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ASEP on Integer Lattice

⬅⬅ pq

Each particle has an alarm clock -- 
exponential distribution with  parameter one

●

When alarm rings particle jumps to right with 
probability p and to the left with probability q

●

Jumps are suppressed if neighbor is occupied ●

p≠q



The short explanation of why Bethe Ansatz

I The generator L of the Markov process ASEP is a similarity (not
unitary!) transformation of the XXZ quantum spin system.

I This observation goes back at least to Gwa & Spohn (1992).

I Apply Bethe Ansatz to L



PY (X ; t) for N-particle ASEP

I X ∈ ZN

X±i = {x1, . . . , xi−1, xi ± 1, xi+1, . . . , xN}
The “free equation” on ZN × R is

du

dt
(X ) =

N∑
i=1

(
pu(X−i ; t) + qu(X+

i ; t)− u(X ; t)
)

I The boundary conditions are

pu(x1, . . . , xi , xi , . . . , xN ; t) + qu(x1, . . . , xi + 1, xi + 1, . . . , xN)

= u(x1, . . . , xi , xi + 1, . . . , xN , i = 1, 2, . . . ,N − 1

This boundary condition comes when particle at xi is neighbor to
particle at xi+1 = xi + 1

I Check that no new boundary conditions are needed, e.g. when 3 or
more particles are all adjacent.

I Require initial condition u(X ; 0) = δX ,Y in physical region.
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I Look for solutions of the form (Bethe’s second idea)

u(X ; t) =

∫
Cr
· · ·
∫
Cr

∑
σ∈SN

Aσ(ξ)
∏
i

ξ
xi−yσ(i)−1

σ(i) et
∑

i ε(ξi ) dξ1 · · · dξN

SN is the permutation group.

I Find boundary conditions are satisfied if the Aσ satisfy

Aσ(ξ) =
∏
{S(ξβ, ξα) : {β, α} is an inversion in σ}

The inversions in σ = (3, 1, 4, 2) are {3, 1}, {3, 2}, {4, 2}. Thus
Aid = 1.

I Final step: Show u(X ; t) satisfies the initial condition. As
before, the term corresponding to the identity permutation gives
δX ,Y . We must show the sum of the N!− 1 other terms sum to zero
in the physical region! This turns out to be quite involved. It will be
the case if r is chosen so that all singularities coming from the Aσ lie
outside the contour Cr (we assume p 6= 0). Our original article had an
error. See the erratum.
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Let χN =
{

(x1, . . . , xN) ∈ ZN : x1 < · · · < xN
}

Semigroup etL:

etL eY =
∑
X∈χN

PY (X ; t)eX , Y ∈ χN ,

PY (X ; t) =

∫
Cr
· · ·
∫
Cr

∑
σ∈SN

Aσ(ξ)
N∏
i=1

ξ
xi−yσ(i)−1

σ(i) et
∑

i ε(ξi ) dξ1 · · · dξN

SN is the permutation group, ε(ξ) = p/ξ + qξ − 1, and

Aσ(ξ) =
∏
{S(ξβ, ξα) : {β, α} is an inversion in σ}

S(ξ, ξ′) = − p + qξξ′ − ξ
p + qξξ′ − ξ′

Choose r � 1 so that all poles from Aσ lie outside of Cr .
Each dξ carries a factor (2πi)−1.



Alternative form for Aσ

Set
f (ξ, ξ′) = p + qξξ′ − ξ

then

Aσ = sgn(σ)

∏
i<j f (ξσ(i), ξσ(j))∏

i<j f (ξi , ξj)

Marginal Distribution for x1(t)

Take p 6= 0

P(x1(t) = x) : =
∑

x<x2<···<xN

PY ({x , x2, . . . , xN}; t)

=

∫
CNr

∑
σ∈SN

Aσ(ξ)
ξσ(2)ξ

2
σ(3) · · · ξ

N−1
σ(N)

(1− ξσ(2) · · · ξσ(N))(1− ξσ(3) · · · ξσ(N)) · · · (1− ξσ(N))
×

∏
i

ξx−yi−1
i et

∑
i ε(ξi ) dξ1 · · · dξN
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First Combinatorial Identity

∑
σ∈SN

sgn(σ)


(∏

i<j f (ξσ(i), ξσ(j))
)
ξσ(2)ξ

2
σ(3) · · · ξ

N−1
σ(N)

(1− ξσ(1) · · · ξσ(N)) · · · (1− ξσ(N−1)ξσ(N))(1− ξσ(N))


= pN(N−1)/2

∏
i<j(ξj − ξi )∏
j(1− ξj)

Thus we have, p 6= 0,
P(x1(t) = x) =

pN(N−1)/2

∫
CNr

∏
i<j

ξj − ξi
f (ξi , ξj)

1− ξ1 · · · ξN∏
i (1− ξi )

∏
i

(
ξx−yi−1
i etε(ξi )

)
dξ1 · · · dξN

−→ A single N-dimensional integral!



