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Alternating Sign Matrices

This talk approaches what is now one of the classical models for
the interplay between Statistical Mechanics, Integrability and

Combinatorics: the (bijectively related) models
of 6 Vertex Model DWBC (6VM), Fully-Packed Loops (FPL)

and Alternating-Sign Matrices (ASM).
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Asymptotic shape of ASM’s

In large ASM’s you see the emergence of a limit shape

The analytic determination of this curve is our subject today.
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Asymptotic shape of ASM’s

The role of Integrability has been quite important for the
combinatorics of ASM’s. For example, the enumeration

of size-n ASM’s is performed in a much easier way as a corollary
of the evaluation of the partition function of the 6VM,

with generic 2n spectral parameters
(at the combinatorial point ∆ = a2+b2−c2

2ab = −1
2)

Still, there is some need of extra technology in order to produce
large-size asymptotics. Various tools are there, but the roadmap is

less clear. In particular, it is not clear at which point of your
calculations you shall quit your nice and neat exact formulas from

integrable systems, and start using ε-and-δ estimations. . .

In this talk we will take a quite unusual path. . .

Andrea Sportiello Arctic curves of Alternating Sign Matrices



Arctic curves at free-fermion points
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Domino Tilings of the Aztec Diamond ý ASM at ω = 2

weighted “Domino Tilings of the Aztec Diamond”
(a planar-graph dimer-covering problem, thus a fermionic system. . . )
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Domino Tilings of the Aztec Diamond ý ASM at ω = 2

Consider the customary 6-Vertex Model weights...

a(x , y) a′(x , y) b(x , y) b′(x , y) c(x , y) c ′(x , y)

...and now consider the following map: (note: ∆ = 0)

w sw
x ,y wne

x ,y w se
x ,y wnw

x ,y 1 w se
x ,ywnw

x ,y + w sw
x ,ywne

x ,y

a a′ b b′ c c ′
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Schröder NILPs in Domino Tilings

The NILP construction for Domino Tilings of the Aztec Diamond
is similar to the one for Lozenge Tilings on the triangular lattice,

with Schröder paths ({↗,↘, 2−−−→}) instead of Dyck paths ({↗,↘})
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Domino Tilings of the Aztec Diamond: a bigger picture

Let’s have a look at a bigger
picture... (here L = 64)

picture taken from:

z-w H. Cohn, N. Elkies and J. Propp,
Local statistics for random domino
tilings of the Aztec diamond, 1995
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Domino Tilings of the Aztec Diamond: a bigger picture

The use of colours allow to visu-
alize the boundary of the frozen
regions, as well as the NILP’s

picture taken from:

z-w H. Cohn, N. Elkies and J. Propp,
Local statistics for random domino
tilings of the Aztec diamond, 1995
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Domino Tilings of the Aztec Diamond: a bigger picture

The limit shape, that they
called Arctic curve, is a circle.

picture taken from:

z-w H. Cohn, N. Elkies and J. Propp,
Local statistics for random domino
tilings of the Aztec diamond, 1995
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Other Arctic Circles

A similar feature, with Dyck paths, was already known to occur in
lozenge tilings of a regular hexagon
(the MacMahon problem of “boxed plane partitions”)
z-w H. Cohn, M. Larsen and J. Propp, The Shape of a Typical Boxed

Plane Partition, 1998
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Dimer coverings of periodic planar bipartite graphs

So, we find similar features in dimer coverings of periodic planar
bipartite graphs, for different unit tiles. A general unified theory
indeed exists:

z-w R. Kenyon, A. Okounkov, S. Sheffield, Dimers and Amoebae, 2003

Within this class of models, lozenge tilings are by far the most
studied case, even more than the square lattice.

This because the spectral curve associated to this lattice (sic!) is
the simplest possible: P(z ,w) = z + w − 1.

This study culminates into

z-w R. Kenyon, A. Okounkov, Limit shapes and the complex Burgers

equation, 2005
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An example: the cardioid
for the hexagonal domain
with a frozen corner

picture taken from:
z-w R. Kenyon, A. Okounkov,

Limit shapes and the complex
Burgers equation, 2005
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An example: the cardioid
for the hexagonal domain
with a frozen corner

picture taken from:
z-w R. Kenyon, A. Okounkov,

Limit shapes and the complex
Burgers equation, 2005
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The Colomo–Pronko formula
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What about integrable systems out of fermionic points?

All of this is beautiful, but planar dimer coverings are fermionic...

As we know, ω-enumerations of
ASM form a YB-integrable line,
with a fermionic point at ω = 2
(domino tilings of the Aztec Dia-
mond)

Numerical simulations (thanks to
CFTP!) seem to show that the
arctic curve varies smoothly with
ω, at least within certain ranges...

