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0. Free fermion and non free fermion models

From discussions yesterday after the talk by Sanjay Ramassamy

• Non free fermion models are more interesting than free

fermion models.

• There are nontrivial aspects for free fermion models.

• Finding free fermion properties in apparently non free fermion

models is interesting.
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XXZ spin chain

Hamiltonian for XXZ spin chain

HXXZ =
1

2

∑
j

[σx
j σ

x
j+1 + σy

j σ
y
j+1 + ∆(σz

jσ
z
j+1 − 1)]

• It is well known that ∆ = 0 case becomes free fermion by

Jordan-Wigner transformation. (An analogous statement

applies also the six vertex model.)

• Usually ∆ ̸= 0 case is not associated with free fermion.

• Jimbo et al found some free fermion like objects for |∆| < 1.

3



ASEP

ASEP (asymmetric simple exclusion process)

· · · ⇒

p

⇐

q

⇐

q

⇒

p

⇐

q

· · ·

-3 -2 -1 0 1 2 3
(Transpose) generator of ASEP

tLASEP =
∑
j


0 0 0 0

0 −q p 0

0 q −p 0

0 0 0 0


j,j+1
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With Q =
√
q/p,∆ = (Q+Q−1)/2 and

V =
∏
j

Qjnj

where nj = 1
2
(1 − σz

j ) they are related by

V tLASEPV
−1/

√
pq = HXXZ

• ASEP is related by a similarity transformation to XXZ with

∆ > 1. ( Ferromagnetic case. But note boundary conditions

and different physical contexts.)

• TASEP (p = 0 or q = 0, ∆ → ∞) on Z is not Ising but

related to the Schur process (free fermion).

• For general ASEP (again on Z) a generating function for the

current can be written as a Fredholm determinant (Tracy).
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Plan

1. TASEP

2. Random matrix theory (and TASEP)

3. KPZ equation (and ASEP)

4. O’Connell-Yor polymer (with T. Imamura, arXiv:1506.05548)
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1. Surface growth and TASEP formula

• Paper combustion, bacteria colony, crystal

growth, etc

• Non-equilibrium statistical mechanics

• Stochastic interacting particle systems

• Connections to integrable systems, representation theory, etc
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Simulation models
Ex: ballistic deposition
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Universality: exponent and height distribution
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Totally ASEP (q = 0)
ASEP (asymmetric simple exclusion process)

· · · ⇒

p

⇐

q

⇐

q

⇒

p

⇐

q

· · ·

-3 -2 -1 0 1 2 3

Mapping to a surface growth model (single step model)

Step

Droplet

Wedge
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TASEP: LUE formula and Schur measure
• 2000 Johansson

Formula for height (current) distribution for finite t (step i.c.)

P
[
h(0, t) − t/4

−2−4/3t1/3
≤ s

]
=

1

Z

∫
[0,s]N

∏
i<j

(xj−xi)
2
∏
i

e−xi
∏
i

dxi

• The proof is based on Robinson-Schensted-Knuth (RSK)

correspondence. For a discrete TASEP with parameters

a = (a1, · · · , aN), b = (b1, · · · , bM) associated with the

Schur measure for a partition λ
1

Z
sλ(a)sλ(b)

The Schur function sλ can be written as a single determinant

(Jacobi-Trudi identity).
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Long time limit: Tracy-Widom distribution

lim
t→∞

P
[
h(0, t) − t/4

−2−4/3t1/3
≤ s

]
= F2(s)

where F2(s) is the GUE Tracy-Widom distribution

F2(s) = det(1 − PsKAiPs)L2(R)

where Ps: projection onto the interval [s,∞)

and KAi is the Airy kernel

KAi(x, y) =

∫ ∞

0
dλAi(x+ λ)Ai(y + λ) -6 -4 -2 0 2

0.0

0.1

0.2

0.3

0.4

0.5

s
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2. Random matrix theory (and TASEP)

GUE (Gaussian unitary ensemble): For a matrix H: N ×N

hermitian matrix
P (H)dH ∝ e−TrH2

dH

Each independent matrix element is independent Gaussian.

