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Historic example: Dyson’s Brownian motion

Let A be a random N × N Hermitian matrix whose entries aij(t),
i ≤ j , evolve as independent complex Brownian motions.

a11(t) = B11(t), a12(t) = a21(t) =
1√
2
B r

12(t) +

√
−1√
2
B i

12(t), etc.
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Historic example: Dyson’s Brownian motion

Let A be a random N × N Hermitian matrix whose entries aij(t),
i ≤ j , evolve as independent complex Brownian motions.

Eigenvalues of A are real λ1(t) ≥ . . . ≥ λN(t).
They evolve as a marginally Markov process [Dyson ‘60s] — N
Brownian motions conditioned to never collide.
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Historic example: Dyson’s Brownian motion
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Historic example: Dyson’s Brownian motion

(also looks like a 2d model of
statistical mechanics)

As N →∞, there is a limit shape for the density of the
eigenvalues — a semicircle growing with time
[Wigner’s semicircle law, ‘50s]. Global Gaussian Free Field type
behavior and Tracy–Widom edge fluctuations are also present
[mostly since ‘90s, e.g. see book by Anderson–Guionnet–Zeitouni].
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Historic example: Dyson’s Brownian motion

As N →∞, there is a limit shape for the density of the
eigenvalues — a semicircle growing with time
[Wigner’s semicircle law, ‘50s]. Global Gaussian Free Field type
behavior and Tracy–Widom edge fluctuations are also present
[mostly since ‘90s, e.g. see book by Anderson–Guionnet–Zeitouni].

Theorem: Tracy–Widom fluctuations

P
[
N

1
6

(
1√
t
λmax(t)− 2

√
N

)
≤ u

]
→ FGUE (u) as N →∞, t fixed.

d
du
FGUE (u) in the middle [Wikipedia]
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Historic example: Dyson’s Brownian motion

As N →∞, there is a limit shape for the density of the
eigenvalues — a semicircle growing with time
[Wigner’s semicircle law, ‘50s]. Global Gaussian Free Field type
behavior and Tracy–Widom edge fluctuations are also present
[mostly since ‘90s, e.g. see book by Anderson–Guionnet–Zeitouni].

Integrability structure: dynamical correlations are determinantal
(“free fermions”) [Eynard–Mehta ‘98], [Nagao–Forrester ‘98].
+ connections to Schur symmetric polynomials.
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Historic example: Dyson’s Brownian motion

As N →∞, there is a limit shape for the density of the
eigenvalues — a semicircle growing with time
[Wigner’s semicircle law, ‘50s]. Global Gaussian Free Field type
behavior and Tracy–Widom edge fluctuations are also present
[mostly since ‘90s, e.g. see book by Anderson–Guionnet–Zeitouni].

Integrability structure: dynamical correlations are determinantal
(“free fermions”) [Eynard–Mehta ‘98], [Nagao–Forrester ‘98].
+ connections to Schur symmetric polynomials.

Dyson’s Brownian motion is a nonlocal particle dynamics.
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Another historic example: ASEP

ASEP (Asymmetric Simple Exclusion Process) — a continuous-time
Markov chain on configurations on Z (at most one particle per site),
introduced in [Spitzer ‘70].

x1 x2 x3 xk

RL R

R + L = 1, R/L = q < 1.

Local particle dynamics.
L = 0 ⇒ TASEP, has determinantal structure and is connected
to Schur symmetric polynomials.
[Gorin–Shkolnikov ‘12] — scaling limit of multilayer TASEP-like
processes to Dyson’s Brownian motion.
No determinantal structure when R, L > 0.
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Simulation of TASEP: Step IC

[Ferrari ‘08], http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/
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Simulation of TASEP: Half-flat IC

[Ferrari ‘08], http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/

Leonid Petrov Stochastic quantum integrable systems in infinite volume

http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/


Simulation of TASEP: Half-flat IC

[Ferrari ‘08], http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/
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Simulation of TASEP: Half-flat IC

[Ferrari ‘08], http://wt.iam.uni-bonn.de/ferrari/research/continoustasep/
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ASEP

As t →∞, the ASEP interface (= height function) possesses a
limit shape (evolving in time). Tracy–Widom fluctuations around
the limiting interface are also present, established for special
initial data [Tracy–Widom ‘07+] (TASEP: [Johansson ‘99]).
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ASEP

As t →∞, the ASEP interface (= height function) possesses a
limit shape (evolving in time). Tracy–Widom fluctuations around
the limiting interface are also present, established for special
initial data [Tracy–Widom ‘07+] (TASEP: [Johansson ‘99]).

Theorem: Tracy–Widom fluctuations

N0 := # particles to the left of zero if initially Z+ is packed, Z− empty.

Then P
[
N0(t/(L− R))− t/2

2−1/3t1/3
≥ −u

]
→ FGUE (u) as t →∞

[Wikipedia]
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ASEP

As t →∞, the ASEP interface (= height function) possesses a
limit shape (evolving in time). Tracy–Widom fluctuations around
the limiting interface are also present, established for special
initial data [Tracy–Widom ‘07+] (TASEP: [Johansson ‘99]).

Under a more delicate scaling, the ASEP interface converges to
the solution of a (1+1-dimensional) stochastic PDE — the KPZ
equation [Sasamoto–Spohn ‘10], [Amir–Corwin–Quastel ‘10], [Dotsenko ‘10+],
. . .