ω = 1...but what is know theoretically?

from this point on, ASM pictures are produced with C code based
on a version kindly provided by Ben Wieland
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What about integrable systems out of fermionic points?

All of this is beautiful, but planar dimer coverings are fermionic...

As we know, ω-enumerations of
ASM form a YB-integrable line,
with a fermionic point at ω = 2
(domino tilings of the Aztec Dia-
mond)

Numerical simulations (thanks to
CFTP!) seem to show that the
arctic curve varies smoothly with
ω, at least within certain ranges...

ω = 32...but what is know theoretically?

from this point on, ASM pictures are produced with C code based
on a version kindly provided by Ben Wieland
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What about integrable systems out of fermionic points?

All of this is beautiful, but planar dimer coverings are fermionic...

As we know, ω-enumerations of
ASM form a YB-integrable line,
with a fermionic point at ω = 2
(domino tilings of the Aztec Dia-
mond)

Numerical simulations (thanks to
CFTP!) seem to show that the
arctic curve varies smoothly with
ω, at least within certain ranges...

ω = 52...but what is know theoretically?

from this point on, ASM pictures are produced with C code based
on a version kindly provided by Ben Wieland
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What about integrable systems out of fermionic points?

All of this is beautiful, but planar dimer coverings are fermionic...

As we know, ω-enumerations of
ASM form a YB-integrable line,
with a fermionic point at ω = 2
(domino tilings of the Aztec Dia-
mond)

Numerical simulations (thanks to
CFTP!) seem to show that the
arctic curve varies smoothly with
ω, at least within certain ranges...

ω = 72...but what is know theoretically?

from this point on, ASM pictures are produced with C code based
on a version kindly provided by Ben Wieland
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The Colomo–Pronko formula

...but what is know theoretically?

...this was almost nothing up to recent times...
Then Colomo and Pronko came with a series of papers in which:

I they found explicitly the Arctic Curve for ω = 1 ASM;

I they found a formula for the Arctic Curve at generic ω, in
terms of the refined enumerations Aω(n; r);

I they found the necessary asymptotic properties of a certain
multi-contour integral, using methods of Random Matrices,
first for ω ≤ 4,. . .

I . . . and then, together with P. Zinn-Justin, also for ω > 4
(where the corresponding 6-Vertex Model is
“antiferromagnetic”);

z-w F. Colomo and A.G. Pronko,

The arctic circle revisited, 2007
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...but what is know theoretically?

...this was almost nothing up to recent times...
Then Colomo and Pronko came with a series of papers in which:

I they found explicitly the Arctic Curve for ω = 1 ASM;

I they found a formula for the Arctic Curve at generic ω, in
terms of the refined enumerations Aω(n; r);

I they found the necessary asymptotic properties of a certain
multi-contour integral, using methods of Random Matrices,
first for ω ≤ 4,. . .

I . . . and then, together with P. Zinn-Justin, also for ω > 4
(where the corresponding 6-Vertex Model is
“antiferromagnetic”);

z-w F. Colomo and A.G. Pronko,

The limit shape of large alternating sign matrices, 2008
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The Colomo–Pronko formula

...but what is know theoretically?

...this was almost nothing up to recent times...
Then Colomo and Pronko came with a series of papers in which:

I they found explicitly the Arctic Curve for ω = 1 ASM;

I they found a formula for the Arctic Curve at generic ω, in
terms of the refined enumerations Aω(n; r);

I they found the necessary asymptotic properties of a certain
multi-contour integral, using methods of Random Matrices,
first for ω ≤ 4,. . .

I . . . and then, together with P. Zinn-Justin, also for ω > 4
(where the corresponding 6-Vertex Model is
“antiferromagnetic”);

z-w F. Colomo and A.G. Pronko,

The arctic curve of the domain-wall six-vertex model, 2009
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The Colomo–Pronko formula

...but what is know theoretically?

...this was almost nothing up to recent times...
Then Colomo and Pronko came with a series of papers in which:

I they found explicitly the Arctic Curve for ω = 1 ASM;

I they found a formula for the Arctic Curve at generic ω, in
terms of the refined enumerations Aω(n; r);

I they found the necessary asymptotic properties of a certain
multi-contour integral, using methods of Random Matrices,
first for ω ≤ 4,. . .

