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Plan

• Dimer models (perfect matchings) and height function

• Irreversible dynamics: a (2 + 1)-d random growth model

• Speed and fluctuations



Perfect matchings of bipartite planar graphs
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Height function
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Height function:

h(f ′)− h(f ) = 4
∑

e∈Cf→f ′

σe(1e∈M − 1/4)

where σe = +1/− 1 if e crossed with white on the right/left.

Definition is path-independent.



Ergodic Gibbs measures [Kenyon-Okounkov-Sheffield]

• Choose ρ = (ρ1, ρ2, ρ3) with ρi ∈ (0, 1), ρ1 + ρ2 + ρ3 = 1.
There exists a unique translation invariant, ergodic Gibbs
measure πρ s.t. the density of horizontal, NW and NE
lozenges are ρ1, ρ2, ρ3.

• Dimer-dimer correlations decay algebraically:

πρ(1e∈M ; 1e′∈M) ≈ |e − e ′|−2

• height function converges to GFF: if
∫
R2 ϕ(x)dx = 0 then

ε2
∑
x

ϕ(εx)hx
ε→0−→

∫
ϕ(x)X (x)dx

with 〈X (x)X (y)〉 = − 1
2π2 log |x − y |.



Ergodic Gibbs measures [Kenyon-Okounkov-Sheffield]

• Choose ρ = (ρ1, ρ2, ρ3) with ρi ∈ (0, 1), ρ1 + ρ2 + ρ3 = 1.
There exists a unique translation invariant, ergodic Gibbs
measure πρ s.t. the density of horizontal, NW and NE
lozenges are ρ1, ρ2, ρ3.

• Dimer-dimer correlations decay algebraically:

πρ(1e∈M ; 1e′∈M) ≈ |e − e ′|−2

• height function converges to GFF: if
∫
R2 ϕ(x)dx = 0 then

ε2
∑
x

ϕ(εx)hx
ε→0−→

∫
ϕ(x)X (x)dx

with 〈X (x)X (y)〉 = − 1
2π2 log |x − y |.



Ergodic Gibbs measures [Kenyon-Okounkov-Sheffield]

• Choose ρ = (ρ1, ρ2, ρ3) with ρi ∈ (0, 1), ρ1 + ρ2 + ρ3 = 1.
There exists a unique translation invariant, ergodic Gibbs
measure πρ s.t. the density of horizontal, NW and NE
lozenges are ρ1, ρ2, ρ3.

• Dimer-dimer correlations decay algebraically:

πρ(1e∈M ; 1e′∈M) ≈ |e − e ′|−2

• height function converges to GFF: if
∫
R2 ϕ(x)dx = 0 then

ε2
∑
x

ϕ(εx)hx
ε→0−→

∫
ϕ(x)X (x)dx

with 〈X (x)X (y)〉 = − 1
2π2 log |x − y |.



Symmetric vs. asymmetric random dynamics
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p q q 6= p

For d = 1: Symmetric vs. Asymmetric Simple Exclusion Process
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In both SSEP/ASEP, Bernoulli(ρ) are invariant.
For p 6= q, irreversibility (particle flux).
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Asymmetric cube deposition/evaporation dynamics

• If p = q, Gibbs states are invariant (no surprise; reversibility)

• if p 6= q, stationary states presumably very different from πρ.
Numerical simulations [Forrest-Tang-Wolf 1992] show
≈ t0.24... growth of height fluctuations.

• large-scale dynamics should be described by “isotropic
two-dimensional KPZ equation”:

∂th = ν∆h + Q(∇h) + white noise

with Q a positive-definite quadratic form (whatever
mathematical sense this equation has...)
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Coupled simple exclusions with constraints
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A two-dimensional generalization of Hammersley process
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Dynamics well defined?

Particles can leave to ∞ in infinitesimal time
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Theorem (T. 2015)

• The Gibbs measures πρ are stationary.

• One has
Eπρ(hx(t)− hx(0)) = (p − q)tv

with v(ρ) > 0 and

•
Pπρ(|hx(t)− hx(0)− (p − q)tv | ≥ tδ)

t→∞
= o(1).