∂h

∂t
=

1

2

∂2h

∂x2
+

(
∂h

∂x

)2

+ space-time white noise. [Kardar–Parisi–Zhang ‘86]
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ASEP

Tracy–Widom fluctuations.

Convergence to the KPZ equation.

Integrability structure (R, L > 0): explicit eigenfunctions of the
Markov generator of the ASEP, obtained by the (coordinate)
Bethe ansatz. No Bethe equations because lattice is infinite.

Properties of eigenfunctions allow to compute probability
P(xm(t) ≤ x) as a Fredholm determinant det(1− K ), and
analyze it asymptotically.

Fredholm determinant is a kind of generating function for minors of K , more precisely,

det(1− K ) = 1− (“sum” of 1-dim diagonal minors)

+(“sum” of 2-dim diagonal minors)− . . .
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Overview: Sources of Integrability in (Stochastic)

Interacting Particle Systems

1 Representation theory / Algebra of symmetric functions:
Schur functions, Schur processes, determinantal structure (“free
fermions”), Robinson–Schensted–Knuth correspondence, . . . ,
Macdonald processes, . . .

Dyson’s Brownian motion, lozenge tilings, q-TASEP, random
polymers, . . .

2 Quantum integrable systems / exactly solvable lattice
models in statistical mechanics: Yang-Baxter relation, Bethe
ansatz, Plancherel theory for Bethe ansatz eigenfunctions,
Markov duality (incl. quantum group symmetries), . . .

ASEP / XXZ, six-vertex model, higher spin stochastic vertex
models, q-TASEP, random polymers, . . .

(so Dyson’s BM was solved by determinantal point processes, many its discrete relatives can be
approached using symmetric polynomials; but ASEP required new ideas based on Bethe ansatz)
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? Outline ?

1 Integrable stochastic particle systems

2 Bethe ansatz eigenfunctions of ASEP

3 Stochastic vertex models
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Coordinate Bethe ansatz for k-particle ASEP

Let k be the number of particles, x1 < x2 < . . . < xk , and H(k) be
the Markov generator of this k-particle ASEP (i.e., H(k) is the matrix
of jump rates).

x1 x2 x3 xk

RL R

k = 1 :

H(1)f (x1) = R(f (x1 + 1)− f (x1)) + L(f (x1 − 1)− f (x1)).
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Coordinate Bethe ansatz for k-particle ASEP

Let k be the number of particles, x1 < x2 < . . . < xk , and H(k) be
the Markov generator of this k-particle ASEP (i.e., H(k) is the matrix
of jump rates).

x1 x2 x3 xk

RL R

k = 1 :

H(1)f (x1) = R(f (x1 + 1)− f (x1)) + L(f (x1 − 1)− f (x1)).

k = 2, x1 + 1 < x2:

H(2)f (x1, x2) = R(f (x1 + 1, x2)− f (x1, x2)) + L(f (x1 − 1, x2)−
f (x1, x2)) + R(f (x1, x2 + 1)− f (x1, x2)) + L(f (x1, x2 − 1)− f (x1, x2))

=
(
H(1)

1 +H(1)
2

)
f (x1, x2).
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Coordinate Bethe ansatz for k-particle ASEP

k = 1 :

H(1)f (x1) = R(f (x1 + 1)− f (x1)) + L(f (x1 − 1)− f (x1)).

k = 2, x1 + 1 < x2:

H(2)f (x1, x2) = R(f (x1 + 1, x2)− f (x1, x2)) + L(f (x1 − 1, x2)−
f (x1, x2)) + R(f (x1, x2 + 1)− f (x1, x2)) + L(f (x1, x2 − 1)− f (x1, x2))

=
(
H(1)

1 +H(1)
2

)
f (x1, x2).

k = 2, x1 + 1 = x2: x1 cannot jump right, x2 cannot jump left

H(2)f (x1, x2) = R(f (x1, x2 +1)−f (x1, x2))+L(f (x1−1, x2)−f (x1, x2))

=
(
H(1)

1 +H(1)
2

)
f (x1, x2) + discrepancy,

discrepancy = Rf (x1 + 1, x2) + Lf (x1, x2 − 1)− f (x1, x2)
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Coordinate Bethe ansatz for k-particle ASEP

When x1 + 1 = x2,
discrepancy = Rf (x1 + 1, x2) + Lf (x1, x2 − 1)− f (x1, x2) involves
values of f outside of the “physical region” x1 < x2.

Therefore, we can assign arbitrary values to f outside this region so
that discrepancy = 0. Can do the same for k particles, and the
boundary conditions will involve only pairs of neighboring particles
(two-body boundary conditions).
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Coordinate Bethe ansatz for k-particle ASEP

When x1 + 1 = x2,
discrepancy = Rf (x1 + 1, x2) + Lf (x1, x2 − 1)− f (x1, x2) involves
values of f outside of the “physical region” x1 < x2.

Therefore, we can assign arbitrary values to f outside this region so
that discrepancy = 0. Can do the same for k particles, and the
boundary conditions will involve only pairs of neighboring particles
(two-body boundary conditions).