I . . . and then, together with P. Zinn-Justin, also for ω > 4
(where the corresponding 6-Vertex Model is
“antiferromagnetic”);

z-w F. Colomo, A.G. Pronko and P. Zinn-Justin, The arctic curve

of the domain-wall six-vertex model in its anti-ferroelectric regime, 2010
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The Colomo–Pronko formula: ω = 1

Picture and formula for ω = 1:

The South-West arc satisfies
x(1− x) + y(1− y) + xy = 1/4
x , y ∈ [0, 1/2]

(just a “+xy” modification
w.r.t. a circle)
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Refined enumeration of ASM’s

We call Aω(n) the counting polynomial associated to ω-weighted
ASM of size n:

Aω(n) =
∑
A∈An

ω#{−1 in A}

Thus, e.g., A1(n) =
∏

0≤j≤n−1
(3j+1)!
(n+j)! , the total number of size-n

ASM

Call Aω(n, r) the counting polynomial
associated to ω-weighted ASM of size
n, such that the only +1 in the bottom
row is at the r -th column
Thus, e.g.,

A1(n + 1, r + 1)

A1(n + 1)
=

(n+r
n

)(2n−r
n

)(3n+1
n

)
example at n = 10, r = 4
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The Colomo–Pronko formula: generic ω

For ω-weighted ASM on the square, the arctic curve C(x , y), in
parametric form x = x(z), y = y(z) on the interval z ∈ [1,+∞),
is the solution of the system of equations

F (z ; x , y) = 0 ;
∂

∂z
F (z ; x , y) = 0 .

The function F (z ; x , y), that depends on x and y linearly, is

F (z ; x , y) =
1

z
(x − 1) +

ω

(z − 1)(z − 1 + ω)
y

+ lim
n→∞

1

n

∂

∂z
ln

(
n∑

r=1

Aω(n, r)z r−1

)
.

C(x , y) is algebraic only at discrete special values of ω
(including 0, 1, 2, 3).
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How are these results derived?

Call hn(z) =
∑n

r=1 Aω(n, r)z r−1

Define the Emptiness Formation Probability, EFP(n; r , s): the
probability that in the top-left s × r rectangle of the n × n ASM
there are no ±1 elements.

Clearly, A(n; r) = EFP(n; r − 1, 1)− EFP(n; r , 1).
But for s ≥ 2 there is no evident relation. . .

. . . nonetheless, it can be determined that also EFP(n; r , s) is
related to hn(z), through a multi-contour integral formula

hn,s(z1, . . . , zs) :=
1

∆(z)
det
(
zk−1
j (zj − 1)s−khn−k+1(zj)

)
j ,k

EFP(n; r , s) =

∮
0

dz1
2πi
· · ·
∮
0

dzs
2πi

∏
j

((t2 − 2t∆)zj + 1)s−j

z r
j (zj − 1)s−j+1

×
∏
j<k

zj − zk
t2zjzk − 2t∆zj + 1

hn,s(z1, . . . , zs)
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How are these results derived?

Call hn(z) =
∑n

r=1 Aω(n, r)z r−1

Define the Emptiness Formation Probability, EFP(n; r , s): the
probability that in the top-left s × r rectangle of the n × n ASM
there are no ±1 elements.

Clearly, A(n; r) = EFP(n; r − 1, 1)− EFP(n; r , 1).
But for s ≥ 2 there is no evident relation. . .

. . . nonetheless, it can be determined that also EFP(n; r , s) is
related to hn(z), through a multi-contour integral formula

For (r , s) crossing the Arctic Curve, EFP(n; r , s) shows a 0-1
threshold transition, that you can study through saddle-point
methods, helped by previous techniques developed for a certain
Random Matrix Model (Triple Penner Model)
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How to derive this?

. . . in a few words, something very complicated already for the
square.

And something relying deeply on “miracles” of integrability
methods, that have no guarantee to occur in other domains.

Furthermore, already for ω = 1, the curve is not C∞
at the points of contact with the boundary of the domain,
and is not even piecewise algebraic at generic ω
(differently from the curves in the Kenyon–Okounkov theory)

How can we hope for an analogue of Kenyon–Okounkov results on
the whole YB-integrable line for ω?

Staying less ambitious, can we determine in ASM something like
the KO cardioid for the hexagon with a frozen corner?
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Emptiness Formation: typical configurations

. . . It is instructive to observe a typical configuration in the
ensemble pertinent to EFP(n; r , s).
For (r , s) inside the arctic curve, we see the emergence of a new
cardioid-like arctic curve (just like in Kenyon–Okounkov)

here n = 200, (r , s) = (80, 90)
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A reminder on the basic theory of Plane Curves

z-w J. Dennis Lawrence, A catalog of special plane curves, Dover, New

York, 1972

A curve C will be represented either by the Cartesian equation
A(x , y) = 0, or the parametric equations x = f (t), y = g(t).
It is constituted by the concatenation of a finite number of arcs.
An arc is a portion of the curve for which a “smooth” parametric
presentation exists.

A curve is algebraic if the defining Cartesian equation A(x , y) = 0
is algebraic, otherwise it is trascendental.

A double point s.t. the two arcs passing through P have the same
tangent is a cusp. A cusp is of the first kind if P is an endpoint of
both arcs, and there is an arc of C on each side of the tangent, and
of the second kind if P is an endpoint of both arcs, and the two
arcs lie on the same side of the tangent,
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A reminder on the basic theory of Plane Curves

The envelope E of a one-parameter family of curves {Cz}z∈I is the
curve, minimal under inclusion, that is tangent to every curve of
the family.