Joint eigenvalue density
1

Z

∏
i<j

(xj − xi)
2
∏
i

e−x2
i

This is written in the form of a product of two determinants using∏
i<j

(xj − xi) = det(xj−1
i )Ni,j=1
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From this follows

• All m point correlation functions can be written as

determinants using the ”correlation kernel” K(x, y).

• The largest eigenvalue distribution

P [xmax ≤ s] =
1

Z

∫
(−∞,s]N

∏
i<j

(xj−xi)
2
∏
i

e−x2
i

∏
i

dxi

can be written as a Fredholm determinant using the same

kernel K(x, y).
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In the limit of large matrix dimension, we get

lim
N→∞

P

[
xmax −

√
2N

2−1/2N−1/6
≤ s

]
= F2(s) = det(1−PsK2Ps)L2(R)

where Ps: projection onto [s,∞) and K2 is the Airy kernel

K2(x, y) =

∫ ∞

0
dλAi(x+ λ)Ai(y + λ)

F2(s) is known as the GUE Tracy-Widom distribution
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Determinantal process

• The point process whose correlation functions are written in

the form of determinants are called a determinantal process.

• Eigenvalues of the GUE is determinantal.

• This is based on the fact that the joint eigenvalue density can

be written as a product of two determinants. The Fredholm

determinant expression for the largest eigenvalue comes also

from this.

• Once we have a measure in the form of a product of two

determinants, there is an associated determinantal process

and the Fredholm determinant appears naturally.

• TASEP is associated with Schur measure, hence determinatal.
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Dyson’s Brownian motion

In GUE, one can replace the Gaussian random variables by

Brownian motions. The eigenvalues are now stochastic process,

satisfying SDE

dXi = dBi +
∑
j ̸=i

dt

Xi −Xj

known as the Dyson’s Brownian motion.
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Warren’s Brownian motion in Gelfand-Tsetlin cone

Let Y (t) be the Dyson’s BM with m particles starting from the

origin and let X(t) be a process with (m+ 1) components

which are interlaced with those of Y , i.e.,

X1(t) ≤ Y1(t) ≤ X2(t) ≤ . . . ≤ Ym(t) ≤ Xm+1(t)

and satisfies

Xi(t) = xi + γi(t) + {L−
i (t) − L+

i (t)}.

Here γi, 1 ≤ i ≤ m are indep. BM and L±
i are local times.

Warren showed that the process X is distributed as a Dyson’s BM

with (m+ 1) particles.
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t

x

t

x

m = 3 Dyson BM m = 3, 4 Dyson BM

Y X
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Warren’s Brownian motion in Gelfand-Tsetlin cone
• Repeating the same procedure for m = 1, 2, . . . , n− 1, one

can construct a process Xj
i , 1 ≤ j ≤ n, 1 ≤ i ≤ j in

Gelfand-Tsetlin cone

• The marginal Xi
i , 1 ≤ i ≤ n is the diffusion limit of TASEP

(reflective BMs). One can understand how the random matrix

expression for TASEP appears.

x1
1

x2
1 x2

2

x3
1 x3

2 x3
3

. .
. ...

. . .

xn
1 xn

2 xn
3 . . . xn

n−1 xn
n
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3. KPZ equation

h(x, t): height at position x ∈ R and at time t ≥ 0

1986 Kardar Parisi Zhang

∂th(x, t) = 1
2
λ(∂xh(x, t))

2 + ν∂2
xh(x, t) +

√
Dη(x, t)

where η is the Gaussian noise with mean 0 and covariance

⟨η(x, t)η(x′, t′)⟩ = δ(x− x′)δ(t− t′)

By a simple scaling we can and will do set ν = 1
2
, λ = D = 1.