Proposition: ASEP is integrable in the sense of [Bethe ‘31]

H(k)f =
(
H(1)

1 + . . . +H(1)
k

)
f if f is such that for any i ,

Rf (. . . , xi + 1, xi+1, . . .) + Lf (. . . , xi , xi+1 − 1, . . .)− f (. . .) = 0
whenever xi + 1 = xi+1. [Schutz et al. since ‘90s], [Tracy–Widom ‘07].
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Coordinate Bethe ansatz for k-particle ASEP

Proposition: ASEP is integrable in the sense of [Bethe ‘31]

H(k)f =
(
H(1)

1 + . . . +H(1)
k

)
f if f is such that for any i ,

Rf (. . . , xi + 1, xi+1, . . .) + Lf (. . . , xi , xi+1 − 1, . . .)− f (. . .) = 0
whenever xi + 1 = xi+1. [Schutz et al. since ‘90s], [Tracy–Widom ‘07].

No surprise: ASEP generator is conjugate to the Hamiltonian of the
Heisenberg XXZ quantum spin chain (with |∆| > 1). The XXX case
∆ = 1 (corresponding to R = L) was studied by Bethe himself.
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Eigenfunctions of k-particle ASEP

Diagonalize each H(1)
i separately, and combine the eigenfunctions to

satisfy the two-body boundary conditions.

The sum of one-particle operators has eigenfunctions∑
σ∈S(k)

Aσ(~z)
k∏

i=1

(
1 + zσ(i)

1 + zσ(i)/q

)−xi
, ~z = (z1, . . . , zk) ∈ Ck .

These will be eigenfunctions for any choice of Aσ(~z).

Then it is possible to choose Aσ(~z) to satisfy the two-body boundary
conditions, and thus one has

k-particle ASEP eigenfunctions

ΨASEP
~z (~x) =

∑
σ∈S(k)

∏
B<A

zσ(B) − qzσ(A)

zσ(B) − zσ(A)

k∏
i=1

(
1 + zσ(i)

1 + zσ(i)/q

)−xi
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Eigenfunctions of k-particle ASEP

k-particle ASEP eigenfunctions

ΨASEP
~z (~x) =

∑
σ∈S(k)

∏
B<A

zσ(B) − qzσ(A)

zσ(B) − zσ(A)

k∏
i=1

(
1 + zσ(i)

1 + zσ(i)/q

)−xi

H(k)ΨASEP
~z = −(1− q)2

1 + q

k∑
j=1

1

(1 + zj)(1 + q/zj)︸ ︷︷ ︸
ev(~z)

ΨASEP
~z
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Solving Kolmogorov equations for k-particle ASEP

Eigenfunctions ΨASEP
~z (~x) help solve the backward and forward

Kolmogorov equations with arbitrary initial data — these are systems
of first-order linear ODEs with the difference operator H(k) or its
transpose in the right-hand side.

This allows to compute observables E~x(0)=~xF (~x(t)) and transition
probabilities Pt(~x → ~y).

For instance, f (t; ~y) := Pt(~x → ~y) satisfies

Master equation
d

dt
f (t; ~y) =

∑
~y ′

f (t; ~y ′)H(k)(~y ′, ~y),

f (0; ~y) = 1~y=~x .
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Solving Kolmogorov equations for k-particle ASEP

d

dt
f (t; ~y) =

∑
~y ′

f (t; ~y ′)H(k)(~y ′, ~y), f (0; ~y) = 1~y=~x

Strategy:

1 Come up with direct and inverse Fourier-like transforms
associated with eigenfunctions ΨASEP

~z (~x)
(analogy: Ψz(x) = ezx for the 1d Laplacian on R)

2 Project the initial data 1~y=~x onto the eigenfunctions using direct
transform

3 Evolve in the ~z-space: multiply by et·ev(~z)

4 Reconstruct the solution using inverse transform
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Fourier-like transforms for ASEP

Direct transform

f (~x) on Wk := {x1 < . . . < xk} ⊂ Zk is mapped to〈
f ,Ψ~z

〉
~x

:=
∑

~x∈Wk f (~x)ΨASEP
~z (~x)

Inverse transform

G (~z) is mapped to∮
..

∮
G (~z)

∏
B<A

zA − zB
zA − qzB

k∏
j=1

1− 1/q

(1 + zj)(1 + zj/q)

(
1 + zj

1 + zj/q

)−xj dzi
2πi

,

integration over small circles around −1.

This can also be regarded as a scalar product of G (~z) with ΨASEP
~z (~x),

denote it by
〈
G ,Ψ•(~x)

〉
~z
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Plancherel theorem

f (~x) 7→
∑

~x∈Wk f (~x)ΨASEP
~z (~x)

G (~z) 7→
∮
..
∮
G (~z)

∏
B<A

zA−zB
zA−qzB

∏k
j=1

1−1/q
(1+zj )(1+zj/q)

(
1+zj

1+zj/q

)−xj
dzi
2πi

Plancherel theorem [Tracy–Widom ‘07+], [Borodin–Corwin–P.–Sasamoto ‘14]

The direct and inverse transforms are mutual inverses on:

compactly supported functions on Wk = {x1 < . . . < xk} ⊂ Zk

symmetric Laurent polynomials in (1 + zi)/(1 + zi/q)

(two separate statements)

The Bethe ansatz for ASEP is complete, i.e., any (nice) initial
data is determined by its image in the ~z space.

The eigenfunctions ΨASEP
~z (~x) are orthogonal: in the usual sense

under
〈
·, ·
〉
~z
, in a generalized sense under

〈
·, ·
〉
~x
.