If the equation of the family {Cz} is given in Cartesian coordinates
by U(z ; x , y) = 0, the non-singular points (x , y) of the envelope E
are the solutions of the system of equations

U(z ; x , y) = 0 ;
d

dz
U(z ; x , y) = 0 .

We call geometric caustic the envelope of a family of straight lines.
In this case U is linear in x and y :

U(z ; x , y) = x A(z) + y B(z) + C (z)
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A reminder on the basic theory of Plane Curves

Caustics in optics are a special case of geometric caustics, in which
the family of straight lines can be interpreted as the family of
reflections of a beam of parallel rays from a curved mirror.
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the family of straight lines can be interpreted as the family of
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A reminder on the basic theory of Plane Curves

Caustics in optics are a special case of geometric caustics, in which
the family of straight lines can be interpreted as the family of
reflections of a beam of parallel rays from a curved mirror.
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The Colomo–Pronko formula at generic ω – reloaded

For ω-weighted ASM on the square, the arctic curve C(x , y), in
parametric form x = x(z), y = y(z) on the interval z ∈ [1,+∞),
is the solution of the system of equations

F (z ; x , y) = 0 ;
∂

∂z
F (z ; x , y) = 0 .

The function F (z ; x , y), that depends on x and y linearly, is

F (z ; x , y) =
1

z
(x − 1) +

ω

(z − 1)(z − 1 + ω)
y

+ lim
n→∞

1

n

∂

∂z
ln

(
n∑

r=1

Aω(n, r)z r−1

)
.

C(x , y) is algebraic only at discrete special values of ω
(including 0, 1, 2, 3).

But this has not been derived geometrically!
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The Colomo–Pronko formula at generic ω – reloaded

For ω-weighted ASM on the square, the arctic curve C(x , y) is the
geometric caustic of the family of lines, for z in the interval
z ∈ [1,+∞),

F (z ; x , y) =
1

z
(x − 1) +

ω

(z − 1)(z − 1 + ω)
y

+ lim
n→∞

1

n

∂

∂z
ln

(
n∑

r=1

Aω(n, r)z r−1

)
.

But this has not been derived geometrically!
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The Colomo–Pronko formula at generic ω – reloaded

For ω-weighted ASM on the square, the arctic curve C(x , y) is the
geometric caustic of the family of lines, for z in the interval
z ∈ [1,+∞),

F (z ; x , y) =
1

z
(x − 1) +

ω

(z − 1)(z − 1 + ω)
y

+ lim
n→∞

1

n

∂

∂z
ln

(
n∑

r=1

Aω(n, r)z r−1

)
.

But this has not been derived geometrically!
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The tangent method
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A reminder on interacting NILP

Recall that an ASM can be seen (in 4 different ways) as a
configuration of interacting non-intersecting lattice paths (NILP),
which are in fact non-interacting when ω = 2.

The refinement position is the point at which the most external
path leaves the boundary
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A quest for a new strategy...

So we would like a more geo-
metric strategy for attacking
this sort of questions...

Hopefully, with some luck,
this could also be more gener-
ally applicable to domains of
different shape...

Let’s have a deeper look to
the domain with a frozen
rectangle...

n = 200, no frozen region
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A quest for a new strategy...

So we would like a more geo-
metric strategy for attacking
this sort of questions...

Hopefully, with some luck,
this could also be more gener-
ally applicable to domains of
different shape...

Let’s have a deeper look to
the domain with a frozen
rectangle...

n = 200, (r , s) = (90, 80)
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A quest for a new strategy...

So we would like a more geo-
metric strategy for attacking
this sort of questions...

Hopefully, with some luck,
this could also be more gener-
ally applicable to domains of
different shape...

Let’s have a deeper look to
the domain with a frozen
rectangle...

n = 200, (r , s) = (99, 88)
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A quest for a new strategy...

So we would like a more geo-
metric strategy for attacking
this sort of questions...

Hopefully, with some luck,
this could also be more gener-
ally applicable to domains of
different shape...

Let’s have a deeper look to
the domain with a frozen
rectangle...

n = 200, (r , s) = (104, 92)
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A quest for a new strategy...

So we would like a more geo-
metric strategy for attacking
this sort of questions...

Hopefully, with some luck,
this could also be more gener-
ally applicable to domains of
different shape...

Let’s have a deeper look to
the domain with a frozen
rectangle...

n = 200, (r , s) = (106, 93)
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A quest for a new strategy...

So we would like a more geo-
metric strategy for attacking
this sort of questions...

Hopefully, with some luck,
this could also be more gener-
ally applicable to domains of
different shape...