Back Story to Proof of Identity

I Led to conjecture identity from special cases discovered using
Mathematica.

I But how to prove identity?
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So we called Doron . . .

He suggested that Problem VII.47 of Pólya & Szegö, an identity of Issai
Schur, had a similar look about it and might be proved in a similar way.
Doron was right.

Idea of proof:

I Use induction on N

I Call left-hand side ϕN(ξ1, . . . , ξN) and sum over all permutations such
that σ(1) = k . This gives an expression involving ϕN−1.

I Use induction hypothesis to get a simpler identity to prove.

I Construct a function f = f (z) so (1) integral over a large circle gives
zero and (2) sum of residues of poles enclosed by the contour give the
identity.

Nice simplification but how do we take N →∞?
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Large Contour Expansion

I Expand the contours Cr to large contours CR , R � 1 in order to let
N →∞.

I In deforming the contours to large contours we encounter two types of
poles:

I Poles coming from zeros of denominators at ξk = 1.
I Poles coming from zeros of f (ξi , ξj).
I Remarkably the residues from the poles of the second type are zero.
I Can then let N →∞, Y = {y1, y2, . . . , }, y1 < y2 < · · · −→ +∞

I

PY (x1(t) = x) =
∑
S

pσ(S)−|S |

qσ(S)−|S|(|S |+1)/2

∫
C|S|R

I (x ,YS , ξ) d |S |ξ

where all the poles of the integrand lie inside CR . The sum runs over
all nonempty, finite subsets S of Z+. Here σ(S) =

∑
i∈S i

I (x ,Y , ξ) =
∏
i<j

ξj − ξi
f (ξi , ξj)

1− ξ1 · · · ξN
(1− ξ1) · · · (1− ξN)

∏
i

(
ξx−yi−1
i etε(ξi )

)
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Position of the mth particle

I Want marginal distribution

PY (xm(t) = x)

where xm(t) is the position of the mth particle from the left at time t.

I For step initial condition, Y = Z+, the distribution of the “current”

I(x , t) = # of particles ≤ x at time t

is related to the position of the mth particle by

PZ+ (I(x , t) ≤ m) = 1− PZ+ (xm+1(t) ≤ x)

and the current fluctuations can be related to the height fluctuations.
I

PY (xm(t) = x) =
∑

x1<···<xm−1<x<xm+1<···<xN

PY (X ; t)

Problem with doing this sum—need combination of small contours
and large contours.

I This requires new combinatorial identities
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Combinatorial Identity #2

[N] =
pN − qN

p − q
, [N]! = [N][N − 1] · · · [1],

[
N

m

]
=

[N]!

[m]![N −m]!

Identity:

∑
|S |=m

∏
i∈S
j∈Sc

f (ξi , ξj)

ξj − ξi

1−
∏
j∈Sc

ξj

 = qm
[
N − 1

m

]1−
N∏
j=1

ξj


The sum runs over all subsets of {1, . . . ,N} with cardinality m and Sc

denotes the complement of S in {1, . . . ,N}.



Case of Step Initial Condition Y = Z+

PZ+(xm(t) ≤ x) = (−1)m+1qm(m−1)/2

×
∑
k≥m

1

k!

[
k − 1

k −m

]
p(k−m)(k−m+1)/2qk(k+1)/2

×
∫
CkR

Jk(x , ξ) dξ1 · · · dξk

where

Jk(x , ξ) =
∏
i 6=j

ξj − ξi
f (ξi , ξj)

1∏
i (1− ξi )(qξi − p)

∏
i

ξx−1
i etε(ξi )

Have a somewhat more complicated formula for arbitrary initial Y .