Leonid Petrov Stochastic quantum integrable systems in infinite volume



Plancherel theorem

f (~x) 7→
∑

~x∈Wk f (~x)ΨASEP
~z (~x)

G (~z) 7→
∮
..
∮
G (~z)

∏
B<A

zA−zB
zA−qzB

∏k
j=1

1−1/q
(1+zj )(1+zj/q)

(
1+zj

1+zj/q

)−xj
dzi
2πi

Plancherel theorem [Tracy–Widom ‘07+], [Borodin–Corwin–P.–Sasamoto ‘14]

The direct and inverse transforms are mutual inverses on:

compactly supported functions on Wk = {x1 < . . . < xk} ⊂ Zk

symmetric Laurent polynomials in (1 + zi)/(1 + zi/q)

(two separate statements)

The Bethe ansatz for ASEP is complete, i.e., any (nice) initial
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Next steps towards Tracy–Widom fluctuations

1 For k-particle ASEP, Pt(~x → ~y) is given as a k-fold contour
integral for any initial data ~x .

2 Use certain combinatorial summation identities (following from
the Plancherel theory) to compute P(xm(t) ≤ x). Works only for
special initial data: Z+ is packed, Z− is empty (number of
particles can be taken infinite).
The answer is a sum of k-fold contour integrals over k ≥ m.

3 Relate this sum over k to a Fredholm determinant

det(1− uK ) =
∞∑
k=0

(−u)k

k!

∮
..

∮
det(K (zi , zj))ki ,j=1dz1 . . . dzk

(integrands in P(xm(t) ≤ x) are determinants by Cauchy determinantal formula)

4 Analyze asymptotics of this Fredholm determinant, and get FGUE

in the limit. All boils down to dealing with K which is explicit.
(FGUE (u) is itself a certain Fredholm determinant)
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(integrands in P(xm(t) ≤ x) are determinants by Cauchy determinantal formula)

4 Analyze asymptotics of this Fredholm determinant, and get FGUE

in the limit. All boils down to dealing with K which is explicit.
(FGUE (u) is itself a certain Fredholm determinant)
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Last slide about ASEP: Key ingredients for

Tracy–Widom fluctuations

1 Nice explicit eigenfunctions (by coordinate Bethe ansatz)
2 Plancherel theory (combinatorics of contour integrals)
3 Fredholm determinantal structure (for special initial data)
4 Asymptotics of Fredholm determinants (steepest descent)

What to do with other initial data? — open except for few other
cases.
TASEP results and KPZ theory give predictions. In particular, the
Tracy–Widom distribution FGOE (corresponding to real symmetric
matrices) should arise in the limit when the interface is initially
“flat”. [Corwin’s KPZ survey ‘11]

(next — vertex models as particle systems: a similar integrability structure)
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? Outline ?

1 Integrable stochastic particle systems

2 Bethe ansatz eigenfunctions of ASEP
3 Stochastic vertex models

Stochastic six-vertex model
Yang-Baxter relation
Stochastic higher spin vertex model
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Stochastic six-vertex model

Six vertex model (“square ice”) — widely studied integrable lattice
model [book by Baxter], [Reshetikhin ‘10]

0

0

0

0

1

0

1

0

1

0

0

1

a1 = 1 b1 c1 = 1− b1

0

1

0

1

0

1

1

0

1

1

1

1

b2 c2 = 1− b2 a2 = 1

Configurations of arrows
(spins) in a region on the
plane. Vertices of 6 types.
Weight of a configuration is
the product of weights of all
vertices.

A special choice of weights makes the behavior of arrows at each
vertex stochastic [Gwa–Spohn ‘92], [Borodin–Corwin–Gorin ‘14]
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Stochastic six-vertex model

a1 = 1 b1 c1 = 1− b1

b2 c2 = 1− b2 a2 = 1

In each horizontal slice, the number of ver-
tical arrows is preserved.
For finite number k of vertical arrows, the
stochastic six-vertex model is well-defined
in infinite horizontal strip because a1 = 1.
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Stochastic six-vertex model: transfer matrix

a1 = 1 b1 c1 = 1− b1

b2 c2 = 1− b2 a2 = 1

For k vertical spins, the transfer matrix B
is a local stochastic operator, with left-to-
right update.
Incoming arrows = input,
Outgoing arrows = output.
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Stochastic six-vertex model: transfer matrix

a1 = 1 b1 c1 = 1− b1

b2 c2 = 1− b2 a2 = 1

For k vertical spins, the transfer matrix B
is a local stochastic operator, with left-to-
right update.
Incoming arrows = input,
Outgoing arrows = output.

c1
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Stochastic six-vertex model: transfer matrix

a1 = 1 b1 c1 = 1− b1

b2 c2 = 1− b2 a2 = 1

For k vertical spins, the transfer matrix B
is a local stochastic operator, with left-to-
right update.
Incoming arrows = input,
Outgoing arrows = output.

c1 c2
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Stochastic six-vertex model: transfer matrix

a1 = 1 b1 c1 = 1− b1

b2 c2 = 1− b2 a2 = 1

For k vertical spins, the transfer matrix B
is a local stochastic operator, with left-to-
right update.
Incoming arrows = input,
Outgoing arrows = output.

c1 c2 c1
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Stochastic six-vertex model: transfer matrix

a1 = 1 b1 c1 = 1− b1

b2 c2 = 1− b2 a2 = 1

For k vertical spins, the transfer matrix B
is a local stochastic operator, with left-to-
right update.
Incoming arrows = input,
Outgoing arrows = output.