Let’s have a deeper look to
the domain with a frozen
rectangle...

n = 200, (r , s) = (106, 94)
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The structure of a typical refined ASM

...so this teaches us how does
it look like a typical large
ASM, of size n refined at r ...

It must be like a typical ASM,
plus a straight line connecting
(0, r) to the Arctic Curve, and
tangent to the Arctic Curve

Indeed, this is what you see in
a simulation...

n = 300, r = 250
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What about generic domains?

...our strategy has chances of working in general circumstances...

n = 300, (a, b, c , . . . , h) = (60, 50, 70, 60, 100, 70, 60, 50)
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What about generic domains?

...our strategy has chances of working in general circumstances...

a
b

c

d
e

f

g
h

n = 300, (a, b, c , . . . , h) = (60, 50, 70, 60, 100, 70, 60, 50)
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The strategy: trying a precise statement

κ2 `2

κ1

r

`1

Principle 1: Geometric Tangent Method

Call Λ the domain shape, and C the corresponding Arctic Curve.

In the large n limit, a typical refined ASM on Λ, for having a +1
at position r along `1, shows the Arctic Curve C of unrefined
ASM, plus a straight path from r to the tangent point on C.
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The Geometric Tangent Method in a picture

n ↑

n + m

→

n ↓

n − 1

←

m

→
1

←

In this geometry, there is no
reason for the isolated line to
change direction at row n. Then:

IF the arctic curve exists

IF it does not depend on m

THEN from the method we get
a caustic parametrisation of the
curve
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The strategy: trying a precise statement

κ2 `2

κ1

r

`1

Principle 2: Entropic Tangent Method

Call Λ the domain shape, and C the corresponding Arctic Curve.

Call Λ′ the domain Λ minus one row/column along the sides
containing κ1 and κ2
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The strategy: trying a precise statement

κ2 `2

κ1

r

`1

Principle 2: Entropic Tangent Method

Call A(Λ) the number of ASM in Λ, and A(1)(Λ, r), A(2)(Λ, r)
the refined ASM enumerations along `1 and `2

Say X (n) ∼ Y (n) if limn→∞
1
n ln Y (n)

X (n) = O(ln n).
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The strategy: trying a precise statement

κ2 `2

κ1

r

`1

Principle 2: Entropic Tangent Method

Then

A(1)(Λ, r)A(2)(Λ, s) ∼ A(Λ)A(Λ′)

(
r + s

r

)
If and only if the line

(
(0, r), (s, 0)

)
is tangent to C

(otherwise LHS � RHS)
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The Entropic Tangent Method in a picture
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Does this really work?

I understand that this is not rigorous. . . but does it really work?

¶ Yes, both methods, for the Arctic Circle in lozenge tilings of
the regular hexagon
(hint: use the formula for Semi-strict Gelfand Patterns
to deduce all the refined enumerations you need)
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Does this really work?

I understand that this is not rigorous. . . but does it really work?

¶ Yes, both methods, for the Arctic Circle in lozenge tilings of
the regular hexagon
(hint: use the formula for Semi-strict Gelfand Patterns
to deduce all the refined enumerations you need)

· Yes, both methods, for the Colomo–Pronko ω = 1 Arctic
Curve
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Does this really work?

I understand that this is not rigorous. . . but does it really work?

¶ Yes, both methods, for the Arctic Circle in lozenge tilings of
the regular hexagon
(hint: use the formula for Semi-strict Gelfand Patterns
to deduce all the refined enumerations you need)

· Yes, both methods, for the Colomo–Pronko ω = 1 Arctic
Curve

¸ Yes, the “geometric method”, for deriving the Colomo–
Pronko “caustic theorem” at generic ω (I did not try the en-
tropic method)
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Well ok... what about something rigorous now?

We have also a third strategy, with a good and a bad news.

The bad news is that now you need the doubly-refined
enumeration, A(1,2)(n; r , s)

The good news is that this method can be made rigorous, and
determines the arctic curve at size n, up to a O(

√
n) band of

uncertainty.

For simplicity, I discuss this new method only for the ω = 1
square-domain case.
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Prolog: Emptiness formation probability of anything. . .

For X a (deterministic or random) object (let’s call it a probe),
define En(X ) as the probability that X ∩ B = ∅, where B is the
set of positions of ±1’s in a random ASM of size n (i.e., positions
of c-vertices in the 6VM)

Examples of X :

I Epoint
n (r , s), a single cell at coordinate (r , s)

(1-point function in the bulk);

too difficult to evaluate

I E rect
n (r , s), a r × s rectangle in a corner of the domain

(Colomo–Pronko EFP);

viable, but still messy

I E line
n (r , s), a straigth segment from (r , 0) to (0, s);

clean definition, but also quite difficult to evaluate

I ERW
n (r , s), a directed random walk from (r , 0) to (0, s);

easy to evaluate, and can be related to Eline
n (r, s)!
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Prolog: Emptiness formation probability of anything. . .

