Appearance of determinants for stochastic
growth models
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0. Free fermion and non free fermion models

From discussions yesterday after the talk by Sanjay Ramassamy

e Non free fermion models are more interesting than free

fermion models.
e There are nontrivial aspects for free fermion models.

e Finding free fermion properties in apparently non free fermion

models Is interesting.



XXZ spin chain

Hamiltonian for XXZ spin chain
Hxxz = Z[UJ 01+ 0; UJ+1 +A(oj05,, —1)]

e It is well known that A = 0 case becomes free fermion by
Jordan-Wigner transformation. (An analogous statement

applies also the six vertex model.)
e Usually A # 0 case is not associated with free fermion.

) et al found some free fermion like objects for |A| < 1.



ASEP

ASEP (asymmetric simple exclusion process)
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With Q = \/g¢/p, A = (Q + Q") /2 and
v=]]Q™
J

where nj; = %(1 — agz-) they are related by
V tLASEPV_l/\/p_ = Hxxz

e ASEP is related by a similarity transformation to XXZ with
A > 1. ( Ferromagnetic case. But note boundary conditions
and different physical contexts.)

e TASEP (p =00rq =0, A — o0) on Z is not Ising but
related to the Schur process (free fermion).

e For general ASEP (again on Z) a generating function for the
current can be written as a Fredholm determinant ( )



Plan

1. TASEP
2. Random matrix theory (and TASEP)
3. KPZ equation (and ASEP)

4. O'Connell-Yor polymer (with

, arXiv:1506.05548)



1. Surface growth and TASEP formula

Paper combustion, bacteria colony, crystal

growth, etc
Non-equilibrium statistical mechanics

Stochastic interacting particle systems
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Simulation

Ex: ballistic deposition
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Height fluctuation
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Totally ASEP (g = 0)

ASEP (asymmetric simple exclusion process)
q p q p q
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Mapping to a surface growth model (single step model)
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TASEP: LUE formula and Schur measure

Formula for height (current) distribution for finite ¢ (step i.c.)

h(0,t) —t/4 1 2 —x;

1<J i

The proof is based on Robinson-Schensted-Knuth (RSK)
correspondence. For a discrete TASEP with parameters
a=(ay, -+ ,an),b = (b1,-:+ ,bps) associated with the
Schur measure for a partition A

%SA(G)SA(b)

The Schur function s) can be written as a single determinant
(Jacobi-Trudi identity).
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Long time limit: Tracy-Widom distribution

i P h(Ov t) o t/4
oo | —2—4/3t1/3

where F3(s) is the GUE Tracy-Widom distribution

< s| = Fa(s)

F3(s) = det(1 — P;Ka;Ps) 2R

0.5

where Pg: projection onto the interval [s, c0) 04
and K aj; is the Airy kernel 22
0.1:
Kai(z,y) = / dAAi(x + A)Ai(y + ) *%

0 S
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2. Random matrix theory (and TASEP)
GUE (Gaussian unitary ensemble): For a matrix H: N X N

hermitian matrix ,
P(H)dH x e "™ dH

Each independent matrix element is independent Gaussian.

Joint eigenvalue density

1 2
2 —x:
I
1<j i
This is written in the form of a product of two determinants using

H(wj — x;) = det(x) 7]:?;':1
1<j
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From this follows

e All m point correlation functions can be written as

determinants using the "correlation kernel” K (x,y).

e The largest eigenvalue distribution

P [emax < 5] = /( @=L ] de:

can be written as a Fredholm determinant using the same
kernel K(x,vy).
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In the limit of large matrix dimension, we get

< s| = Fx(s) = det(1—PsK2Ps) 12 ()

where Pj: projection onto [s,00) and K> is the Airy kernel
® O

Ky (z,y) = /0 dAAI(z 4+ A)Ai(y + A)

F5(s) is known as the GUE Tracy-Widom distribution
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Determinantal process

The point process whose correlation functions are written in
the form of determinants are called a determinantal process.

Eigenvalues of the GUE is determinantal.

This is based on the fact that the joint eigenvalue density can
be written as a product of two determinants. The Fredholm
determinant expression for the largest eigenvalue comes also
from this.