The KPZ equation now looks like

∂th(x, t) = 1
2
(∂xh(x, t))

2 + 1
2
∂2
xh(x, t) + η(x, t)
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Cole-Hopf transformationIf we set
Z(x, t) = exp (h(x, t))

this quantity (formally) satisfies

∂

∂t
Z(x, t) =

1

2

∂2Z(x, t)

∂x2
+ η(x, t)Z(x, t)

This can be interpreted as a (random) partition function for a

directed polymer in random environment η.
2λt/δ

x

h(x,t)

The polymer from the origin: Z(x, 0) = δ(x) = lim
δ→0

cδe
−|x|/δ

corresponds to narrow wedge for KPZ.
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The formula for KPZ equation

Thm (2010 TS Spohn, Amir Corwin Quastel )

For the initial condition Z(x, 0) = δ(x) (narrow wedge for KPZ)

E
[
e−eh(0,t)+ t

24−γts
]
= det(1 −Ks,t)L2(R+)

where γt = (t/2)1/3 and Ks,t is

Ks,t(x, y) =

∫ ∞

−∞
dλ

Ai(x+ λ)Ai(y + λ)

eγt(s−λ) + 1

• As t → ∞, one gets the Tracy-Widom distribution.

• The final result is written as a Fredholm determinant, but this

was obtained without using a measure in the form of a

product of two determinants
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Derivation of the formula by replica approach

Dotsenko, Le Doussal, Calabrese

Feynmann-Kac expression for the partition function,

Z(x, t) = Ex

(
e
∫ t
0 η(b(s),t−s)dsZ(b(t), 0)

)
Because η is a Gaussian variable, one can take the average over

the noise η to see that the replica partition function can be

written as (for narrow wedge case)

⟨ZN(x, t)⟩ = ⟨x|e−HN t|0⟩

where HN is the Hamiltonian of the (attractive) δ-Bose gas,

HN = −
1

2

N∑
j=1

∂2

∂x2
j

−
1

2

N∑
j ̸=k

δ(xj − xk).
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We are interested not only in the average ⟨h⟩ but the full

distribution of h. We expand the quantity of our interest as

⟨e−eh(0,t)+ t
24−γts⟩ =

∞∑
N=0

(
−e−γts

)N
N !

⟨
ZN(0, t)

⟩
eN

γ3
t

12

Using the integrability (Bethe ansatz) of the δ-Bose gas, one gets

explicit expressions for the moment ⟨Zn⟩ and see that the

generating function can be written as a Fredholm determinant.

But for the KPZ, ⟨ZN⟩ ∼ eN
3
!

One should consider regularized discrete models.
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ASEP and more

• One can find an analogous formula for ASEP by using

(stochastic) duality (∼ replica, related to Uq(sl2) symmetry).

• This can be proved rigorously (no problem about the moment

divergence).

• This approach can be generalized to q-TASEP and further to

the higher-spin stochastic vertex model (Corwin, Petrov next

week).

• This is fairy computational. The Fredholm determinant

appears by rearranging contributions from poles of Bethe

wave functions.
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4. O’Connell-Yor polymer

2001 O’Connell Yor

Semi-discrete directed polymer in random media

Bi, 1 ≤ i ≤ N : independent Brownian motions

Energy of the polymer π

E[π] = B1(t1) +B2(t1, t2) + · · · +BN(tN−1, t)

Partition function

ZN(t) =

∫
0<t1<···<tN−1<t

eβE[π]dt1 · · · dtN−1

β = 1/kBT : inverse temperature

In a limit, this becomes the polymer related to KPZ equation.

26



Zero-temperature limit (free fermion)

In the T → 0 (or β → ∞) limit

fN(t) := lim
β→∞

logZN(t)/β = max
0<s1<···<sN−1<t

E[π]

2001 Baryshnikov Connection to random matrix theory

Prob (fN(1) ≤ s) =

∫
(−∞,s]N

N∏
j=1

dxj · PGUE(x1, · · · , xN),

PGUE(x1, · · · , xN) =

N∏
j=1

e−x2
j/2

j!
√
2π

·
∏

1≤j<k≤N

(xk − xj)
2

where PGUE(x1, · · · , xN) is the probability density function of

the eigenvalues in the Gaussian Unitary Ensemble (GUE)
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Whittaker measure: non free fermion

O’Connell discovered that the OY polymer is related to the

quantum version of the Toda lattice, with Hamiltonian

H =

N∑
i=1

∂2

∂x2
i

+

N−1∑
i=1

exi−xi−1

and as a generalization of Schur measure appears a measure

written as a product of the two Whittaker functions (which is the

eigenfunction of the Toda Hamiltonian):