For X a (deterministic or random) object (let’s call it a probe),
define En(X ) as the probability that X ∩ B = ∅, where B is the
set of positions of ±1’s in a random ASM of size n (i.e., positions
of c-vertices in the 6VM)

Examples of X :

I Epoint
n (r , s), a single cell at coordinate (r , s)

(1-point function in the bulk); too difficult to evaluate

I E rect
n (r , s), a r × s rectangle in a corner of the domain

(Colomo–Pronko EFP); viable, but still messy

I E line
n (r , s), a straigth segment from (r , 0) to (0, s);

clean definition, but also quite difficult to evaluate

I ERW
n (r , s), a directed random walk from (r , 0) to (0, s);

easy to evaluate, and can be related to Eline
n (r, s)!
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A simple but crucial remark

Here we have our simple but crucial remark:
Principle 3: Probe Tangent Method

A(1,2)(n + 1; r + 1, s + 1) = A(n)

(
r + s

r

)
ERW
n (r , s)

The knowledge of A(1,2)(n; r , s) (the “row-column” doubly-refined
enumeration) is not so explicit as A(1)(n; r), but is well under
control (see e.g. z-w Yu. Stroganov, A new way to deal with

Izergin-Korepin determinant at root of unity)

A(1,2)(n; r , s + 1) + A(1,2)(n; r + 1, s)− A(1,2)(n; r + 1, s + 1) = A(1,3)(n; r , s)

A(1,3)(n; r , s)− A(1,3)(n; r − 1, s − 1) = A(n − 1)−1[
A(n − 1, r − 1)

(
A(n, s)− A(n, s − 1)

)
+ (r ↔ s)

]
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To start: a simple transform

We want to find (the bottom-left corner of) the ω = 1 arctic
curve, which satisfies x(1− x) + y(1− y) + xy = 1/4

However, as our goal is to find it through the limit n→∞ of
E line
n (ρn, σn), we shall equivalently represent it on the (ρ, σ) plane,

where it gives (ρ, σ)θ =
(
1−
√
3 tan θ
2 ,

1−
√
3 tan(π

6
−θ)

2

)
, for θ ∈ [0, π6 ]
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Let’s have a look at ERW
n (r , s)

Let’s have a look at ERW
n (r , s), that shall converge to a step function

It is nicer to look at −
√

n∂(1,1)E
RW
n (r , s), that shall converge to a

delta-function on our curve.
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n = 128
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Let’s have a look at ERW
n (r , s)

Let’s have a look at ERW
n (r , s), that shall converge to a step function

It is nicer to look at −
√

n∂(1,1)E
RW
n (r , s), that shall converge to a

delta-function on our curve.
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Let’s have a look at ERW
n (r , s)

Let’s have a look at ERW
n (r , s), that shall converge to a step function

It is nicer to look at −
√

n∂(1,1)E
RW
n (r , s), that shall converge to a

delta-function on our curve.
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A nice accident

In fact, although A(1,2)(n; r , s), the row-column d-ref. enumeration
is well under control, A(1,3)(n; r , s), the row-row d-ref. enumeration
is a bit easier

By a lucky accident, we have

A(1,2)(n; r , s + 1) + A(1,2)(n; r + 1, s)− A(1,2)(n; r + 1, s + 1) = A(1,3)(n; r , s)

Thus A(1,3)(n;r ,s)

A(n−1)(r+s
r )

is sensibly larger than 0 only on the transform of

the arctic curve, and its gradient along the (1, 1) direction shall
change sign on this curve
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A nice accident

In fact, although A(1,2)(n; r , s), the row-column d-ref. enumeration
is well under control, A(1,3)(n; r , s), the row-row d-ref. enumeration
is a bit easier

By a lucky accident, we have

r
r+s

A(1,2)(n;r ,s+1)

A(n−1)(r+s−1
r−1 )

+ s
r+s

A(1,2)(n;r+1,s)

A(n−1)(r+s−1
r )
− A(1,2)(n;r+1,s+1)

A(n−1)(r+s
r )

= A(1,3)(n;r ,s)

A(n−1)(r+s
r )

Thus A(1,3)(n;r ,s)

A(n−1)(r+s
r )

is sensibly larger than 0 only on the transform of

the arctic curve, and its gradient along the (1, 1) direction shall
change sign on this curve
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A nice accident

In fact, although A(1,2)(n; r , s), the row-column d-ref. enumeration
is well under control, A(1,3)(n; r , s), the row-row d-ref. enumeration
is a bit easier

By a lucky accident, we have

− r∂−r + s∂−s
r + s

ERW
n−1(r , s) =

A(1,3)(n; r , s)