For some slopes ρ (technical restrictions) I can actually prove
better:

Pπρ(|hx(t)− hx(0)− (p − q)tv | ≥ A
√

log t) = O(1/A2).

• Generalization to domino tilings
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Comments

• A. Borodin, P. L. Ferrari [BF ’08] study totally asymmetric
case (q = 1, p = 0) and special (and deterministic) initial
condition.

Exact computations (explicit kernel for some time-space
correlations)

• large-scale dynamics should be described by “anisotropic
two-dimensional KPZ equation”:

∂th = ν∆h + Q(∇h) + white noise

with Q a (+,−)-definite quadratic form.
Physics literature [Wolf ’91]: non-linearity irrelevant.
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Comments

• BF ’08 obtain hydrodynamic limit and
√

log t Gaussian
fluctuations

lim
L→∞

1

L
Eh(xL, yL, τL) = h(x , y , τ)

with
∂τh = v(∇h)

and

1√
log L

[h(xL, yL, τL)− E(h(xL, yL, τL))]⇒ N (0, σ2);

moreover, convergence of local statistics to that of a Gibbs
measure.



Invariance on the torus

For simplicity, q = 1, p = 0.

Stationary measure πLρ : uniform measure with fraction ρi of
lozenges of type i = 1, 2, 3.

Call I+
n set of available positions above/below for particle n.

[πLρL](σ) =
1

NL
ρ

[
∑
n

|I+
n | −

∑
n

|I−n |] = 0



Invariance on the torus

For simplicity, q = 1, p = 0.

Stationary measure πLρ : uniform measure with fraction ρi of
lozenges of type i = 1, 2, 3.

Call I+
n set of available positions above/below for particle n.

[πLρL](σ) =
1

NL
ρ

[
∑
n

|I+
n | −

∑
n

|I−n |]

= 0



Invariance on the torus

For simplicity, q = 1, p = 0.

Stationary measure πLρ : uniform measure with fraction ρi of
lozenges of type i = 1, 2, 3.

Call I+
n set of available positions above/below for particle n.

[πLρL](σ) =
1

NL
ρ

[
∑
n

|I+
n | −

∑
n

|I−n |] = 0



From the torus to the infinite graph

Difficulty: show that “information does not propagate
instantaneously” =⇒ coupling between torus dynamics and infinite
volume dynamics

Key fact:
Lemma: The probability of seeing an inter-particle gap ≥ logR
within distance R from the origin before time 1 is O(R−K ) for
every K .
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Comparison with the Hammersley process (HP)

Seppäläinen ’96: if spacing between particle n and n + 1 is o(n),
then dynamics well defined.

Lozenge dynamics ∼ infinite set of coupled Hammersley processes.
Comparison: lozenges move less than HP particles
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Fluctuations
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p = 1, q = 0

Λ = {1, . . . , L}2

Let QΛ(t) =
∑

x∈Λ(hx(t)− hx(0)).

d

dt
〈QΛ(t)〉 = 〈KΛ(σt)〉 := 〈

∑
x

|V (x , ↑) ∩ Λ|(t)〉 = v |Λ|
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Fluctuations

Similarly, one can prove

d

dt
〈(QΛ(t)− 〈QΛ(t)〉)2〉 = 2〈(QΛ(t)− 〈QΛ(t)〉)(KΛ(σt)− πρ(KΛ))〉

+πρ(
∑
x

|V (x , ↑) ∩ Λ|2)

≤ 2
√
〈(QΛ(t)− 〈QΛ(t)〉)2〉

√
Varπρ(K1) + O(L2)

Equilibrium estimate:

Varπρ(K1) = O(L2+δ) or = O(L2 log L) for some slopes.
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Fluctuations

Therefore,

d

dt
〈(QΛ(t)− 〈QΛ(t)〉)2〉 ≤ 2

√
〈(QΛ(t)− 〈QΛ(t)〉)2〉L1+δ + O(L2)

so that
〈(QΛ(T )− 〈QΛ(T )〉)2〉 = O(L2+2δT 2).

If L = 1, we get the (useless) bound ψ(T ) = O(T ).

If we choose L = T we get instead ψ(T ) = O(T δ) as wished.
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Thanks!