Once we have a measure in the form of a product of two
determinants, there is an associated determinantal process

and the Fredholm determinant appears naturally.

TASEP is associated with Schur measure, hence determinatal.
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Dyson’s Brownian motion

In GUE, one can replace the Gaussian random variables by
Brownian motions. The eigenvalues are now stochastic process,
satisfying SDE

dt

dXi:dBi_l_Zx._x.
i j

ji

known as the Dyson’s Brownian motion.
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Warren’s Brownian motion in Gelfand-Tsetlin cone

Let Y () be the Dyson’'s BM with m particles starting from the
origin and let X (t) be a process with (m + 1) components

which are interlaced with those of Y, i.e.,
X1(t) < Yi(t) < Xa(t) < -+ < Vin(t) < Xonpa (2)
and satisfies
X;(t) = x; + vi(t) + {L; (t) — L ()}

Here v;, 1 < 2 < m are indep. BM and L,,::t are local times.

Warren showed that the process X is distributed as a Dyson's BM
with (m + 1) particles.
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m = 3 Dyson BM
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Warren’s Brownian motion in Gelfand-Tsetlin cone

e Repeating the same procedure form = 1,2,...,n — 1, one
can construct a process Xg, 1<73<n,1<2<731in
Gelfand-Tsetlin cone

e The marginal X?,1 < 2 < n is the diffusion limit of TASEP
(reflective BMs). One can understand how the random matrix

expression for TASEP appears.
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3. KPZ equation

h(x,t): height at position * € R and at time ¢t > 0

O¢h(x,t) = 2 A(9zh(w,t))? + vd2h(x,t) + vV Dn(z,t)
where 1) is the Gaussian noise with mean 0 and covariance

(n(z, t)n(z’,t")) = 6(x — x")d(t — t')

By a simple scaling we can and will do set v = %, A=D=1.

The KPZ equation now looks like

Oth(x,t) = %(Bwh(az, t))? + %Qih(w, t) + n(x,t)
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Cole-Hopf transformation
Z(x,t) = exp (h(z,1))

If we set

this quantity (formally) satisfies

0 10%Z(x,t)
—Z(x,t) = — t)Z(x,t
It (z, 1) 9 92 + n(z,t)Z(x, t)

This can be interpreted as a (random) partition function for a

directed polymer in random environment 7.

h(x.t)

2At/0
1

The polymer from the origin: Z(x,0) = d(x) = girr(l)c(se_|w|/5
é

corresponds to narrow wedge for KPZ.
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The formula for KPZ equation

Thm ( )
For the initial condition Z(x,0) = d(x) (narrow wedge for KPZ)

E [6 = det(l — Ks,t)Lz(R_|_)

_eh(o’t)+2t4—’7t3]
where v = (t/2)'/3 and K, is
> Ai(x 4+ NAi(y + )
K, i(z,y) = / dA—— 75 1

— OO

e Ast — oo, one gets the Tracy-Widom distribution.

e The final result is written as a Fredholm determinant, but this
was obtained without using a measure in the form of a

product of two determinants
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Derivation of the formula by replica approach

Feynmann-Kac expression for the partition function,
Z($, t) =E, (ef(f n(b(S),t—S)dsZ(b(t), O))

Because 717 is a Gaussian variable, one can take the average over
the noise 1) to see that the replica partition function can be

written as (for narrow wedge case)

(Z" (z,1)) = (z|e”"N?|0)

where H v is the Hamiltonian of the (attractive) 6-Bose gas,
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We are interested not only in the average (h) but the full
distribution of h. We expand the quantity of our interest as

oo —e —tS

_eh(O,t)+2L4—7t8 Z
(e

=0

)N

(20, 1) VT

Using the integrability (Bethe ansatz) of the §-Bose gas, one gets
explicit expressions for the moment (Z™) and see that the

generating function can be written as a Fredholm determinant.
But for the KPZ, (ZN) ~ eN’I

One should consider regularized discrete models.
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ASEP and more

One can find an analogous formula for ASEP by using
(stochastic) duality (~ replica, related to Ug(sl2) symmetry).

This can be proved rigorously (no problem about the moment

divergence).

This approach can be generalized to g-TASEP and further to
the higher-spin stochastic vertex model ( next

week).