A(n − 1)
(r+s

r

)

Thus A(1,3)(n;r ,s)

A(n−1)(r+s
r )

is sensibly larger than 0 only on the transform of

the arctic curve, and its gradient along the (1, 1) direction shall
change sign on this curve
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A nice accident

In fact, although A(1,2)(n; r , s), the row-column d-ref. enumeration
is well under control, A(1,3)(n; r , s), the row-row d-ref. enumeration
is a bit easier

By a lucky accident, we have

− r∂−r + s∂−s
r + s

ERW
n−1(r , s) =

A(1,3)(n; r , s)

A(n − 1)
(r+s

r

)
Thus A(1,3)(n;r ,s)

A(n−1)(r+s
r )

is sensibly larger than 0 only on the transform of

the arctic curve, and its gradient along the (1, 1) direction shall
change sign on this curve
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Does this really work?
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Does this really work?
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Does this really work?
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Does this really work?
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From ERW
n (r , s) to E line

n (r , s)

We now need to deduce inequalities on E line
n (r , s) in terms of

ERW
n (r , s), in order to have a control on the arctic curve in terms

of a deterministic emptiness formation probability

For any finite ρ = r/n, σ = s/n, the directed random walk,
properly rescaled, converges to a Brownian Bridge. As such, we
know the probability distribution for the maximum and minimum
of the walk, in the transverse direction:

p(hmax = h)dh = 4h exp(−2h2)dh

z-w P. Lévy, Sur certains processus stochastiques homogènes, 1939

see also
z-w J. Pitman and M. Yor, On the distribution of ranked heights of

excursions of a Brownian Bridge, 2001

ý Gaussian tails!

Andrea Sportiello Arctic curves of Alternating Sign Matrices



From ERW
n (r , s) to E line

n (r , s)

A simple chain of inequalities:

∫∞
0 p(h)E line

n (x + h) ≤ ERW
n (x) ≤

∫∞
0 p(h)E line

n (x − h)
≤ ≤

(1− e−2h
2
)E line

n (x + h) (1− e−2h
2
)E line

n (x − h)

∀h > 0 +e−2h
2

from which we get (with some other generous bounds)

E line
n (x) ≥ maxh>0

[
ERW
n (x + h)− e−2h2

1−e−2h2

]
E line
n (x) ≤ minh>0

[
ERW
n (x − h) + e−2h2

1−e−2h2

]
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Well ok... what about some new result?

The severe bottleneck for obtaining arctic curves in new geometries
is the absence of exact formulas for the refined enumerations...
...but we have a nice candidate, our favourite triangoloid domain!
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Well ok... what about some new result?

The severe bottleneck for obtaining arctic curves in new geometries
is the absence of exact formulas for the refined enumerations...
...but we have a nice candidate, our favourite triangoloid domain!

This domain arises from the work of L. Cantini and myself on the
classification of domains for which the Razumov–Stroganov corre-
spondence holds.

As a corollary, the enumeration of all configurations factorises into∑
π Ψπ = An · Ψπmin . And Ψπmin is equal the number of lozenge

tilings of a hexagon, Ma,b,c .

Andrea Sportiello Arctic curves of Alternating Sign Matrices
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The severe bottleneck for obtaining arctic curves in new geometries
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...but we have a nice candidate, our favourite triangoloid domain!
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Well ok... what about some new result?

The severe bottleneck for obtaining arctic curves in new geometries
is the absence of exact formulas for the refined enumerations...
...but we have a nice candidate, our favourite triangoloid domain!
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Thus Aa,b,c = Aa+b+cMa,b,c

But in fact more is true: call n = a + b + c ,
Aa,b,c(r) =

∑
r ′ A(n, r − r ′)Ma,b,c(r ′)
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The arctic curve for the triangoloid

Very easy to find the position of tangence points κi .
Then, finding the arc between two of these points is harder but
feasible (through the entropic method). . . finally you get a
parametric expression (here a = 1− b − c , p ∈ [0, 1], q = 1− p)

x(b, c , p) =
3− c

2
− 2− p

2
√

1− pq

− (1− c)(1− (pb + qc))− 2pbc

2
√

(pb − qc)2 − 2(pb + qc) + 1
;

y(b, c , p) = x(c , b, 1− p) .
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Analytic continuation

The surprises are not over...
Just like the arc of the Colomo–Pronko Arctic Curve can be
completed to a certain ellipse...

x(1− x) + y(1− y) + xy = 1/4

...we can try to continue an-
alytically our curve. We get
a closed curve composed of
6 arcs, for the intervals p ∈
(−∞, 0], [0, 1], [1,+∞), and a
±-choice for square roots.

