the variational problem in the Hamiltonian formulation by
Legendre transform:
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S

The new variables are h and 7, where 7 is conjugate to O:h.
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1
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Hamiltonian Formulation

e The canonical Poisson structure is given by:

{m(¥), h(y")} =d(y —y').
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Hamiltonian Formulation

e The canonical Poisson structure is given by:
{m(y), h(y')} = oy — ¥').

e The equations of motion are:

) = (hy). Hy
O () = {x(y), H)

These are equivalent to the Euler-Lagrange equations.
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Commuting Transfer Matrices and Hamiltonians

2 2 2
w; Wy — W.
o Recall Aw = 713 2
w1 wWo

e Quantum Integrability: if w and w satisfy Aw = Aw then the transfer
matrices commute:

[TW7 TVT/] =0
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Commuting Transfer Matrices and Hamiltonians

2 2 2
w; Wy — W.
o Recall Aw = 713 2
w1 wWo

e Quantum Integrability: if w and w satisfy Aw = Aw then the transfer
matrices commute:

[TW7 TVT/] =0

e Main result is semiclassical integrability: if Aw = Aw then the
corresponding Hamiltonians Poisson commute:

{va HW} =0
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Brief Sketch of Proof

e The proof is relies on two calculations:
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e Lemma 1: If o, and oy have equal Hessian, ie. det(9;0jow) = det(9;0j0%),
then the corresponding Hamiltonians Poisson commute
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Brief Sketch of Proof

e The proof is relies on two calculations:

e Lemma 1: If o, and oy have equal Hessian, ie. det(9;0jow) = det(9;0j0%),
then the corresponding Hamiltonians Poisson commute

{Hw,Hz} =0

e | emma 2: The Hessian of the surface tension o, of the six vertex model o
depends on w only via A(w).
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Easy Example: Dimer Model

e For a dimer model on a bipartite graph, the surface tension takes a
particular form.
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Easy Example: Dimer Model

e For a dimer model on a bipartite graph, the surface tension takes a
particular form.

o By diagonalizing the Kasteleyn matrix, the free energy with magnetic field
(H, V) takes the form:

27 27
f(H,V) = / / log(A + Be*™ + Ce™*V) dk dm
(0] (0]

for some constants A, B, C.
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Easy Example: Dimer Model

e For a dimer model on a bipartite graph, the surface tension takes a
particular form.

o By diagonalizing the Kasteleyn matrix, the free energy with magnetic field
(H, V) takes the form:

27 27
f(H,V) = / / log(A + Be*™ + Ce™*V) dk dm
(0] (0]

for some constants A, B, C.

e Then o is the Legendre transform of f

o(s,t) = max s H+tV —f(H,V)

)

e Lemma: The hessian of ¢ is 72, independent of weights.
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Hexagonal Dimer Model

e The six vertex model with weights
wi=0 w=a w3=b wps=c ws=Vbc wsg=Vbc

Corresponds to the dimer model on the hexagonal lattice with edge weights
(a, b, c).

C

pESTME.
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Hexagonal Dimer Model
e The six vertex model with weights
wi=0 w=a w3=b wps=c ws=Vbc wsg=Vbc

Corresponds to the dimer model on the hexagonal lattice with edge weights
(a, b, c).

C
b fb H J
a iy A
ety w
o The Euler-Langrange equations for the limiting height function can be

trasnformed to the Burger's equation, 0;u + u d,u = 0, which admits many
integrals of motion: [ u(y)"dy.
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Hexagonal Dimer Model

e The six vertex model with weights
wi=0 w=a w3=b wps=c ws=Vbc wsg=Vbc

Corresponds to the dimer model on the hexagonal lattice with edge weights
(a, b, c).

C
b fb H J
a iy A
ety w
o The Euler-Langrange equations for the limiting height function can be

trasnformed to the Burger's equation, 0;u + u d,u = 0, which admits many
integrals of motion: [ u(y)"dy.

e The surface tension function o can be calculated in closed form, and the
Hamiltonians can be shown directly to commute.
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Free Fermion Point

e More generally, when Aw = 0, the six vertex model is equivalent to the
dimer model on the graph:

for certain choice of edge weights.
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Free Fermion Point

e More generally, when Aw = 0, the six vertex model is equivalent to the
dimer model on the graph:

for certain choice of edge weights.

e The surface tension can be computed in closed form, and the Hamiltonians
commute.
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Generalities

e The semiclassical limit of [Ty, T] = 0 is as follows:

48/59



Generalities

e The semiclassical limit of [Ty, T] = 0 is as follows:
e Fix t,t and let

ze o= (| TS T )

n1,72,t,F

49 /59



Generalities

e The semiclassical limit of [Ty, T] = 0 is as follows:
e Fix t,t and let

ze o= (| TS T )

n1,72,t,F

e This corresponds to gluing two regions together:

€ Y € e ik
2Zn17n2,f,?1__ :g:: zznl’nvtézh,nz,t
n

50 /59



Generalities

e The semiclassical limit of [Ty, T] = 0 is as follows:
e Fix t,t and let

ze o= (| TS T )

n1,72,t,F

e This corresponds to gluing two regions together:

€ Y € e ik
2Zn17n2,f,?1__ :g:: zznl’nvtézh,nz,t
n

51/59



Generalities

The semiclassical limit of [Ty, T] = 0 is as follows:
Fix t,t and let

Zg, e = ml T T2 )

M2t t =

This corresponds to gluing two regions together:

€ Y € e ik
2Zn17n2,f,?1__ :g:: zznl’nvtézh,nz,t

n

In the limit ¢ — 0, by large deviation principle:

= méax fm,t + 1,

ﬁ?lﬂbif n,m2,t

52/59



Generalities

e The commutation of the transfer matrices implies:

mnaX f;71,777f v fn,ng,? o mé]X fm,n,?—i_ f77:772,t

for all t,t and boundary conditions 7y, 5.
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Generalities

e The commutation of the transfer matrices implies:

mnaX fﬂlﬂhf v fn,ng,? o mé]X fm,n,?—i_ f777772,t

for all t,t and boundary conditions 7y, 5.
o Recall that f is the Hamilton-Jacobi action.

o Generally: i
If the HamiIton—Jacobi~actions of H and H commute in the above
sense, then does {H, H}?

o Generally no, but under mild assumptions then yes,
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Integrability

e The existence of commuting transfer matrices underlies the solvability
of the six vertex model by Bethe Ansatz.
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e In the infinite dimensional setting, the Liouville integrability (the
existence of many commuting Hamiltonians) is not enough to have
the complete solvability.
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Integrability

e The existence of commuting transfer matrices underlies the solvability
of the six vertex model by Bethe Ansatz.

e In the infinite dimensional setting, the Liouville integrability (the
existence of many commuting Hamiltonians) is not enough to have
the complete solvability.

e The existence of commuting hamiltonians is first step towards
showing the integrability of the limit shape PDE.
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