1

Z
Ψ0(βx1, · · · , βxN)Ψµ(βx1, · · · , βxN)

A determinant formula for Ψ is not known.
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From this connection one can find a formala

Prob

(
1

β
logZN(t) ≤ s

)
=

∫
(−∞,s]N

N∏
j=1

dxj ·mt(x1, · · · , xN)

where mt(x1, · · · , xN)
∏N

j=1 dxj is given by

mt(x1, · · · , xN) = Ψ0(βx1, · · · , βxN)

×
∫
(iR)N

dλ · Ψ−λ(βx1, · · · , βxN)e
∑N

j=1 λ2
j t/2sN(λ)

where sN(λ) is the Sklyanin measure

sN(λ) =
1

(2πi)NN !

∏
i<j

Γ(λi − λj)

Doing asymptotics using this expression has not been possible.
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Macdonald measure and Fredholm determinant formula
Borodin, Corwin (2011) introduced the Macdonald measure

1

Z
Pλ(a)Qλ(b)

Here Pλ(a), Qλ(b) are the Macdonald polynomials, which are

also not known to be a determinant.

By using this, they found a formula for OY polymer

E[e
−e−βuZN (t)

β2(N−1) ] = det (1 + L)L2(C0)

where the kernel L(v, v′; t) is written as

1

2πi

∫
iR+δ

dw
π/β

sin(v′ − w)/β

wNew(t2/2−u)

v′Nev
′(t2/2−u)

1

w − v

Γ(1 + v′/β)N

Γ(1 + w/β)N

By using this expression, one can study asymptotics.
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Our new formula for finite β

E

(
e
−e−βuZN (t)

β2(N−1)

)
=

∫
RN

N∏
j=1

dxjfF (xj − u) ·W (x1, · · · , xN ; t)

W (x1, · · · , xN ; t) =
N∏

j=1

1

j!

∏
1≤j<k≤N

(xk − xj) · det (ψk−1(xj; t))
N
j,k=1

where fF (x) = 1/(eβx + 1) is Fermi distribution function and

ψk(x; t) =
1

2π

∫ ∞

−∞
dwe−iwx−w2t/2 (iw)k

Γ (1 + iw/β)N

A formula in terms of a determinantal measure W for finite

temperature polymer.

From this one gets the Fredholm determinant by using standard

techniques of random matrix theory and does asymptotics.
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Proof of the formula

We start from a formula by O’Connell

E

(
e
−e−βuZN (t)

β2(N−1)

)
=

∫
(iR−ϵ)N

N∏
j=1

dλj

β
e−uλj+λ2

j t/2Γ

(
−
λj

β

)N

sN

(
λ

β

)
,

where ϵ > 0.

This is a formula which is obtained by using Whittaker measure.

In this sense, we have not really found a determinant structure for

the OY polymer itself.

There is a direct route from the above to the Fredholm

determinant (2013 Borodin, Corwin, Remnik).

Here we generalize Warren’s arguments.
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An intermediate formula

E

(
e
−e−βuZN (t)

β2(N−1)

)
=

∫
RN

N∏
ℓ=1

dxℓfF (xℓ − u) · det (Fjk(xj; t))
N
j,k=1 ,

with (0 < ϵ < β)

Fjk(x; t) =

∫
iR−ϵ

dλ

2πi

e−λx+λ2t/2

Γ
(
λ
β
+ 1

)N (
π

β
cot

πλ

β

)j−1

λk−1
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For a proof start from

∏
1≤i<j≤N

sin(xi − xj) =

N∏
j=1

sinN−1 xj ·
∏

1≤k<ℓ≤N

(cotxℓ − cotxk)

=

N∏
j=1

sinN−1 xj · det
(
cotℓ−1 xk

)N
k,ℓ=1

and use

Γ(x)Γ(1 − x) =
π

sin(πx)∫ ∞

−∞
dx

eax

1 + ex
=

π

sinπa
for 0 < Re a < 1
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Now it is sufficient to prove the relation∫
RN