This curve is framed into a
hexagonal box, with side-slopes
0, 1,∞ and nice rational tan-
gence points.
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The shear phenomenon

Fact:
Consider a given arc of the triangoloid arctic curve C
(the one “near vertex A”)

The two other arcs of C (the ones “near vertices B and C ”)
do coincide with the 45-degree shear of the neighbouring arcs in
the boxed analytic continuation of the first arc.

This fact is of course true also in Colomo–Pronko ellipse, but here
it sounds much more striking: we have two free parameters
(b/a and c/a), and the single arcs do not have a polynomial
Cartesian representation

It is believable that this points towards the universality of the shear
phenomenon, for any tangent point of the arctic curve C on its
boxing domain Λ, for ω = 1 ASM.
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The shear phenomenon

x(b, c, p) =
3− c

2
− 2− p

2
√

1− pq
− (1− c)(1− (pb + qc))− 2pbc

2
√

(pb − qc)2 − 2(pb + qc) + 1
;

y(b, c, p) = x(c , b, 1− p) .
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What else?

The strategy of the Tangent Method in principle applies also to
models beyond the 6-Vertex Model. What you need is a
formulation of your configurations in terms of (interacting)
non-intersecting paths, that form a sort of “rainbow”.

Given this, the 1-point boundary correlation function (‘refined
enumeration’) corresponds to evaluating the large deviation for the
most external of these paths to reach a given point on the
boundary.

In doing this, it produces with large probability a straight segment
tangent to the arctic curve.

Let us illustrate this with another example: the ‘Cauchy formula’
that Petrov has shown us on monday. . .
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Cauchy identity for generalised Hall–Littlewood polynomials

z-w A. Borodin, On a Family of Symmetric Rational Functions;
I. Corwin and L. Petrov, Stochastic Higher Spin Vertex Models on the Line;

A. Borodin and L. Petrov, (in preparation)

Let q, s be ‘global’ parameters, and ui , vj be spectral parameters
associated to horizontal spin-1/2 spectral lines. Let we have also a
bundle of vertical q-boson lines, with spectral parameter set to 1.
Let us adopt the integrable stochastic weights, discussed in Corwin

and Petrov talks, and let us assume
∣∣∣ ui−s1−sui

∣∣∣ ∣∣∣ vj−s1−svj

∣∣∣ ≤ 1.

︸︷︷︸
g

1−suqg
1−su

(1−s2qg−1)u
1−su

u−sqg
1−su

1−qg+1

1−su

Then we have, among many other things, [Coroll. 4.7 in Borodin]

Sk,n(~u, ~v) :=
∑
λ

c(λ)Fλ(~u)Gλ(~v) =
(q; q)k∏
i (1− sui )

∏
i ,j

1− quivj
1− uivj

,

for F and G describing a suitable geometry, as depicted in the
figure.
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∏
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Cauchy identity for generalised Hall–Littlewood polynomials

Let us consider
ui = u, vj = v for all i , j .

For real-positive weights,
which are a ‘large set’
in (u, v , q, s) ∈ R4,
the Cauchy identity can be
seen as a partition-funct.
calculation for configs (F ,G )
with a probabilistic measure.

What are the arctic curves
associated to these configs?
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Cauchy identity for generalised Hall–Littlewood polynomials

By the magic of the Cauchy identity, it is easy to extract the
refined generating functions, for the only turn in the first or in the
last row. The equivalent of an isolated walk is here given by a
hypergeometric series (instead of

(r+l
r

)
, we have here∑

m xm
( r
m

)( l
m

)
, the same happens for ASM’s at ω 6= 1).

We can apply, e.g., the Geometric Tangent Method, and obtain
the limit arctic curve.

The expression in terms of (u, v , s, q, k/n) is too long for being
written down here. The top part of the curve is the portion of
height k of an infinite curve that does not depend on k (similar
facts hold for the bottom part). Scaling n to 1, it reads. . .
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Cauchy identity for generalised Hall–Littlewood polynomials

`∗(r) = ab
(2 + 2a− 2b + bc − bcr)− R

2(1 + a− b)(1 + a− b + bc)

· 2b(c − 1) + (1 + a)(2− c − cr − R/b)

(2(1− b)(1− b + a + bc) + abc(1 + r) + aR)

a =
(1− q)(1− s2)v

(qv − s)(1− sv)

b =
(v − s)(u − s)

(1− vs)(1− us)

c =
(1− q)(1− s2)u

(u − s)(1− qsu)

R2 =
bc

a

(
abc(1 + r)2 + 4r(1− b)(1 + a− b + bc)

)
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Cauchy identity for generalised Hall–Littlewood polynomials

We can have a look at some specific values, e.g.
(q, s, u, v , k/n) = (1/3, 1/3, 1/2, 3/4, 2/3):

`+(r) =
1

322
(6 + 29r + 10

√
16 + 262r + 16r2)

`−(r) =
1

644
(87 + 12r + 20

√
36 + 393r + 16r2)
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