c1 c2 c1 1
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Stochastic six-vertex model: transfer matrix

a1 = 1 b1 c1 = 1− b1

b2 c2 = 1− b2 a2 = 1

For k vertical spins, the transfer matrix B
is a local stochastic operator, with left-to-
right update.
Incoming arrows = input,
Outgoing arrows = output.

c1 c2 c1 1 b2
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Stochastic six-vertex model: transfer matrix

a1 = 1 b1 c1 = 1− b1

b2 c2 = 1− b2 a2 = 1

For k vertical spins, the transfer matrix B
is a local stochastic operator, with left-to-
right update.
Incoming arrows = input,
Outgoing arrows = output.

c1 c2 c1 1 b2 c2
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Stochastic six-vertex model: transfer matrix

a1 = 1 b1 c1 = 1− b1

b2 c2 = 1− b2 a2 = 1

For k vertical spins, the transfer matrix B
is a local stochastic operator, with left-to-
right update.
Incoming arrows = input,
Outgoing arrows = output.

c1 c2 c1 1 b2 c2 b1 c1 1 b2 c2 1 b1
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Stochastic six-vertex model: ASEP limit

x1 x2 x3 xk

RL R

q = b1/b2

Let b1, b2 → 0, subtract diagonal movement, rescale to continuous
time ⇒ get ASEP (particles = vertical arrows).

The transfer matrix of the k-particle six-vertex model has the same∗

eigenfunctions ΨASEP
~z (~x), where x1 < . . . < xk are positions of the

vertical spins. ∗ — up to q ↔ q−1

Additional free parameter ⇒ commuting transfer matrices.
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Stochastic six-vertex model: ASEP limit

x1 x2 x3 xk

RL R

q = b1/b2

Let b1, b2 → 0, subtract diagonal movement, rescale to continuous
time ⇒ get ASEP (particles = vertical arrows).

The transfer matrix of the k-particle six-vertex model has the same∗

eigenfunctions ΨASEP
~z (~x), where x1 < . . . < xk are positions of the

vertical spins. ∗ — up to q ↔ q−1

Additional free parameter ⇒ commuting transfer matrices.
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Stochastic six-vertex model with half domain wall

0

H = 0
H = 1

1

1
Half domain wall boundary conditions =
packed spin configuration to the right of
0. Analogue of step initial data for ASEP.
H(x , y) := # vertical arrows to the left
of (x , y)

Theorem [Borodin–Corwin–Gorin ‘14]

For 0 < b2 < b1 < 1, κ := (1− b1)/(1− b2), as L→∞,

H(Lx , Ly)/L→ H(x , y) :=


0, x/y < κ;(√

y(1− b1)−
√

x(1− b2)
)2

, κ < x/y < 1/κ;

x − y , x/y > 1/κ;

P
[
H(x , y)L− H(Lx , Ly)

σx ,yL1/3
≤ u

]
→ FGUE (u).

(proof is by methods similar to ASEP: Bethe ansatz, Fredholm determinants...)
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Stochastic six-vertex model with half domain wall

0

H = 0
H = 1

1

1
Half domain wall boundary conditions =
packed spin configuration to the right of
0. Analogue of step initial data for ASEP.
H(x , y) := # vertical arrows to the left
of (x , y)

Theorem [Borodin–Corwin–Gorin ‘14]

For 0 < b2 < b1 < 1, κ := (1− b1)/(1− b2), as L→∞,

H(Lx , Ly)/L→ H(x , y) :=


0, x/y < κ;(√

y(1− b1)−
√

x(1− b2)
)2

, κ < x/y < 1/κ;

x − y , x/y > 1/κ;

P
[
H(x , y)L− H(Lx , Ly)

σx ,yL1/3
≤ u

]
→ FGUE (u).

(proof is by methods similar to ASEP: Bethe ansatz, Fredholm determinants...)
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Stochastic six-vertex model: Simulations

b1 = 2/3 (“up”),
b2 = 1/3 (“right”),
size 30
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Stochastic six-vertex model: Simulations

b1 = 2/3 (“up”),
b2 = 1/3 (“right”),
size 400
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Stochastic six-vertex model: Fluctuations
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Stochastic six-vertex model: Fluctuations

(Global fluctuations do not seem to be described by a Gaussian Free Field)
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Stochastic six-vertex model: Simulations

b1 = 1/3 (“up”),
b2 = 1/2 (“right”),
size 400
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? Outline ?

1 Integrable stochastic particle systems

2 Bethe ansatz eigenfunctions of ASEP
3 Stochastic vertex models

Stochastic six-vertex model
Yang-Baxter relation
Stochastic higher spin vertex model

Leonid Petrov Stochastic quantum integrable systems in infinite volume



Yang-Baxter relation for six-vertex model

Another parametrization of vertex weights, s := 1/
√
q:

b1 =
1− suq

1− su
, b2 =

−su + q−1

1− su
,

0 < q < 1, u >
√
q

or
q > 1, 0 < u <

√
q

(u — free parameter entering transfer matrix but not eigenfunctions)

Vu :=


1 0 0 0
0 b2 1− b2 0
0 1− b1 b1 0
0 0 0 1

 0

0

0

0

1

0

1

0

1

0

0

1

a1 = 1 b1 c1 = 1− b1

0

1

0

1

0

1

1

0

1

1

1

1

b2 c2 = 1− b2 a2 = 1

rows and columns of Vu correspond to C2 ⊗ C2, i.e., to
incoming / outgoing arrow configurations 00, 01, 10, 11
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Yang-Baxter relation for six-vertex model