This is fairy computational. The Fredholm determinant
appears by rearranging contributions from poles of Bethe

wave functions.
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4. O’Connell-Yor polymer

Semi-discrete directed polymer in random media
B;,1 < < N: independent Brownian motions

Energy of the polymer 7
E[rw] = B1(t1) + Ba(t1,t2) +--- + BN(tN-1,1)
Partition function

Zn(t) = / ePEImldt, . dtn_q
0<t1<---<tn_1<t

B = 1/kpT: inverse temperature

In a limit, this becomes the polymer related to KPZ equation.
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Zero-temperature limit (free fermion)

In the T" — 0 (or B — oo) limit

t) := lim log Zn(t)/B = E
In(t):= lim logZy(t)/B = | = max _ Eln]

Connection to random matrix theory

N

Prob (fn(1) < s) = / H dx; - Poue(x1,-+ ,TN),
(_OO7S]N J:]-
N —:1332./2

Poue(x1,--+ ,TN) = H - y H (T — wj)z
jop JtV2m 1<j<k<N

where Pgye(x1,-++ ,xN) is the probability density function of
the eigenvalues in the Gaussian Unitary Ensemble (GUE)
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Whittaker measure: non free fermion

discovered that the OY polymer is related to the

quantum version of the Toda lattice, with Hamiltonian

P Lj—Lq—
H=D) gt 2 e
1=1 4 1=1

and as a generalization of Schur measure appears a measure
written as a product of the two Whittaker functions (which is the

eigenfunction of the Toda Hamiltonian):

1
E‘IJO(/Bmla ce a/BmN)\IJu(/Bmla ce 9/333N)

A determinant formula for ¥ is not known.
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From this connection one can find a formala
1 N

Prob ( log Zn(t) < s) :/ Hda:j-mt(acl,--- s TN)
16 (—oo,s]N j=1

where myg(x1,+++ , TN) H;\rzl dx; is given by
mt(mla"' 9331\7) — ‘IIO(/Bmlv"' 9/833N)

X / d\ - U_)(Bxy,:--- ,,B:UN)eZ;'ilkr?t/zsN()\)
(iR)N

where sn () is the Sklyanin measure

Doing asymptotics using this expression has not been possible.
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Macdonald measure and Fredholm determinant formula
iIntroduced the Macdonald measure

_PA(@)Q(b)

Here Py(a), Qx(b) are the Macdonald polynomials, which are
also not known to be a determinant.

By using this, they found a formula for OY polymer
e BUz (1)
32(N—1) ] — det (]_ —+ L)Lz(Co)

where the kernel L(v,v’;t) is written as

Ele

1 71'/,3 wNe’w(tz/Z—u) 1
o dw

r(1+v'/8)N
271 JiR4-6

sin(v/ — w)/Bv'Nev(t*/2=vw) yp — v T'(1 + w/B)N

By using this expression, one can study asymptotics.
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Our new formula for finite 3
e BUzZ (1)

N
E <€_ 32(N—1) ) — AN H ngJfF(mJ — u) . W(wl’... ,a’;N;t)

W(xi, - ,zN3t) = H H (xr, — x;) - det (YPr—1(x;3t)

j=1"" 1<j<k<N

where fr(x) = 1/(eP® 4+ 1) is Fermi distribution function and

1) — i > —iwx—w?t/2 (iw)"
Yr(z5t) = o /_Oo dwe T+ iw/3)"

A formula in terms of a determinantal measure W for finite

temperature polymer.

From this one gets the Fredholm determinant by using standard

techniques of random matrix theory and does asymptotics.
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Proof of the formula

We start from a formula by O'Connell

e Bu N . N
E(e B2(NZ§1(;) :/ H d—)\je_UAjJr)\?t/zI‘ <_)\J> SN
(R—e)N i B B

where € > 0.

This is a formula which is obtained by using Whittaker measure.

In this sense, we have not really found a determinant structure for
the OY polymer itself.

There is a direct route from the above to the Fredholm
determinant ( ).