But how does one analyze this for large t?
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I In the integrand for Jk∏
i 6=j

ξj − ξi
f (ξi , ξj)

= det

(
1

f (ξi , ξj)

) ∏
i

w(ξi )

I Thus recognize integral as a coefficient in the Fredholm expansion of
det(I − λK ) where K is an integral operator acting on L2(CR)

K (ξ, ξ′) =
ξxetε(ξ)

f (ξ, ξ′)

I Can do sum over k to get

PZ+ (xm(t) ≤ x) =

∫
C

det(I − λK )

(λ; τ)m

dλ

λ

where

τ =
p

q
, (λ, τ)m = (1− λ)(1− λτ) · · · (1− λτm−1)

and C is a circle centered at the origin containing all the singularities
of the integrand.
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det(I − λK ) where K is an integral operator acting on L2(CR)

K (ξ, ξ′) =
ξxetε(ξ)

f (ξ, ξ′)

I Can do sum over k to get

PZ+ (xm(t) ≤ x) =

∫
C

det(I − λK )

(λ; τ)m

dλ

λ
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p

q
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Deformation of Fredholm Determinant:
Final Simplification of PZ+ (xm(t) ≤ x)

Though we have reduced the problem to a single contour integral involving
a Fredholm determinant, this determinant is difficult to analyze
asymptotically.

Develop a deformation theory

K −→ J

so that Fredholm determinants remain equal. This final representation is
amenable to asymptotic analysis much along the lines as encountered in
random matrix theory and determinantal processes.



Lemma 1. Suppose s −→ Γs is a deformation of closed curves and a
kernel L(η, η′) us holomorphic in a neighborhood of Γs × Γs ⊂ C2 for each
s. Then the Fredholm determinant acting on Γs is independent of s.

Proof: Deform contours and apply Cauchy’s theorem.

Lemma 2. Suppose L1(η, η′) and L2(η, η′) are two kernels acting on a
simple closed contour Γ, that L1(η, η′) extends analytically to η inside Γ or
to η′ inside Γ, and L2(η, η′) extends analytical to η inside Γ and to η′

inside Γ Then the Fredholm determinants of L1(η, η′) + L2(η, η′)and
L1(η, η′) are equal.



Proof: Assume L1(η, η′) extends analytically to η′ inside Γ.

tr(L2) =

∫
Γ
L2(η, η) dη = 0.

by Cauchy. Thus tr(L1 + L2) = tr(L1).

tr
(
(L1 + L2)2

)
= tr(L2

1) + 2tr(L1L2) + tr(L2
2)

By Cauchy again last two terms are zero. Thus

tr
(
(L1 + L2)2

)
= tr(L2

1)

Argument extends to all powers.



In kernel K (ξ, ξ′) make the substitution

ξ =
1− τη
1− η

, ξ′ =
1− τη′

1− η′

kernel becomes

K2(η, η′) =
ϕ(η′)

η′ − τη
, ϕ(η) =

(
1− τη
1− η

)x

e

[
1

1−η
− 1

1−τη

]
t

acting on a small circle centered at η = 1. Define

K1(η, η′) =
ϕ(τη)

η′ − τη

Then an application of the two Lemmas shows that the Fredholm
determinant of K (ξ, ξ′) acting on CR has the same Fredholm determinant
as K1(η, η′)− K2(η, η′) acting on Γ.



Then further (!) analysis gives

det(I − λK ) = det(I − λK1) det
(
I + λK2(I − λk1)−1

)
=

∞∏
k=0

(1− λτk) det(I + µJ)

where J is a “nice” kernel:

J(η, η′) =

∫
ϕ∞(ζ)

ϕ∞(η′)

ζm

(η′)m+1

f (µ, ζ/η′)

ζ − η
dζ

ϕ∞(η) = (1− η)−x e
η

1−η
t

f (µ, z) =
∞∑

k=−∞

τk

1− τkµ
zk



Theorem (TW).

P (xm(t/γ) ≤ x) =

∫ ∞∏
k=0

(1− µτk) det(I + µJ)
dµ

µ

where µ runs over a circle of fixed radius larger than τ but not equal to
any τ−k with k ≥ 0.

This final expression is suitable for a saddle point analysis.

Theorem (TW). Let m = [σt], γ = q − p fixed, then

lim
t→∞

PZ+

(
xm(t/γ) ≤ c1(σ)t + c2(σ) s t1/3

)
= F2(s)

uniformly for σ in compact subsets of (0, 1) where c1(σ) = −1 + 2
√
σ,

c2(σ) = σ−1/6(1−
√
σ)2/3.
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