Another parametrization of vertex weights, s := 1/
√
q:

b1 =
1− suq

1− su
, b2 =

−su + q−1

1− su
,

0 < q < 1, u >
√
q

or
q > 1, 0 < u <

√
q

(u — free parameter entering transfer matrix but not eigenfunctions)

Vu :=


1 0 0 0
0 b2 1− b2 0
0 1− b1 b1 0
0 0 0 1

 0

0

0

0

1

0

1

0

1

0

0

1

a1 = 1 b1 c1 = 1− b1

0

1

0

1

0

1

1

0

1

1

1

1

b2 c2 = 1− b2 a2 = 1

rows and columns of Vu correspond to C2 ⊗ C2, i.e., to
incoming / outgoing arrow configurations 00, 01, 10, 11
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Yang-Baxter relation for six-vertex model

k ′1k1

k ′2k2

m

n

`u1

u2

W
(m,n)
u1,u2 , m, n ∈ {0, 1} — 4 × 4 matrix

corresponding to the weight of this con-
figuration, from (k1, k2) to (k ′1, k

′
2)

(` is defined uniquely by m, n, k1,2, k
′
1,2)

k ′2k2

k ′1k1

m

n

`u2

u1

W̃
(m,n)
u1,u2 , m, n ∈ {0, 1}
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Yang-Baxter relation for six-vertex model

k ′1k1

k ′2k2

m

n

`u1

u2

W
(m,n)
u1,u2 , m, n ∈ {0, 1} — 4 × 4 matrix

corresponding to the weight of this con-
figuration, from (k1, k2) to (k ′1, k

′
2)

(` is defined uniquely by m, n, k1,2, k
′
1,2)

k ′2k2

k ′1k1

m

n

`u2

u1

W̃
(m,n)
u1,u2 , m, n ∈ {0, 1}
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Yang-Baxter relation for six-vertex model

W
(m,n)
u1,u2 (V u2

u1
√
q
)transpose = (V u2

u1
√
q
)transposeW̃

(m,n)
u1,u2 , (u1, u2)→ u2

u1
√
q

m

n

u1

u2
u2

u1
√
q

m

n

u2

u1
u2

u1
√
q
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? Outline ?

1 Integrable stochastic particle systems

2 Bethe ansatz eigenfunctions of ASEP
3 Stochastic vertex models

Stochastic six-vertex model
Yang-Baxter relation
Stochastic higher spin vertex model

Leonid Petrov Stochastic quantum integrable systems in infinite volume



Yang-Baxter relation:

solution with higher vertical spins

W
(m,n)
u1,u2 (V u2

u1
√

q
)transpose = (V u2

u1
√
q
)transposeW̃

(m,n)
u1,u2 , m, n ∈ Z≥0

(but each matrix W
(m,n)
u1,u2

is still 4× 4)

m

n

u1

u2
u2

u1
√
q

m

n

u2

u1
u2

u1
√
q
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Stochastic higher spin vertex model

g

0

g

0
1− suqg

1− su

g

0

g − 1

1
−su(1− qg )

1− su

g

1

g + 1

0
1− s2qg

1− su
g

1

g

1
−su + s2qg

1− su

s = 1/
√
q ⇒ stochastic six-vertex model

s = 1/(
√
q)I ⇒ finitely many vertical spins, g ∈ {0, 1, 2, . . . , I}

s generic ⇒ infinitely many vertical spins possible

[Mangazeev ‘14], [Borodin ‘14], [Corwin–P. ‘15], [Borodin–P., in progress ‘15]
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q-TASEP degeneration

g

0

g

0
1− suqg

1− su

g

0

g − 1

1
−su(1− qg )

1− su

g

1

g + 1

0
1− s2qg

1− su
g

1

g

1
−su + s2qg

1− su

generic s

s, u → 0, s � u,

continuous time scaling:
speed up by s|u|

g

0

g

0 Prob = 1− O(su)

g

0

g − 1

1 Rate = 1− qg

g

1

g + 1

0 Prob = 1

g

1

g

1 Prob = 0
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q-TASEP degeneration

g

0

g

0
1− suqg

1− su

g

0

g − 1

1
−su(1− qg )

1− su

g

1

g + 1

0
1− s2qg

1− su
g

1

g

1
−su + s2qg

1− su

generic s

s, u → 0, s � u,

continuous time scaling:
speed up by s|u|

g

0

g

0 Prob = 1− O(su)

g

0

g − 1

1 Rate = 1− qg

g

1

g + 1

0 Prob = 1

g

1

g

1 Prob = 0
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q-TASEP degeneration

g

0

g

0 Prob = 1− O(su)

g

0

g − 1

1 Rate = 1− qg

g

1

g + 1

0 Prob = 1

g

1

g

1 Prob = 0

Spins are gaps in another process (∞ spins at location 0).

g5g4g3g2g1g0

∞

Rate = 1− q5

q-Boson

x6 x5 x4 x3 x2 x1

Rate = 1− q5

gap = 5

q-TASEP

[Bogoliubov–Bullough–Timonen ‘94], [Bogoliubov–Izergin–Kitanine ‘98],
[Sasamoto–Wadati ‘98], [Borodin–Corwin ‘11], [Borodin–Corwin–Sasamoto ‘12],
[Ferrari–Veto ‘13], . . .
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Eigenfunctions of the higher spin model

Let Bu,qu be the transfer matrix of the k-particle higher spin model.