Here we generalize Warren's arguments.
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An intermediate formula

e Puzn @) N
E ( P ) = [ ] defe(ee —w) - det (Fyptargs 1) Ny
R 9

N
=1

with (0 < € < 9)

Fjg(x;t) = /Z.R_e 27 1 (% 4+ 1)

d)\ e—)\az—l—)\zt/Z T T\ J—1
~ ( cot ) AF—1

B B
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For a proof start from

N
H sin(z; — x;) = H sin™ ! x; - H (cot xpy — cot xg)
j=1

1<i<j<N 1<k<f<N
N
N
= H sin’™Y 1 x; - det (cote_1 ZIZk)
. k=1
J=1
and use
T
IN'x)I'(1 —x) = —
sin(7x)
/ dx = — for0 < Rea <1
oo 1+ e® sin wa
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Now it is sufficient to prove the relation

N
/N [ dtefr(te — w) - det (Fjr(t;s5t)) s
R £=1

N
[ TL ety — ) Wieneoe ani)
=1
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A determinantal measure on RNV(N+1)/2

For 2y, := (2,1 < i < j < k) € RF(EFD/2 e define a
measure R, (x5 t)dxn with Ry, given by
N

H 0 det (fz(w(e) (e 1)))

(IN),
11 - det (Flz (z; t))

,J=1 i,7=1

where :cée_l) =u, TN = vazl ngl dng),

[ €T) 1= ePT 1 =
filx) = 4 fr(z) :=1/(e"* +1) . 1,
\fB(iB) :=1/(eP* —1) i > 2.

and Fy4(x;t) is given by Fj;(x;t) with 5 = 1 in the previous
slide.
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Two ways of integrations

/ dx Ry (xp;t)
RN(N+1)/2
N

_ /RN f[l 4o g (o8 — u) - det (Ey (ng—jJrl);t))j,k:l

/ drnRy(zN;t)
RN(N+1)/2

= /N ﬁ dw§N)fF (w§N) — u) - W (ng),--- ,:L'%V);t>
RN -4
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Lemma

1. For 3 > 0and a € C with —3 < Re a < 0, we have

/oo e  “fp(x)dx = T cot Za.
BB

— OO

2. Let Go(x) = fr(x) and

Gj(z) = [T _dyfe(z —y)Gj—1(y), j=1,2,---.
Then we have formm =0,1,2,---

Gn(@) = Fr(@) (2 + pma(@) )

where p_1(x) = 0 and pg(x)(k = 0,1,2,:--) is some
kth order polynomial.
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Dynamics of X

The density for the positions of XV, 1 < ¢ < NN satisfies

?

0
aw(wla'” 7mN;t)
1, 92 - 9
— — a_ 2 L1y s LN s
23:1 8:B.7
N 1 )
— Z Z W(wla' 933N9t)
=1 \ iz T, —xj | Ox;

which is the equation for the Dyson’s Brownian motion.
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Dynamics of X!'s
The transition density of X,L?"s

G(wla "t 9 LNy t) = det (ij (wk; t));\,fk=1

satisfy
0 1 N 82
_G(w1,°00 933N;t)——z G(w]_, . 9:13N;t)
ot = (’9:1:
B2 [ o5 (xjr1—=;)
w2 ./ it eB(@jt1—x;) _ 1G(CB1’ e, xN3t) =0

As 3 — oo, the latter becomes

aacq;G(mla "y LNy t)'az,H_l:azi—l—O =0

which represents reflective interaction like TASEP.
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Summary

e \We have seen how the determinantal (~ free fermonic)
structures in stochastic growth models. The point is "whether

a product of two determinants appear and if so how" .

e The generator of TASEP does not become a free fermion by
Jordan-Wigern transformation. But it is associated with the
Schur measure (a product of determinants ) and hence

determinantal.

e For ASEP and KPZ equation, one can find a Fredholm

determinant formula by duality (or replica).
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e The finite temperature O'Connell-Yor polymer is associated
with the Whittaker measure (not a product of determinants)
but we have given a formula using a measure in the form of a

product of determinants.

e The proof is by generalizing Warren's process on
Gelfand-Tsetlin cone. There are interesting generalizations of

Dyson’s Brownian motion and reflective Brownian motions.

e We started from a formula which is obtained from Whittaker
measure. In this sense we have not found a determinantal
structure for the OY polymer model itself. We should try to
find a better understanding.
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