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Plan

e Dimer models (perfect matchings) and height function
e Irreversible dynamics: a (2 4 1)-d random growth model

e Speed and fluctuations



Perfect matchings of bipartite planar graphs
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Perfect matchings of bipartite planar graphs




Height function

Height function:

h(f)=h(f) =4 Y oe(leem —1/4)

eECf_Hc/

where oo = +1/ — 1 if e crossed with white on the right/left.
Definition is path-independent.



Ergodic Gibbs measures [Kenyon-Okounkov-Sheffield]

e Choose p = (p1, p2, p3) with p; € (0,1),p1 + p2 +p3 = 1.
There exists a unique translation invariant, ergodic Gibbs
measure 7, s.t. the density of horizontal, NW and NE

lozenges are p1, p2, p3-
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Ergodic Gibbs measures [Kenyon-Okounkov-Sheffield]

e Choose p = (p1, p2, p3) with p; € (0,1), p1 + p2 + p3 = 1.
There exists a unique translation invariant, ergodic Gibbs
measure 7, s.t. the density of horizontal, NW and NE
lozenges are p1, p2, P3.

e Dimer-dimer correlations decay algebraically:

71—ﬂ(]-eeM; 1e’6M) ~ |e - e/‘72
e height function converges to GFF: if [, ¢(x)dx = 0 then
€2 Z o(ex)hy =9 /tp(x)X(x)dx
with (X(x)X(y)) =~ log[x — y|.



Symmetric vs. asymmetric random dynamics

q#p

For d = 1: Symmetric vs. Asymmetric Simple Exclusion Process
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In both SSEP/ASEP, Bernoulli(p) are invariant.
For p # q, irreversibility (particle flux).
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Asymmetric cube deposition/evaporation dynamics

e If p = g, Gibbs states are invariant (no surprise; reversibility)

e if p # g, stationary states presumably very different from 7.
Numerical simulations [Forrest-Tang-Wolf 1992] show
~ t0-?% growth of height fluctuations.



Asymmetric cube deposition/evaporation dynamics

e If p = g, Gibbs states are invariant (no surprise; reversibility)

e if p # g, stationary states presumably very different from 7.
Numerical simulations [Forrest-Tang-Wolf 1992] show
~ t0-?% growth of height fluctuations.

e large-scale dynamics should be described by “isotropic
two-dimensional KPZ equation”:

O0th = vAh + Q(Vh) + white noise

with @ a positive-definite quadratic form (whatever
mathematical sense this equation has...)



Coupled simple exclusions with constraints
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A two-dimensional generalization of Hammersley process
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Dynamics well defined?

Particles can leave to oo in infinitesimal time
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Theorem (T. 2015)

e The Gibbs measures 7, are stationary.
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Theorem (T. 2015)
e The Gibbs measures 7, are stationary.
e One has

Eﬂ'p(hx(t) - hx(O)) = (P - q)tV

with v(p) > 0 and

Py, (|hx(t) — hx(0) — (p — )tv] > £°) "2 o(1).

For some slopes p (technical restrictions) | can actually prove
better:

Pr, (|hx(t) = he(0) — (p — @)tv| > Ay/log t) = O(1/A%).



Theorem (T. 2015)
e The Gibbs measures 7, are stationary.
e One has

Ewp(hx(t) - hx(O)) = (P - q)tV

with v(p) > 0 and

Py, (|hx(t) — hx(0) — (p — )tv] > £°) "2 o(1).

For some slopes p (technical restrictions) | can actually prove
better:

Pr, (|hx(t) = he(0) — (p — @)tv| > Ay/log t) = O(1/A%).

e Generalization to domino tilings



Comments

e A. Borodin, P. L. Ferrari [BF '08] study totally asymmetric
case (g =1,p=0) and special (and deterministic) initial
condition.

Exact computations (explicit kernel for some time-space
correlations)



Comments

e A. Borodin, P. L. Ferrari [BF '08] study totally asymmetric
case (g =1,p=0) and special (and deterministic) initial
condition.

Exact computations (explicit kernel for some time-space
correlations)

e large-scale dynamics should be described by “anisotropic
two-dimensional KPZ equation™:

Oth = vAh + Q(Vh) + white noise

with Q a (4, —)-definite quadratic form.
Physics literature [Wolf '91]: non-linearity irrelevant.



Comments

e BF '08 obtain hydrodynamic limit and /log t Gaussian
fluctuations

1
lim —Eh(xL,yL,7L) = h(x,y,T)

L—oo L

with
0-h = v(Vh)

and

\/Ii?[h(XL7 yL, TL) - E(h(XLv yL7 TL))] = N(O’ 02);

moreover, convergence of local statistics to that of a Gibbs
measure.
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Invariance on the torus

For simplicity, g =1, p = 0.
Stationary measure TF'[L,Z uniform measure with fraction p; of
lozenges of type i = 1,2, 3.

Call I} set of available positions above/below for particle n.

[7L2)(0) NL[ZI/*I -Slhll=o



From the torus to the infinite graph

Difficulty: show that “information does not propagate
instantaneously” = coupling between torus dynamics and infinite
volume dynamics



From the torus to the infinite graph

Difficulty: show that “information does not propagate
instantaneously” = coupling between torus dynamics and infinite
volume dynamics

Key fact:

Lemma: The probability of seeing an inter-particle gap > log R
within distance R from the origin before time 1 is O(R~K) for
every K.



Comparison with the Hammersley process (HP)
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Seppaldinen '96: if spacing between particle n and n+ 1 is o(n),
then dynamics well defined.



Comparison with the Hammersley process (HP)

0@ @

Seppaldinen '96: if spacing between particle n and n+ 1 is o(n),
then dynamics well defined.

Lozenge dynamics ~ infinite set of coupled Hammersley processes.
Comparison: lozenges move less than HP particles



Fluctuations
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Fluctuations

p=1,q=0

A={l..., Ly

Let Q/\(t) = er/\(hx(t) - hX(O))

S {Qu(1) = (Kn(oe) = QIO NA) = viN




Fluctuations

Similarly, one can prove

%<(QA(t) —{Qa(1)))?) = 2((Qn(t) = (Qa(t))(Kn(oe) — mo(Kn)))
+7Tp(Z\V(X,T) NAP)

< 21/((Qn(t) — (Qn(0)))2)/ Vars, (K1) + O(L2)



Fluctuations

Similarly, one can prove

%<(QA(t) —{Qa(1)))?) = 2((Qn(t) = (Qa(t))(Kn(oe) — mo(Kn)))
+7Tp(Z\V(X,T) NAP)

< 2\/ Qn(t) — (Qn(t)))? \/Vafnp(Kl) +0(L?)
Equilibrium estimate:

Var, (K1) = O(L**°)  or = O(L?logl)  for some slopes.
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Fluctuations

Therefore,

<(QA — QM) < 2/ (@alt )L 4 O(L2)

so that
(QA(T) = (Qa(T)))?) = O(L*+*°T2).

If L =1, we get the (useless) bound (T) = O(T).
If we choose L = T we get instead 1)(T) = O(T?) as wished.



Thanks!