Eigenfunctions of Bu,qu — e.g., [Borodin ‘14]

ΨHS
~z (~x) =

∑
σ∈S(k)

∏
B<A

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

(
1− zσ(j)

1− s2 zσ(j)

)xj

,

~x = (x1 ≥ . . . ≥ xk) — positions of k spins.

Bu,quΨHS
~z =

k∏
i=1

1− qu · szi
1− u · szi

ΨHS
~z

Coordinate Bethe ansatz derivation of ΨHS
~z — [Povolotsky ‘13]

(operator Bu,qu is not equal to a free operator plus boundary conditions. But it is a ratio of two

such operators — q-Hahn generators introduced by Povolotsky)

Plancherel theory — [Borodin–Corwin–P.–Sasamoto ‘14]
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Eigenfunctions of the higher spin model

Let Bu,qu be the transfer matrix of the k-particle higher spin model.

Eigenfunctions of Bu,qu — e.g., [Borodin ‘14]

ΨHS
~z (~x) =

∑
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∏
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zσ(A) − qzσ(B)
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~x = (x1 ≥ . . . ≥ xk) — positions of k spins.

Bu,quΨHS
~z =

k∏
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ΨHS
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Coordinate Bethe ansatz derivation of ΨHS
~z — [Povolotsky ‘13]

(operator Bu,qu is not equal to a free operator plus boundary conditions. But it is a ratio of two

such operators — q-Hahn generators introduced by Povolotsky)
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Eigenfunctions as partition functions

[Borodin ‘14]

ΨHS
~z (~x) is essentially a partition function of configurations of a higher

spin vertex model.
(based on turning an algebraic Bethe ansatz expression for eigenfunctions into a coordinate one)

z1

z2

z3

z4

z5

0

x1x2x5 = x4 = x3

The action of operator Bu,qu ⇔ adding a top row
to this configuration with horizontal arrows re-
versed; but without the incoming left arrow.

Use Yang-Baxter to commute this additional row
all the way down. Each commutation spits out a
factor 1−qu·szi

1−u·szi .

On finite lattice there would be two terms of the
Yang-Baxter relation, but one of them dies in in-
finite volume limit.
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Eigenfunctions as partition functions

[Borodin ‘14]

ΨHS
~z (~x) is essentially a partition function of configurations of a higher

spin vertex model.
(based on turning an algebraic Bethe ansatz expression for eigenfunctions into a coordinate one)

z1

z2

z3

z4
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x1x2x5 = x4 = x3
The action of operator Bu,qu ⇔ adding a top row
to this configuration with horizontal arrows re-
versed; but without the incoming left arrow.
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all the way down. Each commutation spits out a
factor 1−qu·szi

1−u·szi .

On finite lattice there would be two terms of the
Yang-Baxter relation, but one of them dies in in-
finite volume limit.
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Eigenfunctions as partition functions

z1

z2

z3

z4

z5

u

0

~y
~x

(
Bu,quΨHS

~z

)
(~y) =

∑
~x

Bu,qu(~y , ~x)ΨHS
~z (~x)ΨHS

~z (~y)
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Eigenfunctions as partition functions

z1

z2

z3

z4

z5

u

0

~y

(
Bu,quΨHS

~z

)
(~y) =

∑
~x

Bu,qu(~y , ~x)ΨHS
~z (~x)ΨHS

~z (~y)

Leonid Petrov Stochastic quantum integrable systems in infinite volume



Eigenfunctions as partition functions

z1

z2

z3

z4

z5

u

0

~y

etc.

(
Bu,quΨHS

~z

)
(~y) =

∑
~x

Bu,qu(~y , ~x)ΨHS
~z (~x)ΨHS

~z (~y)
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Eigenfunctions as partition functions

z1

z2

z3

z4

z5

u

0

~y

etc.

(
Bu,quΨHS

~z

)
(~y) =

∑
~x

Bu,qu(~y , ~x)ΨHS
~z (~x) =

k∏
i=1

1− qu · szi
1− u · szi

ΨHS
~z (~y)
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Eigenfunctions as partition functions

z1

z2

z3

z4

z5

u

0

~y

etc.

(
Bu,quΨHS

~z

)
(~y) =

∑
~x

Bu,qu(~y , ~x)ΨHS
~z (~x) =

k∏
i=1

1− qu · szi
1− u · szi

ΨHS
~z (~y)

(This is Pieri rule for symmetric rational functions; there are also skew Cauchy identity and

Cauchy identity — properties one would expect from symmetric polynomials)

ΨHS
~z (~x) =

∑
σ∈S(k)

∏
B<A

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

(
1− zσ(j)

1− s2zσ(j)

)xj

—
generalize
Hall-
Littlewood
polynomials
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Eigenfunctions as partition functions

Moreover, there is also a Cauchy-type summation identity for the
eigenfunctions. For it we need “dual” partition functions G :

z1

z2

z3

z4

z5

0

x1x2x5 = x4 = x3

ΨHS
~z (~x) =: F~x(~z)

z1

z2

z3

z4

z5

0

y1y5 y4 = y3 y2

G~y(~z)
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Eigenfunctions as partition functions

z1

z2

z3

z4

z5

0

x1x2x5 = x4 = x3

ΨHS
~z (~x) =: F~x(~z)

z1

z2

z3

z4

z5

0

y1y5 y4 = y3 y2

G~y(~z)

Cauchy identity [Borodin ‘14]∑
~x

c(~x)F~x(~z)G~x(~w) =
∏
i ,j

1− qziwj

1− ziwj

(c(~x) is product of (s2; q)gi /(q; q)gi
over “clusters” of ~x)