N∏
ℓ=1

dtℓfF (tℓ − u) · det (Fjk(tj; t))
N
j,k=1

=

∫
RN

N∏
j=1

dxjfF (xj − u) ·W (x1, · · · , xN ; t).
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A determinantal measure on RN(N+1)/2

For xk := (x
(j)
i , 1 ≤ i ≤ j ≤ k) ∈ Rk(k+1)/2, we define a

measure Ru(xN ; t)dxN with Ru given by

N∏
ℓ=1

1

ℓ!
det

(
fi(x

(ℓ)
j − x

(ℓ−1)
i−1 )

)ℓ
i,j=1

· det
(
F1i(x

(N)
j ; t)

)N
i,j=1

where x
(ℓ−1)
0 = u, xN =

∏N
j=1

∏j
i=1 dx

(j)
i ,

fi(x) =

fF (x) := 1/(eβx + 1) i = 1,

fB(x) := 1/(eβx − 1) i ≥ 2.

and F1i(x; t) is given by Fji(x; t) with j = 1 in the previous

slide.
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Two ways of integrations∫
RN(N+1)/2

dxNRu(xN ; t)

=

∫
RN

N∏
j=1

dx
(j)
1 fF

(
x
(j)
1 − u

)
· det

(
Fjk

(
x
(N−j+1)
1 ; t

))N
j,k=1∫

RN(N+1)/2

dxNRu(xN ; t)

=

∫
RN

N∏
j=1

dx
(N)
j fF

(
x
(N)
j − u

)
·W

(
x
(N)
1 , · · · , x(N)

N ; t
)
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Lemma

1. For β > 0 and a ∈ C with −β < Re a < 0, we have∫ ∞

−∞
e−axfB(x)dx =

π

β
cot

π

β
a.

2. Let G0(x) = fF (x) and

Gj(x) =
∫∞
−∞ dyfB(x− y)Gj−1(y), j = 1, 2, · · · .

Then we have for m = 0, 1, 2, · · ·

Gm(x) = fF (x)

(
xm

m!
+ pm−1(x)

)
,

where p−1(x) = 0 and pk(x)(k = 0, 1, 2, · · · ) is some

kth order polynomial.
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Dynamics of XN
i

The density for the positions of XN
i , 1 ≤ i ≤ N satisfies

∂

∂t
W (x1, · · · , xN ; t)

=
1

2

N∑
j=1

∂2

∂x2
j

W (x1, · · · , xN ; t)

−
N∑
i=1

∑
j ̸=i

1

xi − xj

 ∂

∂xi
W (x1, · · · , xN ; t)

which is the equation for the Dyson’s Brownian motion.
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Dynamics of Xi
i ’s

The transition density of Xi
i ’s

G(x1, · · · , xN ; t) = det (Fjk (xk; t))
N
j,k=1

satisfy

∂

∂t
G(x1, · · · , xN ; t) =

1

2

N∑
j=1

∂2

∂x2
j

·G(x1, · · · , xN ; t)

−
β2

π2

∫ ∞

−∞
dxj+1

e−
β
2
(xj+1−xj)

eβ(xj+1−xj) − 1
G(x1, · · · , xN ; t) = 0

As β → ∞, the latter becomes

∂xiG(x1, · · · , xN ; t)|xi+1=xi+0 = 0

which represents reflective interaction like TASEP.
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Summary

• We have seen how the determinantal (∼ free fermonic)

structures in stochastic growth models. The point is ”whether

a product of two determinants appear and if so how”.

• The generator of TASEP does not become a free fermion by

Jordan-Wigern transformation. But it is associated with the

Schur measure (a product of determinants ) and hence

determinantal.

• For ASEP and KPZ equation, one can find a Fredholm

determinant formula by duality (or replica).
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• The finite temperature O’Connell-Yor polymer is associated

with the Whittaker measure (not a product of determinants)

but we have given a formula using a measure in the form of a

product of determinants.

• The proof is by generalizing Warren’s process on

Gelfand-Tsetlin cone. There are interesting generalizations of

Dyson’s Brownian motion and reflective Brownian motions.

• We started from a formula which is obtained from Whittaker

measure. In this sense we have not found a determinantal

structure for the OY polymer model itself. We should try to

find a better understanding.
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