(can use this identity to define probability distributions on “rainbows” of paths; ~x

will be the configuration on the middle horizontal)
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Fusion [Kirillov–Reshetikhin ‘87], [Corwin–P. ‘15]

g

0

g

0
1− suqg

1− su

g

0

g − 1

1
−su(1− qg )

1− su

g

1

g + 1

0
1− s2qg

1− su
g

1

g

1
−su + s2qg

1− su

3-parameter family of
stochastic models

At most one horizontal ar-
row per edge

Let Bu,qJu := Bu,quBqu,q2u . . .BqJ−1u,qJu, eigenvalue
k∏

i=1

1− qJu · szi
1− u · szi

.

h′1h1

h′2h2

h′JhJ

i1

i2

u

qu

qJ−1u

· · ·

q-exchangeable distribution of ~h
⇒ q-exchangeable distribution of ~h′

Allows to collapse vertex weights by looking
only at h1 + . . . + hJ and h′1 + . . . + h′J

Introduces fourth parameter J ∈ Z≥1
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General J vertex weights

i2 = 5

j2 = 4

i1 = 2

j1 = 7

input

output

Weights expressed via general R matrix
for Uq(ŝl2); or basic hypergeometric func-
tions; or classical q-Racah orthogonal
polynomials [Mangazeev ‘14], [Corwin–P. ‘15].

Vu(i1, j1; i2, j2) = 1i1+j1=i2+j2

(−1)i1q
1
2
i1(i1+2j1−1)ui1s j1+j2−i2(us−1; q)j2−i1

(q; q)i2(su; q)i2+j2(q J +1−j1 ; q)j1−j2

× 4φ̄3

 q−i2 ; q−i1 , suq J , qs/u

s2, q1+j2−i1 , q J +1−i2−j2

∣∣∣ q, q
 ,

where r+1φ̄r

(
q−n; a1, . . . , ar
b1, . . . , br

∣∣∣q, z) =
n∑

k=0

zk
(q−n; q)k

(q; q)k

r∏
i=1

(ai ; q)k(biq
k ; q)n−k

(treat qJ as an analytic parameter ∈ C;

such general J weights lead to other interesting degenerations like the q-Hahn TASEP, . . . )
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Simulation of higher spin model

(J finite, half domain wall boundary conditions with all arrows incoming from the left)
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Simulation of higher spin model

J = 3
s = 1/q2

(so at most 4 vertical spins allowed)
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Simulation of higher spin model

J = 3, s = 1/q3/2
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Simulation of higher spin model

J = 1
s generic
(so any number of vertical
spins allowed)
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Simulation of higher spin model
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Various degenerations of higher spin model

Stochastic higher spin model (4 parameters: q, s and J , u)

q-TASEP (and many
related processes)

Random polymers

Stochastic six-vertex model

ASEP

KPZ equation

Tracy–Widom distributions
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Moment formulas [Corwin–P. ‘15]

Initially g0 =∞ and gi = 0 for i > 0, s generic. Under Bu,qJu, for any ` ≥ 1:

E
(
q`

∑
i≥n gi (t)

)
=

(−1)`q
`(`−1)

2

(2πi)`

∮
..

∮ ∏
A<B

zA − zB
zA − qzB

∏̀
j=1

(1− s2zj)
`−1

(1− zj)`

(1− sqJuzj
1− suzj

)t dzj
zj

The contours encircle 1 and not 0 or 1/s2, and zi contains qzj for i < j

1qq20 s−2

z3

z2
z1

Formula obtained using Markov
self-duality of the transfer matrix

Bu,qJu: it quasi-commutes with
the matrix q

∑
i>j giyj

Leads to Fredholm determinant
for the q-Laplace transform of
q
∑

i≥n gi (t)

Tracy–Widom asymptotics in
case J =∞ in [Veto ‘14]
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Moment formulas [Borodin–P., in progress ‘15]

In model with half domain wall boundary conditions (all arrows income from the

left), initially gi = 0 for i > 0. For any ` ≥ 1:

E
(
q`

∑
i≥n gi (t)

)
=

(−1)`q
`(`−1)

2

(2πi)`

∮
..

∮ ∏
A<B

zA − zB
zA − qzB

∏̀
j=1

(1− s2zj
1− zj

)`−1(1− sqJuzj
1− suzj

)t dzj
zj

Contours are slightly more complicated.

Formula obtained by studying “algebraic” properties of the Bethe ansatz
eigenfunctions ΨHS

~z (~x) (linking this subject back to theory of symmetric
polynomials). Does not involve Markov duality.

Formula implies the previous one by taking different uj ’s at different
horizontals, plus a nice limit transition.

This also leads to Fredholm determinants.
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Summary

There is a 4-parameter family of interacting particle systems
imported from exactly solvable lattice models of statistical mechanics

Bethe ansatz produces exact distribution formulas (moment and
Fredholm determinantal formulas) for this system, which lead to
asymptotics for special initial data

This particle system leads to symmetric rational functions
generalizing the Hall-Littlewood polynomials: From Bethe ansatz to
symmetric functions (representation theory? — [Takeyama ‘14])

The 4-parameter particle system generalizes to most (all?) known
integrable interacting particle systems in the KPZ universality class
(i.e., which have the Tracy–Widom fluctuation behavior)

(many open questions of analytic and algebraic nature)
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